Что такое выполните деление с остатком

Деление с остатком

Не всегда можно полностью разделить одно число на другое. В примерах на деление может оставаться остаток. Такое деление называется деление с остатком.

Деление с остатком — это деление одного натурального числа на другое, при котором остаток не равен нулю.

Если при делении натуральных чисел остаток равен нулю, то говорят, что делимое делится на делитель без остатка, или, иначе говоря, делится нацело.

Деление с остатком записывают так:

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Читается пример следующим образом:

« 17 » разделить на « 3 » получится « 5 » и остаток « 2 ».

Порядок решения примеров на деление с остатком.

При делении с остатком остаток всегда должен быть меньше делителя.

Если получилось, что остаток больше делителя, значит, вы неверно нашли наибольшее число, которое делится на делитель без остатка.

При решении более сложных примеров не всегда можно легко найти наибольшее число из пункта 1. Иногда для этого необходимо произвести дополнительные расчёты в столбик. Покажем это на примере.

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Методом подбора найдём на сколько надо умножить « 27 », чтобы получить ближайшее число к « 190 ».

Попробуем умножить на « 6 ».

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Рассчитаем остаток и сравним его с делителем.

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Остаток больше делителя. Это означает, что « 6 » как множитель нам не подходит. Попробуем умножить делитель на « 7 ».

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Снова рассчитаем и сравним остаток с делителем.

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Остаток меньше делителя. Значит пример решён верно. Запишем ответ.

Все вычисления выше можно представить в виде деления в столбик. Правила деления в столбик вы можете освежить в уроке «Деление в столбик» на нашем сайте.

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Как проверить деление с остатком

Проверим ответ нашего примера.

Деление с остатком выполнено верно.

Если при делении с остатком делимое меньше делителя, то их неполное частное равно нулю, остаток равен делимому.

Другими словами, если вы делите меньшее число на большее, неполное частное всегда будет равно нулю.

Источник

Деление с остатком. Формула деления с остатком и проверка.

Деление с остатком.

Рассмотрим простой пример:
15:5=3
В этом примере натуральное число 15 мы поделили нацело на 3, без остатка.

Иногда натуральное число полностью поделить нельзя нацело. Например, рассмотрим задачу:
В шкафу лежало 16 игрушек. В группе было пятеро детей. Каждый ребенок взял одинаковое количество игрушек. Сколько игрушек у каждого ребенка?

Решение:
Поделим число 16 на 5 столбиком получим:

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком
Мы знаем, что 16 на 5 не делиться. Ближайшее меньшее число, которое делиться на 5 это 15 и 1 в остатке. Число 15 мы можем расписать как 5⋅3. В итоге (16 – делимое, 5 – делитель, 3 – неполное частное, 1 — остаток). Получили формулу деления с остатком, по которой можно сделать проверку решения.

a=bc+d
a – делимое,
b – делитель,
c – неполное частное,
d – остаток.

Ответ: каждый ребенок возьмет по 3 игрушки и одна игрушка останется.

Остаток от деления

Остаток всегда должен быть меньше делителя.

Если при делении остаток равен нулю, то это значит, что делимое делиться нацело или без остатка на делитель.

Если при делении остаток больше делителя, это значит, что найденное число не самое большое. Существует число большее, которое поделит делимое и остаток будет меньше делителя.

Вопросы по теме “Деление с остатком”:
Остаток может быть больше делителя?
Ответ: нет.

Остаток может быть равен делителю?
Ответ: нет.

Как найти делимое по неполному частному, делителю и остатку?
Ответ: значения неполного частного, делителя и остатка подставляем в формулу и находим делимое. Формула:
a=b⋅c+d
(a – делимое, b – делитель, c – неполное частное, d – остаток.)

Пример №1:
Выполните деление с остатком и сделайте проверку: а) 258:7 б) 1873:8

Решение:
а) Делим столбиком:
Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

258 – делимое,
7 – делитель,
36 – неполное частное,
6 – остаток. Остаток меньше делителя 6 Category: 5 класс, Натуральные числа Leave a comment

Источник

Деление с остатком

Начнём рассмотрение новой темы с решения задачи.

Мама принесла 8 конфет и разделила их поровну между двумя детьми. Сколько конфет получил каждый?

Каждый ребёнок получил по 4 конфеты.

На следующий день мама опять принесла 8 конфет, но в гостях у её детей была ещё одна подружка. Мама опять разделила конфеты поровну, но уже между тремя детьми. Сколько конфет получил каждый ребёнок?

Каждый получил по 2 конфеты и 2 конфеты остались лишними.

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Как сделать проверку?

Правило 1

Деление с остатком — это деление одного числа на другое, при котором остаток не равен нулю.

Правило 2

При делении с остатком остаток всегда должен быть меньше делителя.

Порядок решения

1. Нахожу наибольшее число до 14, которое делится на 5 без остатка. Это число 10.

2. Вычитаю из делимого найденное число: 14 − 10 = 4

3. Сравниваю остаток с делителем

Проверка деления с остатком

1. Умножаю неполное частное на делитель.

2. Прибавляю остаток к полученному результату.

3. Сравниваю полученный результат с делимым, он должен быть МЕНЬШЕ.

Деление в столбик

В 23 содержится 5 раз по 4, и ещё остаётся 3.

Решение записывают так:

23 : 4 = 5 (ост. 3) или так:

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Поделись с друзьями в социальных сетях:

Источник

Деление чисел с остатком

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Деление с остатком целых положительных чисел

Деление — это разбиение целого на равные части.

Остаток от деления — это число, которое образуется при делении с остатком. То есть то, что «влезло» и осталось, как хвостик.

Чтобы научиться делить числа с остатком, нужно усвоить некоторые правила. Начнем!

Все целые положительные числа являются натуральными. Поэтому деление целых чисел выполняется по всем правилам деления с остатком натуральных чисел.

Попрактикуемся в решении.

Пример

Разделить 14671 на 54.

Выполним деление столбиком:

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Неполное частное равно 271, остаток — 37.

Ответ: 14671 : 54 = 271(остаток 37).

Деление с остатком положительного числа на целое отрицательное

Чтобы легко выполнить деление с остатком положительного числа на целое отрицательное, обратимся к правилу:

В результате деления целого положительного a на целое отрицательное b получаем число, которое противоположно результату от деления модулей чисел a на b. Тогда остаток равен остатку при делении |a| на |b|.

Неполное частное — это результат деления с остатком. Обычно в ответе записывают целое число и рядом остаток в скобках.

Это правило можно описать проще: делим два числа со знаком «плюс», а после подставляем «минус».

Все это значит, что «хвостик», который у нас остается, когда делим положительное число на отрицательное — всегда положительное число.

Алгоритм деления положительного числа на целое отрицательное (с остатком):

Пример

Разделить 17 на −5 с остатком.

Применим алгоритм деления с остатком целого положительного числа на целое отрицательное.

Разделим 17 на − 5 по модулю. Отсюда получим, что неполное частное равно 3, а остаток равен 2. Получим, что искомое число от деления 17 на − 5 = − 3 с остатком 2.

Ответ: 17 : (− 5) = −3 (остаток 2).

Деление с остатком целого отрицательного числа на целое положительное

Чтобы быстро разделить с остатком целое отрицательное число на целое положительное, тоже придумали правило:

Чтобы получить неполное частное с при делении целого отрицательного a на положительное b, нужно применить противоположное данному числу и вычесть из него 1. Тогда остаток d будет вычисляться по формуле:

d = a − b * c

Из правила делаем вывод, что при делении получается целое неотрицательное число.

Для точности решения применим алгоритм деления а на b с остатком:

Рассмотрим пример, где можно применить алгоритм.

Пример

Найти неполное частное и остаток от деления −17 на 5.

Разделим заданные числа по модулю.

Получаем, что при делении частное равно 3, а остаток 2.

Так как получили 3, противоположное ему −3.

Необходимо отнять единицу: −3 − 1 = −4.

Чтобы вычислить остаток, необходимо a = −17, b = 5, c = −4, тогда:

d = a − b * c = −17 − 5 * (−4) = −17 − (− 20) = −17 + 20 = 3.

Значит, неполным частным от деления является число −4 с остатком 3.

Ответ: (−17) : 5 = −4 (остаток 3).

Деление с остатком целых отрицательных чисел

Сформулируем правило деления с остатком целых отрицательных чисел:

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b, нужно произвести вычисления по модулю, после чего прибавить 1. Тогда можно произвести вычисления по формуле:

d = a − b * c

Из правила следует, что неполное частное от деления целых отрицательных чисел — положительное число.

Алгоритм деления с остатком целых отрицательных чисел:

Пример

Найти неполное частное и остаток при делении −17 на −5.

Применим алгоритм для деления с остатком.

Разделим числа по модулю. Получим, что неполное частное равно 3, а остаток равен 2.

Сложим неполное частное и 1: 3 + 1 = 4. Из этого следует, что неполное частное от деления заданных чисел равно 4.

Для вычисления остатка применим формулу. По условию a = −17, b = −5, c = 4, тогда получим d = a − b * c = −17 − (−5) * 4 = −17 − (−20) = −17 + 20 = 3.

Получилось, что остаток равен 3, а неполное частное равно 4.

Ответ: (−17) : (−5) = 4 (остаток 3).

Деление с остатком с помощью числового луча

Деление с остатком можно выполнить и на числовом луче.

Пример 1

Рассмотрим выражение: 10 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления помещаются полностью три раза и одно деление осталось.

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Решение: 10 : 3 = 3 (остаток 1).

Пример 2

Рассмотрим выражение: 11 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления поместились три раза и два деления осталось.

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Решение: 11 : 3 = 3 (остаток 2).

Проверка деления с остатком

Пока решаешь пример, бывает всякое: то в окно отвлекся, то друг позвонил. Чтобы убедиться в том, что все правильно, важно себя проверять. Особенно ученикам 5 класса, которые только начали проходить эту тему.

Формула деления с остатком

a = b * c + d,

где a — делимое, b — делитель, c — неполное частное, d — остаток.

Эту формулу можно использовать для проверки деления с остатком.

Пример

Рассмотрим выражение: 15 : 2 = 7 (остаток 1).

В этом выражении: 15 — это делимое, 2 — делитель, 7 — неполное частное, а 1 — остаток.

Чтобы убедиться в правильности ответа, нужно неполное частное умножить на делитель (или наоборот) и к полученному произведению прибавить остаток. Если в результате получится число, которое равно делимому, то деление с остатком выполнено верно. Вот так:

Теорема о делимости целых чисел с остатком

Если нам известно, что а — это делимое, тогда b — это делитель, с — неполное частное, d — остаток. И они между собой связаны. Эту связь можно описать через теорему о делимости с остатком и показать при помощи равенства.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом:

где q и r — это некоторые целые числа. При этом 0 ≤ r ≤ b.

Доказательство:

Если существуют два числа a и b, причем a делится на b без остатка, тогда из определения следует, что есть число q, и будет верно равенство a = b * q. Тогда равенство можно считать верным: a = b * q + r при r = 0.

Тогда необходимо взять q такое, чтобы данное неравенством b * q

Источник

Деление в столбик

Что такое выполните деление с остатком. Смотреть фото Что такое выполните деление с остатком. Смотреть картинку Что такое выполните деление с остатком. Картинка про Что такое выполните деление с остатком. Фото Что такое выполните деление с остатком

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Как правильно делить в столбик

Делить столбиком проще, чем высчитывать в уме. Этот способ наглядный, помогает держать во внимании каждый шаг и запомнить алгоритм, который впоследствии будет срабатывать автоматически.

Рассмотрим пример деления трехзначного числа на однозначное 322 : 7. Для начала определимся с терминами:

Шаг 1. Слева размещаем делимое 322, справа делитель 7, между ставим уголок, а частное посчитаем и запишем под делителем.

Шаг 2. Смотрим на делимое слева направо и находим ту часть, которая больше делителя. 3, 32 или 322? Нам подходит 32. Теперь нужно определить сколько раз наш делитель 7 содержится в числе 32. Похоже, что четыре раза.

Проверяем: 4 × 7 = 28, а 28

Шаг 3. Остаток равен 4. Для продолжения решения его нужно увеличить. Мы сделаем это за счет следующей цифры делимого. Приписываем к четверке оставшуюся двойку и продолжаем размышлять.

Шаг 4. Сколько раз делитель 7 содержится в числе 42? Кажется, шесть раз. Проверяем: 7 × 6 = 42, 42 = 42 — все верно. Записываем полученное число к четверке справа — это вторая цифра частного. Делаем вычитание в столбик 42 из 42, в остатке получаем 0. Значит, числа разделились нацело.

Мы закончили решать пример и в результате получили целое число 46.

Как выглядит деление в столбик с остатком

Это такое же деление, только в результате получается неровное число, как получилось в примере выше.

Примеры на деление в столбик

Давайте закрепим знания на практике. Для этого разделите столбиком примеры ниже, а после проверьте полученные цифры — чур, не подглядывать!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *