Что такое выпуклый параллелограмм

Параллелограмм

Параллелограмм — это выпуклый четырехугольник, у которого
две любые стороны равны и параллельны.

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

На рисунке 1 изображен выпуклый четырехугольник MNPQ, со сторонами MN, PQ, MQ, NP. Чтобы доказать, что это параллелограмм, посмотрим
какие у него стороны. Итак, по рисунку 1 видно, что у этого выпуклого четырехугольника в первую очередь противоположные стороны равны: MN = PQ и NP = MQ.
Но нам этого еще недостаточно,так как равные противоположные стороны могут быть и у прямоугольника. Для того, чтобы можно было окончательно сказать,
что этот выпуклый четырехугольник — параллелограмм, надо во вторую очередь посмотреть параллельны, ли эти стороны. Сторона MN параллельна стороне PQ,
а сторона NP параллельна стороне MQ. Следовательно, у этого выпуклого четырехугольника две стороны равны и параллельны,а это значит, что это параллелограмм.

Докажем признак, который мы использовали для доказательства — о том, что если в четырехугольнике
две любые стороны равны и параллельны, то это параллелограмм
.

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

На рисунке 2 изобразим выпуклый четырехугольник CPED. По условию CP = ED, CP || ED. Докажем, что CPED — параллелограмм.

5) PE || CD, CP || ED и PE = CD, CP = ED, следовательно CPED — параллелограмм, ч.т.д.

Признак доказан.

Кроме признака параллелограмма, который мы сейчас доказали, существует еще несколько признаков,
которые мы рассмотрим и докажем в следующих статьях.

Источник

Понятие выпуклого четырехугольника, его свойства и признаки

Выпуклый четырехугольник — это фигура, состоящая из четырех сторон, соединенных между собой в вершинах, образующих вместе со сторонами четыре угла, при этом сам четырехугольник всегда находится в одной плоскости относительно прямой, на которой лежит одна из его сторон. Другими словами, вся фигура находится по одну сторону от любой из ее сторон.

Как видно, определение довольно легко запоминающееся.

Выпуклый четырехугольник

Основные свойства и виды

К выпуклым четырехугольникам можно отнести практически все известные нам фигуры, состоящие из четырех углов и сторон. Можно выделить следующие:

Это интересно: что микроэкономика изучает, кратко об основателях и основах науки.

Все эти фигуры объединяет не только то, что они четырехугольные, но и то, что они еще и выпуклые. Достаточно просто рассмотреть схему:

На рисунке изображена выпуклая трапеция. Тут видно, что трапеция находится на одной плоскости или по одну сторону от отрезка [AB]. Если провести аналогичные действия, можно выяснить, что и в случае со всеми остальными сторонами трапеция является выпуклой.

Является ли параллелограмм выпуклым четырехугольником?

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограммВыше показано изображение параллелограмма. Как видно из рисунка, параллелограмм также является выпуклым. Если посмотреть на фигуру относительно прямых, на которых лежат отрезки AB, BC, CD и AD, то становится понятно, что она всегда находится на одной плоскости от этих прямых. Основными же признаками параллелограмма является то, что его стороны попарно параллельны и равны так же, как и противоположные углы равны между собой.

Теперь, представьте себе квадрат или прямоугольник. По своим основным свойствам они являются еще и параллелограммами, то есть все их стороны расположены попарно параллельно. Только в случае с прямоугольником длина сторон может быть разной, а углы прямые (равные 90 градусам), квадрат — это прямоугольник, у которого все стороны равны и углы также прямые, а у параллелограмма длины сторон и углы могут быть разными.

В итоге, сумма всех четырех углов четырехугольника должна быть равна 360 градусам. Легче всего это определить по прямоугольнику: все четыре угла прямоугольника прямые, то есть равны 90 градусам. Сумма этих 90-градусных углов дает 360 градусов, другими словами, если сложить 90 градусов 4 раза, получится необходимый результат.

Свойство диагоналей выпуклого четырехугольника

Диагонали выпуклого четырехугольника пересекаются. Действительно, это явление можно наблюдать визуально, достаточно взглянуть на рисунок:

На рисунке слева изображен невыпуклый четырехугольник или четырехсторонник. Как угодно. Как видно, диагонали не пересекаются, по крайней мере, не все. Справа изображен выпуклый четырехугольник. Тут уже наблюдается свойство диагоналей пересекаться. Это же свойство можно считать признаком выпуклости четырехугольника.

Другие свойства и признаки выпуклости четырехугольника

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограммКонкретно по этому термину очень сложно назвать какие-то определенные свойства и признаки. Легче обособить по различным видам четырехугольников такого типа. Начать можно с параллелограмма. Мы уже знаем, что это четырехугольная фигура, стороны которой попарно параллельны и равны. При этом, сюда же включается свойство диагоналей параллелограмма пересекаться между собой, а также сам по себе признак выпуклости фигуры: параллелограмм находится всегда в одной плоскости и по одну сторону относительно любой из своих сторон.

Итак, известны основные признаки и свойства:

Далее рассмотрим каждый четырехугольник по отдельности.

Прямоугольник. Эта фигура имеет все те же свойства и признаки, что и параллелограмм, но при этом все углы его равны 90 градусам. Отсюда и название — прямоугольник.

Квадрат, тот же параллелограмм, но углы его прямые как у прямоугольника. Из-за этого квадрат в редких случаях называют прямоугольником. Но главным отличительным признаком квадрата помимо уже перечисленных выше, является то, что все четыре его стороны равны.

Трапеция — очень интересная фигура. Это тоже четырехугольник и тоже выпуклый. В этой статье трапеция уже рассматривалась на примере рисунка. Понятно, что она тоже выпуклая. Главным отличием, а соответственно признаком трапеции является то, что ее стороны могут быть абсолютно не равны друг другу по длине, а также ее углы по значению. При этом фигура всегда остается на одной плоскости относительно любой из прямых, которая соединяет любые две ее вершины по образующим фигуру отрезкам.

Ромб — не менее интересная фигура. Отчасти ромбом можно считать квадрат. Признаком ромба является тот факт, что его диагонали не только пересекаются, но и делят углы ромба пополам, а сами диагонали пересекаются под прямым углом, то есть, они перпендикулярны. В случае, если длины сторон ромба равны, то диагонали тоже делятся пополам при пересечении.

Дельтоиды или выпуклые ромбоиды (ромбы) могут иметь разную длину сторон. Но при этом все равно сохраняются как основные свойства и признаки самого ромба, так и признаки и свойства выпуклости. То есть, мы можем наблюдать, что диагонали делят углы пополам и пересекаются под прямым углом.

Сегодняшней задачей было рассмотреть и понять, что такое выпуклые четырехугольники, какие они бывают и их основные признаки и свойства. Внимание! Стоит напомнить еще раз, что сумма углов выпуклого четырехугольника равна 360 градусам. Периметр фигур, например, равен сумме длин всех образующих фигуру отрезков. Формулы расчета периметра и площади четырехугольников будут рассмотрены в следующих статьях.

Источник

Параллелограмм: свойства и признаки

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

Как найти площадь параллелограмма:

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

Шаг 3. Из равенства треугольников также следует:

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Источник

Выпуклый четырехугольник

Определения

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Диагональ четырехугольника – отрезок, соединяющий любые две несоседние вершины.

Различают выпуклые и невыпуклые четырехугольники.

Четырехугольник называется выпуклым, если он находится в одной полуплоскости относительно прямой, содержащей любую его сторону.

В школьном курсе рассматриваются только выпуклые четырехугольники. Поэтому далее “выпуклый четырехугольник” будем сокращенно называть “четырехугольник”.

Теорема

Доказательство

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

\[\begin 360^\circ=180^\circ+180^\circ=(\angle DAC+\angle D+\angle ACD) + (\angle CAB+\angle B+\angle ACB)=\\ =\angle D+\angle B +(\angle DAC+\angle CAB)+(\angle ACD+\angle ACB)=\angle D+\angle B+\angle A+\angle C \end\]

Теорема Вариньона

Выпуклый четырехугольник, вершинами которого являются середины сторон произвольного четырехугольника, является параллелограммом.

Доказательство*
С доказательством данной теоремы рекомендуется ознакомиться после изучения темы “Средняя линия треугольника”.

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

Следовательно, по определению \(MNKP\) – параллелограмм.

Теорема

Если в четырехугольнике \(ABCD\) диагонали взаимно перпендикулярны, то суммы квадратов противоположных сторон равны: \[AB^2+CD^2=BC^2+AD^2\]

Доказательство

По теореме Пифагора:

Из равенств видно, что \(AB^2+CD^2=x^2+a^2+y^2+b^2=BC^2+AD^2\)

Замечание

Все известные четырехугольники, изучаемые в школьной программе, подчиняются следующей схеме:

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

Таким образом, любой четырехугольник из этой схемы обладает свойствами всех предыдущих четырехугольников, из которых он следует.

Например, прямоугольник обладает свойствами параллелограмма и произвольного выпуклого четырехугольника; квадрат обладает свойствами прямоугольника, параллелограмма, выпуклого четырехугольника.

Источник

Определение выпуклого четырехугольника

Статья поможет разобраться в свойствах и видах выпуклых четырехугольников. Научит отличать их от невыпуклых фигур. Вы узнаете, как определить, равны фигуры друг другу или нет, найдете ссылки на подробные доказательства всех пунктов равенства.

Что такое выпуклый четырехугольник

Это почти любой знакомый нам четырехугольник. Потому что в обычной общеобразовательной школе изучают только выпуклые фигуры.

Основные свойства

Для начала проверьте наличие четырех вершин, из которых три не лежат на одной прямой. Также должно быть четыре отрезка, которые эти вершины последовательно соединяют. Если все это есть, значит перед нами четырехугольник.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что такое выпуклый параллелограмм. Смотреть фото Что такое выпуклый параллелограмм. Смотреть картинку Что такое выпуклый параллелограмм. Картинка про Что такое выпуклый параллелограмм. Фото Что такое выпуклый параллелограмм

Виды выпуклых прямоугольников

Существуют две большие группы.

1 вид — параллелограммы:

Свойства диагоналей, признаки выпуклости

Можно сказать, что это, за небольшим исключением, одно и то же, поэтому объединим их в один блок.

1 свойство

Пересечение всех диагоналей.

Точка пересечения должна быть общая. Если хотя бы одна диагональ не пересекается с остальными в одной точке, то этот четыреугольник невыпуклый.

В основе этого свойства лежит соответствующая теорема, но здесь мы ее подробно не рассматриваем.

2 свойство

Любая из диагоналей разделит четырехугольник на 2 треугольника. Можно воспользоваться рисунками, данными в первом блоке статьи, и мысленно провести одну диагональ в каждой из фигур. Результат будет подтверждением написанного в этом пункте.

Еще один признак выпуклости

Если сложить градусные меры всех углов фигуры, получится величина, равная 360º.

Признаки равенства

Выпуклые четырехугольники равны, если у них соответственно равны:

Подробные доказательства по каждому пункту с иллюстрациями можно найти здесь: https://yadi.sk/i/V0X_9c1DY1Wehg

Сумма квадратов диагоналей

Если сумма квадратов диагоналей и сумма квадратов всех сторон фигуры равны, то это параллелограмм. Это свойство относится ко всем видам параллелограмма (ромб, квадрат, прямоугольник, собственно параллелограмм).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *