Что такое высшие спирты

Спирты

Формула винного, или этилового, спирта (этанола) С2Н5ОН, несомненно, знакома многим даже совершенно далёким от химии людям. Это соединение, которое образуется при ферментативном брожении крахмала, глюкозы и фруктозы, в быту называют просто спиртом.

Получение вина путём сбраживания виноградного сока было освоено людьми уже несколько тысячелетий назад. Однако чистый спирт, содержащий лишь незначительное количество воды, выделили при перегонке вина только в XIII в. В Средние века стали известны многие свойства винного спирта, например горючесть (одно из его латинских названий — aqua ardens, что в переводе означает «огненная вода») и способность извлекать из листьев, плодов и кореньев содержащиеся в них биологически активные вещества и красители (полученные растворы в быту называют настойками). Алхимик Арнальдо из Вилановы упоминает спирт в числе медикаментов и противоядий.

Слово «спирт» происходит от древнего латинского названия этого вещества — spiritus vini («дух вина»). Этот термин до сих пор используется в медицине при записи рецептов. В XVI в. в западноевропейских языках, а в XVIII в. и в русском у винного спирта появилось название — алкоголь (араб. «ал-кугул»).

Безводный (абсолютный) этиловый спирт был впервые получен лишь в 1796 г. российским химиком Товием Егоровичем Ловицем и немецким ученым Иеремией Вениамином Рихтером. Для этой цели они применяли вещества, связывающие воду, например оксид кальция (негашёную известь). Абсолютный спирт легко поглощает влагу воздуха, поэтому его хранят в плотно закрытых сосудах.

Спирты (алкоголи) – это производные углеводородов, содержащие в молекуле одну или несколько гидроксильных групп – ОН у насыщенных атомов углерода.

Общая формула спиртов: R(OH)m, m≥1, где R – УВ радикал; m – число функциональных гидроксильных групп – ОН, которое определяет атомность спирта.

Классификация спиртов по строению УВ радикала:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Классификация спиртов по атомности:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Предельные одноатомные спирты (алканолы)

Общая формула: CnH2n+1OH, n≥1

Гомологический ряд

Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Изомерия и номенклатура

Первые два члена гомологического ряда – СН3ОН и С2Н5ОН – не имеют изомеров, относящихся к классу спиртов. Для остальных алканолов возможны 2 типа изомерии (в пределах своего класса):

— изомерия цепи (углеродного скелета);

— изомерия положения функциональной группы – ОН.

Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Спирты изомерны другому классу соединений – простым эфирам (R-O-R):Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Электронное строение

Физические свойства

Полярность связи О—Н и наличие неподеленных пар электронов на атоме кислорода определяют физические свойства спиртов.

Температуры кипения спиртов больше температуры кипения соответствующих алканов с тем же числом атомов углерода. Это объясняется ассоциацией молекул спиртов вследствие образования межмолекулярных водородных связей.

Водородная связь — это особый вид связи, которая осуществляется при участии атома водорода гидроксильной или аминогруппы одной молекулы и атомами с большой электроотрицательностъю (О, N, F, Сl) другой молекулы. Чем большим положительным зарядом обладает атом водорода и чем больше способность другого атома отдавать свои неподеленные электронные пары, тем легче образуется водородная связь (ВС) и тем она прочнее.

Все алканолы легче воды, бесцветны, жидкие имеют резкий запах, твердые запаха не имеют. Метанол, этанол и пропанол неограниченно растворяются в воде, с увеличением числа углеродных атомов растворимость алканолов в воде уменьшается, высшие спирты не растворяются в воде.

Химические свойства

Химические свойства алканолов определяются особенностями их электронного строения: наличием в их молекулах полярных связей О-Н, С-О, С-Н. Для алканолов характерны реакции, которые идут с расщеплением этих связей: реакции замещения, отщепления, окисления.

I.Реакции замещения

1. Замещение атома водорода гидроксильной группы вследствие разрыва связи О-Н.

а) Взаимодействие с активными металлами с образованием алкоголятов металлов:

Эти реакции протекают только в безводной среде; в присутствии воды алкоголяты полностью гидролизуются:

б) Взаимодействие с органическими и неорганическими кислотами с образованием сложных эфиров (реакции этерификации):Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

2. Замещение гидроксильной группы вследствие разрыва связи С-О.

а) Взаимодействие с галогеноводородами с образованием галогеналканов:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Следует отметить, что спирты можно превратить в галогенпроизводные действием и других реагентов, например хлоридов фосфора:

R – OH + PCl5 → R – Cl + POCl3 + HCl

б) Взаимодействие с аммиаком с образованием аминов.

Реакции идут при пропускании смеси паров спирта с аммиаком при 300 o С над оксидом алюминия:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

При избытке спирта алкильными радикалами могут замещаться 2 или 3 атома водорода в молекуле NН3:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

II. Реакции отщепления

1.Дегидратация, т.е. отщепление воды

Дегидратация спиртов может быть двух типов: межмолектлярная и внутримолекулярная.

а) Межмолекулярная дегидратация спиртов с образованием простых эфиров R—O—R’. Эти реакции могут протекать с участием одного спирта или смеси двух и более спиртов:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

б) Внутримолекулярная дегидратация спиртов с образованием алкенов. Протекает при более высокой температуре. В отличие от межмолекулярной дегидратации в процессе этих реакций происходит отщепление молекулы воды от одной молекулы спирта:

Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Первый член гомологического ряда алканолов – метанол СН3ОН – не вступает в реакции внутримолекулярной дегидратации.

Дегидратация вторичных и третичных спиртов происходит по правилу Зайцева:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

2.Дегидрирование (разрыв связей О – Н и С – Н)

а) При дегидрировании первичных спиртов образуются альдегиды:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

В организме человека этот процесс происходит под действием фермента (алкогольдегидрогеназы).

б) При дегидрировании вторичных спиртов образуются кетоны:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

в) Третичные спирты не дегидрируются.

III. Реакции окисления

1.Горение (полное окисление)

Спирты горят на воздухе с выделением большого количества тепла:

2.Неполное окисление под действием окислителей: кислорода воздуха в присутствии катализаторов (например, Cu), перманганата калия, дихромата калия и др.

Реакции неполного окисления спиртов по своим результатам аналогичны реакциям дегидрирования:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Способы получения алканолов

Кроме прямой гидратации этилена, существует также сернокислотная гидратация, протекающая в две стадии:

— на первой стадии этилен поглощается серной кислотой:

— на второй стадии этилсерная кислота гидролизуется с образованием этилового спирта и серной кислоты:

При гидратации гомологов этилена в соответствии с правилом Марковникова образуются вторичные или третичные спирты:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

2.Гидролиз галогеналканов

При действии водного раствора NaOH атом галогена в галогеналкане замещается группой —ОН:

Обратите внимание, что при действии спиртового раствора щелочи на галогеналканы происходит отщепление галогеноводорода и образование алкена (см. способы получения алкенов).

3. Гидрирование альдегидов и кетонов

Как уже было отмечено выше, дегидрирование спиртов по своей химической сущности является окислением. Обратная реакция — гидрирование альдегидов и кетонов — является, таким образом, их восстановлением.

В присутствии катализаторов (Ni, Pt, Pd, Со) альдегиды восстанавливаются до первичных спиртов, а кетоны — до вторичных спиртов:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

4.Специфические методы получения метанола и этанола

Этанол образуется при брожении (ферментации) углеводов – глюкозы или крахмала:

Предельные многоатомные спирты

Свойства многоатомных спиртов рассмотрим на примере простейшего трехатомного спирта – глицерина, или пропантриола-1,2,3:

Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Физические свойства

Глицерин – вязкая, бесцветная, сладковатая на вкус нетоксичная жидкость с t о кип.=230 о С. Смешивается с водой во всех отношениях.

Химические свойства

I. Замещение атомов водорода гидроксильных групп

1.Как и одноатомные спирты, многоатомные спирты взаимодействуют со щелочными металлами; при этом могут образовываться моно-, ди- и тризамещенные продукты:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

2.Наличие нескольких ОН-групп в молекулах многоатомных спиртов обусловливает увеличение подвижности и способности к замещению гидроксильных атомов водорода по сравнению с одноатомными спиртами. Поэтому, в отличие от алканолов, многоатомные спирты взаимодействуют с гидроксидами тяжелых металлов (например, с гидроксидом меди (II) Cu(OH)2. Продуктами этих реакций являются внутрикомплексные («хелатные») соединения, в молекулах которых атом тяжелого металла образует как обычные ковалентные связи Ме←О за счет замещения атомов водорода ОН-групп, так и донорно-акцепторные связи Ме ←О за счет неподеленных электронных пар атомов кислорода других ОН-групп:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Нерастворимый в воде Cu(OH)2 голубого цвета растворяется в глицерине с образованием ярко-синего раствора глицерата меди (II). Эта реакция является качественной реакцией на все многоатомные спирты.

3.Многоатомные спирты, как и одноатомные, взаимодействуют с органическими и неорганическими кислотами с образованием сложных эфиров:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

II. Замещение гидроксильных групп

Наиболее известными реакциями этого типа является взаимодействие многоатомных спиртов с галогеноводородами. Например, при взаимодействии глицерина с хлороводородом ОН-группы последовательно замещаются атомами хлора:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Способы получения глицерина

1.Гидролиз жиров – основной способ получения глицерина:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

2. Синтез из пропилена

В последнее время глицерин получают из пропилена. Существует несколько вариантов этого синтеза. По одному из них пропилен хлорируют при t o = 440—500 о С, полученный аллилхлорид гидролизуют раствором NaOH. На полученный в результате гидролиза аллиловый спирт действуют пероксидом водорода Н2О2, который в присутствии катализатора присоединяется к спирту по двойной связи с образованием глицерина. Весь процесс можно представить схемой:Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Применение важнейших спиртов

Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

В медицине С2Н5ОН применяется как дезинфицирующее средство и средство для компрессов, используется для приготовления экстрактов и настоек, как растворитель для многих лекарственных препаратов.

Скачать:

Скачать бесплатно реферат на тему: «Спирты» Спирты.docx (249 Загрузок)

Скачать бесплатно реферат на тему: «Синтез этилового спирта» Синтез-этилового-спирта.docx (215 Загрузок)

Скачать бесплатно реферат на тему: «Синтез метанола из оксида углерода и водорода» Синтез-метанола-из-оксида-углерода-и-водорода.docx (225 Загрузок)

Скачать рефераты по другим темам можно здесь

Похожее

Добавить комментарий Отменить ответ

Что такое высшие спирты. Смотреть фото Что такое высшие спирты. Смотреть картинку Что такое высшие спирты. Картинка про Что такое высшие спирты. Фото Что такое высшие спирты

Репетитор по химии. Занятия проходят онлайн по Скайпу. По всем вопросам пишите в Ватсапп: +7 928 285 70 42

Источник

Высшие жирные спирты

Высшие жирные спирты (ВЖС) — одноатомные насыщенные и ненасыщенные спирты, содержащие от 6 до 20(22) атомов углерода в цепи (С6—С12) и получаемые как из природных жиров, масел и восков (натуральные высшие жирные спирты), так и химическим способом (синтетические высшие жирные спирты). Синтетические ВЖС являются продукцией основного органического синтеза и наряду с натуральными ВЖС широко используются в промышленности для получения пластификаторов, растворителей, флотореагентов, поверхностно-активных соединений, душистых веществ.

Высшие жирные спирты плохо (С6—С7) или практически нерастворимы (С8—С22) в воде, растворимы в этаноле и эфире, обладают всеми химическими свойствами спиртов.

См. также

Примечания

Ссылки

Полезное

Смотреть что такое «Высшие жирные спирты» в других словарях:

высшие жирные спирты — ВЖС, техническое название одноатомных спиртов, содержащих в молекуле 6 – 20 атомов углерода. Применяются как флотореагента, экстрагенты, растворители синтетических смол, в синтезе пластификаторов и ПАВ, как компоненты смазочно – охлаждающих жидк … Текстильный глоссарий

ВЫСШИЕ ЖИРНЫЕ СПИРТЫ — (ВЖС), техн. название одноатомных спиртов С 6 ЧС 20. Св ва нек рых индивидуальных спиртов приведены в таблице. Критич. параметры (t крит и p крит): Для С 6 337 … Химическая энциклопедия

«ВЫСШИЕ ЖИРНЫЕ СПИРТЫ» — ВЖС, технич. название одноатомных спиртов, содержащих в молекуле 6 20 атомов углерода. Применяются как флотореагенты, экстрагенты, растворители синтетич. смол, в синтезе пластификаторов и ПАВ, как компоненты смазочно охлаждающих жидкостей,… … Большой энциклопедический политехнический словарь

Спирты — Отличительная особенность спиртов гидроксильная группа при насыщенном атоме углерода на рисунке выделена красным (кислород) и серым цветом (водород). Спирты (от лат. … Википедия

СПИРТЫ — (алкоголи), орг. соед., содержащие в молекуле одну или неск. гидроксильных групп ОН у насыщ. атомов углерода. По кол ву этих групп различают одно (иногда термин алкоголи относят только к одноатомным спиртам), двух (гликоли), трех (глицерины) и… … Химическая энциклопедия

Одноатомные спирты — Спирты (устар. алкоголи) органические соединения, содержащие одну или несколько гидроксильных групп (гидроксил, OH), непосредственно связанных с атомом углерода в углеводородном радикале. Общая формула простых предельных (ациклических) спиртов… … Википедия

Химические свойства спиртов — Химические свойства спиртов это химические реакции спиртов во взаимодействии с другими веществами. Они определяются в основном наличием гидроксильной группы и строением углеводородной цепи, а также их взаимным влиянием: Чем больше… … Википедия

Алканы — Эта статья о химических соединениях. О канадской алюминиевой компании см. Rio Tinto Alcan … Википедия

Мыла (химич.) — Мыла, соли высших жирных кислот (см. Карбоновые кислоты). В производстве и быту М. (или товарными М.) называют технические смеси водорастворимых солей этих кислот, часто с добавками некоторых др. веществ, обладающие моющим действием. Основу… … Большая советская энциклопедия

Источник

Коньячные спирты

Химический состав коньячных спиртов

Компоненты коньячного спирта делятся на вещества, переходящие при перегонке из виноматериалов, и на вещества, образованные при выдержке в дубовых бочках. Последняя система классификации этих компонентов рассматривает вещества, перешедшие при перегонке виноматериалов вместе с летучими веществами, а вещества, образованные при выдержке – с нелетучими.

Летучие вещества.

Главным компонентом коньячного спирта является этиловый спирт и вода. Остальные вещества следует рассматривать как примеси к этим двум основным компонентам. Высококачественный коньячный спирт в своем составе должен иметь определенный минимум летучих примесей (в противном случае такой коньячный спирт считается ректифицированным). Следует отметить, что чрезмерно большое количество летучих примесей ухудшает качество коньячного спирта.

В коньячных спиртах, кроме этилового спирта, найдено некоторое количество других алифатических спиртов: метанол, пропиловый, бутиловый, изобутиловый, амиловый, изоамиловый и другие спирты.

Метиловый спирт (СН4ОН) характеризуется следующими показателями: молекулярная масса 32,04; плотность ρ=0,7913; температура плавления 97,7 оС, температура кипения 64,7 оС.

В грузинских и молдавских коньячных спиртах метанола содержится от следов до 0,08 %. В коньячных спиртах из красных виноматериалов количество метилового спирта заметно выше (в два раза и больше), чем в белых. Коньячные спирты, полученные по кахетинской технологии (выдержка на гребнях), содержит метанола 296. 336 мг/дм3, что два раза выше, чем из виноматериалов, полученных по европейской технологии (136. 288 мг/дм3).

Коэффициент ректификации метанола меньше единицы, поэтому при перегонке коньячных виноматериалов он переходит в хвостовую фракцию. В процессе окисления перманганатом калия метиловый спирт переходит в муравьиный альдегид, дающий с фуксинсернистой кислотой (лучше хромотроповая кислота) стойкий фиолетовый цвет. Такая реакция может быть использована при качественном определении метанола в спиртовых напитках.

Этиловый спирт (этанол, С2Н5ОН) имеет молекулярную массу 46,07, плотность ρ=0,789, температуру кипения 78,35 оС и температуру плавления 114,5 оС. Это главный продукт спиртового брожения сахаров с характерным слабым запахом, бесцветная жидкость. С водой смешивается в любых соотношениях. При содержании 95,57 % мас. спирт кипит и перегоняется при постоянной температуре 78,15 оС.

Высшие спирты.

В виноделии и коньячном производстве высшие спирты рассматривают как сумму алифатических спиртов с содержанием углеродных атомов больше трех. Это пропиловый, бутиловый, амиловый, гексиловый, гептиловый, октиловый, нониловый и другие спирты, и их изомеры. В винах и коньяках их, в основном, определяют суммарно. Применяя современные приборы и хроматографию, их начали разделять на отдельные компоненты.

Пропиловый спирт (С3Н6ОН) имеет молекулярную массу 60,09, плотность ρ=0,8036, температуру плавления 126,1 оС, температуру кипения 97,2 оС. Он легко смешивается с водой, этиловым спиртом, бензолом и эфиром.

Бутиловый спирт (С4Н9ОН) имеет молекулярную массу 74,0, плотность ρ=0,80978, температуру кипения 117,4 оС. В холодной воде растворяется до 9 % при 15 оС.

Изобутиловый спирт (С4Н11ОН) имеет молекулярную массу 74,0, плотность ρ=0,802, температуру кипения 108,1 оС. В воде изобутиловый спирт растворяется в количестве около 10 % при температуре 15 оС, хорошо растворяется в спирте, эфире и бензоле.

Амиловый спирт (С5Н11ОН) имеет молекулярную массу 88,15, плотность ρ=0,814, температуру кипения 137,8 оС.

Изоамиловый спирт (С5Н11ОН) – оптически не активный, имеет молекулярную массу 88,15, плотность ρ=0,814, температуру кипения 132,1 оС. Представляет собой маслянистую жидкость с очень характерным неприятным запахом. Пары изоамилового спирта раздражают слизистую оболочку и вызывают кашель. Он плохо растворяется в воде, но хорошо растворяется в эфире, спирте и бензоле.

Изоамиловый спирт (С5Н11ОН) – оптически активный, имеет молекулярную массу 88,15, плотность ρ=0,819, температуру кипения 129,4 оС. Представляет собой также маслянистую жидкость, имеющую более резкий запах, чем неактивный изоамиловый спирт.

Оба изоамиловых спирта составляют наиболее значительную часть сивушных масел, при этом активного спирта содержится немного меньше.

Все высшие спирты являются основными незаменимыми компонентами летучих примесей коньячных спиртов. Их содержание колеблется в пределах 1000. 3000 мг/дм3.

Образование высших спиртов при брожении виноградного сусла зависит от многих факторов: расы дрожжей, условий брожения (аэробные или анаэробные) и др. Заметно влияет на образование высших спиртов в бродящем сусле величина рН. При рН 2,6 зафиксировано минимальное количество высших спиртов. При рН 4,5 содержание высших спиртов увеличивается в два раза, а при дальнейшем увеличении рН содержание высших спиртов слабо снижалось.

Заметно влияет на образование высших спиртов и температура среды (при температуре брожения от 15 до 35 оС). Максимум образования высших спиртов установлен при температуре 20 оС, а при температуре брожения 35 оС количество высших спиртов уменьшается в четыре раза.

Влияние факторов интенсификации роста дрожжей (биотин, тиамин, пантотеновая кислота и др.) зависит от природы источников азота.

В настоящее время доказано, что сивушные спирты образуются не только из аминокислот, но также из сахаров при их сбраживании. Итак, высшие спирты могут быть как вторичными, так и побочными продуктами спиртового брожения. В целом, образование высших спиртов зависит от суммарной активности обмена дрожжей.

Таким образом, в коньячном спирте высшие спирты имеют двоякое происхождение. Первая их часть является составным компонентом эфирных масел винограда, перешедших сначала в виноматериалы, а потом в коньячный спирт при их перегонке. Другая часть обусловлена жизнедеятельностью дрожжей, образующих высшие спирты как из сахара, так и из аминокислот в результате дезаминирования или переаминирования с последующим дезаминированием.

С салициловым альдегидом высшие спирты дают характерный красный цвет, что используется при их количественном определении.

Органические кислоты.

В выдержанных коньячных спиртах основными кислотами являются нелетучие кислоты, образованные при экстракции компонентов дуба (аминокислоты, дубильные вещества, ароматические и полиуроновые кислоты).

Основными кислотами свежеперегнанного коньячного спирта являются кислоты жирного ряда: муравьиная, уксусная, пропионовая, масляная, валерьяновая, капроновая, энантовая, каприловая, пеларгоновая, лауриновая, миристиновая и другие органические кислоты.

Ниже в таблице приведена краткая характеристика органических кислот жирного ряда в коньячных спиртах.

Таблица Основные кислоты свежеперегнанного коньячного спирта жирного ряда

Темпер-тура плавле-ния, оС

Темпер-тура кипения, оС

Бесцветная жидкость с едким запахом, смешивается с водой, спиртом, эфиром

Бесцветная жидкость с характерным запахом, растворяется в воде, спирте, эфире, бензоле

Бесцветная жидкость с острым запахом, растворимая в воде, спирте, эфире

Бесцветная жидкость, растворимая в спирте, эфире, запах неприятный

Жидкость с характерным запахом, растворяется в спирте, эфире, хуже в воде

Маслянистая жидкость с характерным запахом, растворяется в спирте и эфире

Маслянистая жидкость с характерным запахом

Маслянистая жидкость, растворяется в спирте и эфире, бензоле хлороформе, горячей воде

Растворяется в спирте, эфире, бензоле

Бесцветные иглы, растворимые в эфире, бензоле, спирте. Перегоняется с паром воды

В коньячных спиртах летучих кислот содержится от 80 до 1000 мг/дм3, а иногда и больше.

Кроме органических кислот, в коньячных спиртах и коньяках встречаются и минеральные кислоты. Главным образом, это сернистая и серная, образующаяся при ее окислении. Эти кислоты присутствуют в коньячных спиртах, изготовленных из сульфитированных виноматериалов. Количество общей сернистой кислоты (в перерасчете на SO2) в свежеперегнанном спирте может достигать 240 мг/дм3.

Величина рН в коньячных спиртах и коньяках заметно колеблется в зависимости от технологии, типа и их возраста. При фракционированной перегонке рН снижается. Например, если главная фракция имела рН 6,2, то средняя фракция (до крепости 42,5 %) имеет рН 4,0, а хвостовая – 3,2. Все это зависит как от содержания кислот, так и от крепости спирта, угнетающего диссоциацию карбокисильних групп. Поэтому в более крепких водно-спиртовых растворах величина рН одной и той же кислотности выше, чем в слабых растворах.

Наиболее резко изменяется рН в коньячных спиртах и коньяках в первые два года выдержки. Начиная с 10 лет выдержки рН практически не изменяется в пределах 4,1. 4,0.

Сложные эфиры.

Основную часть эфиров в коньячных спиртах и коньяках представляют этиловые эфиры жирных кислот, содержание которых, в большинстве случаев, колеблется от 300 до 1600 мг/дм3. К ним, в основном, относятся муравьиноэтиловый и уксусноэтиловый эфиры.

Муравьиноэтиловый эфир (С3Н6О) имеет молекулярную массу 74, плотность 0,91678 г/см3, температуру кипения 54,3 оС. В воде легко растворяется при температуре 25 оС.

Уксусноэтиловый эфир (этилацетат) (С4Н8О2) имеет молекулярную массу 88,10, плотность 0,9006 г/см3, температуру плавления – 83,6 оС, температуру кипения – 77,1 оС. Это бесцветная жидкость с эфирно-фруктовым запахом. В любых соотношениях смешивается с многими органическими растворителями (спиртом, эфиром, бензолом и др.).

Кроме этих эфиров в коньячных спиртах и коньяках найдены такие этиловые эфиры жирных кислот: этилпропианат (С7Н12О), этилбутират (С7Н12О2), этилвалерианат (С7Н14О2), этилкапронат (С8Н16О2), этиленантат (С9Н18О2), этилкапринат (С12Н24О2), этиллаурат (С14Н28О2)и др.

Кроме этиловых эфиров жирных кислот в коньячных спиртах найдены эфиры пропилового, бутилового, амилового, гексилового спиртов и их изомеров.

Как в коньячных спиртах, так и в коньяках главным компонентом сложных эфиров является этилацетат и энантовый эфир, образующиеся, в основном, дрожжами в процессе брожения. В зависимости от расы дрожжей или условий брожения количество энантового эфира может изменяться. В целом, содержание эфиров в коньячных спиртах и коньяках зависит от концентрации кислот и спиртов.

Очень важным свойством сложных эфиров является их способность омыляться под действием щелочей, что используется для их количественного определения.

Следует отметить, что при этом уксусноэтиловый эфир омыляется значительно легче, чем эфиры более висококипящих кислот, что используется для определения энантовых эфиров в коньячных спиртах. С гидроксиламином сложные эфиры образуют гидроксаматы, дающие в присутствии трехвалентного железа характерный темно-синий цвет.

Альдегиды и ацетали.

Количество легколетучих альдегидов (алифатических) в коньячных спиртах находится в пределах 50. 500 мг/дм3 абсолютного спирта. В целом, в коньячных спиртах найдены в значительных количествах такие легколетучие альдегиды, как уксусный, пропионовый, изомасляный и изовалериановый.

Уксусный альдегид (ацетальдегид, этаналь) (С2Н4О) имеет молекулярную массу 44,05; плотность ρ=0,783 кг/дм3, температуру плавления – 122,6 оС, температуру кипения – 20,8 оС. Это бесцветная легкоподвижная жидкость с резким характерным запахом, легко смешивается с водой, спиртом и эфиром. Реагирует с бисульфитом натрия и сернистым ангидридом.

Пропионовый альдегид (С3Н6О) имеет молекулярную массу 58,08; плотность ρ=0,807 кг/дм3, температуру плавления – 81 оС, температуру кипения – 49,1 оС. Это жидкость с удушливым запахом, смешивается со спиртом и эфиром, слабо растворимая в воде.

Изомасляный альдегид (С4Н8О) имеет молекулярную массу 72,0; плотность ρ=0,794 кг/дм3, температуру кипения – 64 оС.

Изовалериановый альдегид (С5Н10О) имеет молекулярную массу 86,13; плотность ρ=1,39 кг/дм3, температуру плавления – минус 51 оС, температуру кипения – 92,5 оС.

Все альдегиды в водных растворах присоединяют воду, поэтому они не поглощают свет в ультрафиолетовой области спектра. Очень важным свойством альдегидов является их реакция с бисульфитом и сернистой кислотой. Очень чувствительны альдегиды к действию окислителей, причем они способны и к самоокислению с образованием карбоновых кислот.

Характерной реакцией для альдегидов и кислот является взаимодействие их в кислой среде с 2,4-динитрофенилгидразином с образованием 2,4- динитрофенилгидразона, дающего в щелочной среде сильную красную окраску. Эту реакцию можно использовать для количественного определения альдегидов.

В коньячных спиртах общее содержание алифатических альдегидов колеблется в пределах от 30 до 300 мг/дм3. Основную часть из них составляет уксусный. Кроме того, в коньячных спиртах встречаются кротоновый, пропионовый, изомасляный и валерьяновый альдегиды.

При выдержке коньячных спиртов увеличивается только содержание уксусного альдегида, содержание остальных алифатических альдегидов снижается.

Альдегиды с коньячными спиртами образуют ацетали с выделением двух молекул воды. Стойкость ацеталей в щелочной среде значительно выше, чем в кислой, где они быстро омыляются до начальных альдегидов и спиртов.

В целом, образование ацеталей и полуацеталей в коньячных спиртах приводит к смягчению резких тонов в букете коньяка.

Согласно закону действия масс, в коньячных спиртах и коньяках основным фактором, влияющим на концентрацию ацеталей, является содержание спирта.

Важнейшими летучими соединениями, влияющими на качественные показатели коньяка, являются бутиленгликоль, ацетоин и диацетил, количество которых в коньячных спиртах составляет: бутиленгликоля – 6,1 мг/дм3; ацетоина – 4,6 мг/дм3 и диацетила – 1,6 мг/дм3. В коньячных спиртах содержатся еще и летучие амины, являющиеся хвостовыми примесями при перегонке виноматериалов.

Нелетучие вещества (экстрактивные вещества) коньячных спиртов представляют собой компоненты, извлеченные из дубовой бочки, и продукты их химических преобразований. Количество нелетучих веществ в коньячных спиртах зависит от температуры спиртов в процессе хранения, времени выдержки в бочках, емкости бочек, состава разных спиртов и ряда других факторов.

Французские коньяки содержат экстрактивных веществ от 4,5 до 12 г/дм3, армянские – от 9,86 до 9,62 г/дм3, итальянские – до 21,5 г/дм3, грузинские (выдержанные от 2 до 22 лет) – от 1,5 до 6,0 г/дм3.

Экстрактивные вещества при выдержке коньяков подвергаются разным химическим преобразованиям, образующим ряд летучих продуктов, таких как альдегиды, кислоты и др.

При выдержке коньячных спиртов в дубовой бочке происходит мацерация спиртом лигнина дуба и продуктов его распада (ароматических альдегидов и кислот), которые в дальнейшем подвергаются разным реакциям распада и полимеризации. Продукты дальнейшего преобразования лигнина в коньячном спирте очень разнообразные. В зависимости от растворимости в воде и эфире, а также летучести, лигниновый комплекс коньячных спиртов делится на ряд фракций:

· нелетучие водорастворимые, эфиронерастворимые;

· водонерастворимые и др.

Водонерастворимый лигнин представляет собой ту часть продуктов мацерации из дубовой клепки, которая при разведении спирта водой выпадает в осадок (водонерасторимая фракция). Элементарный состав такого лигнина следующий: водород – 5,67 %; углерод – 59,09 %; метоксильные группы – 11,38 % (данные Егорова И. А. и Скурихина И. М.)

Водорастворимая фракция лигнинового комплекса коньячного спирта составляет 85 % от общего количества. В состав этой фракции входят разные глюкозиды, гемикетали и эфиры (ароматические компоненты лигнина). Водорастворимые вещества лигнинового комплекса коньячного спирта легко окисляются перманганатом при определении дубильных веществ.

Около 30 % лигнинового комплекса коньячного спирта представлено веществами, растворимыми в эфире. В состав этих веществ входит ряд ароматических альдегидов (ванилин, сиреневый альдегид, оксибензальдегид, конифриловый альдегид, синаповый альдегид) и ароматические кислоты (ванилиновая кислота, сиреневая кислота, оксибензойная кислота). Вкратце рассмотрим их характеристику.

Ванилин (С8Н8О3) имеет молекулярную массу 152, плотность ρ=1,056, температуру плавления 81,2 оС, плохо растворяется в воде, легко – в спирте, хлороформе, эфире, сероуглероде и растворах щелочи. Имеет темно-синюю флуоресценцию.

Сиреневый альдегид (С9Н10О4) имеет молекулярную массу 182, температуру плавления 113 оС, растворяется в эфире, этаноле, хлороформе, уксусной кислоте, горячем бензоле, тяжело – в воде и лигроине, не растворяется в петролейном эфире. Соли сиреневого альдегида, калия и натрия имеют желтый цвет, растворимы в воде и спирте.

Оксибензальдегид (С7Н6О2) имеет молекулярную массу 122, температуру плавления 116 оС, легко кристаллизуется из воды, растворяется в горячей воде, этаноле, эфире, в холодной воде не растворяется.

Конифриловый альдегид (С10Н10О3) имеет молекулярную массу 178, температуру плавления 82,5 оС, кристаллизуется из бензола, растворяется в метаноле, этаноле, эфире, хлороформе, растворяется в лигроине. Дает зеленую флуоресценцию.

Синаповый альдегид (С11Н12О4) имеет молекулярную массу 208, температуру плавления 108 оС, легко растворяется в спирте и уксусной кислоте, практически не растворяется в воде, бензоле и эфире. В минеральных концентрированных кислотах растворяется с образованием сине-красной окраски. Дает зеленую флуоресценцию.

В целом, ароматические альдегиды имеют решающее значение в образовании букета выдержанных коньяков. Они дают ряд характерных цветных реакций (наиболее известная реакция с флороглюцином в соляной кислоте).

Ароматические кислоты появляются в результате окисления ароматических альдегидов в коньячных спиртах. Это ванилиновая кислота с молекулярной массой 168 и температурой плавления 207. 210 оС, хорошо растворимая в этаноле и эфире; сиреневая кислота с молекулярной массой 198 и температурой плавления 204,5 оС, легко растворимая в эфире, этаноле и хлороформе; оксибензойная кислота с молекулярной массой 138, плотностью ρ=1,443 кг/дм3, температурой плавления 215 оС.

Все ароматические кислоты дают сильную реакцию с реактивами Волин-Дениса. В трехлетнем коньячном спирте количество ванилиновой и сиреневой кислот составляет по 0,16 мг/дм3, в пятнадцатилетнем коньячном спирте – резко увеличивается и достигает 0,5 мг/дм³ каждый.

Дубильные вещества (таниди). Этих веществ в коньячном спирте даже при длительной выдержке в дубовых бочках сравнительно немного (до 0,25 г/дм3). Но в коньячных спиртах содержатся в большом количестве вещества, близкие по химическому составу к дубильным веществам. Все они объединены между собой наличием пирогалловых гидроксильных групп и имеют общее название: дубильные вещества коньячного спирта.

Скурихин И. М. в своих опытах доказал, что дубильные вещества в коньячных спиртах могут находиться не только в свободном положении, но и в связанном с лигнином, а таниды коньячных спиртов не представляют собой однородного комплекса.

В зависимости от способности адсорбироваться кожаным порошком и от растворимости в водных растворах, дубильные вещества разделяются на три фракции:

1. Водонерастворимые, легко выделяемые из раствора после отгонки спирта. Их количество составляет 20. 36 % от суммы дубильных веществ, растворенных в коньячном спирте.

2. Водорастворимые, которые остаются в растворе после отгона спирта и адсорбируются кожаным порошком. Их количество составляет 36. 60 % от общей суммы танидов коньячного спирта.

3. Водорастворимые, не сорбирующиеся кожаным порошком. Их количество составляет 20. 30 % от суммы танидов.

В коньячных спиртах в результате гидролиза дубильных веществ в заметных количествах появляется элаговая и галловая кислоты. Свойства этих кислот характеризуются следующими данными:

Элаговая кислота (С14Н6О8) имеет молекулярную массу 302, температуру плавления 360 оС. Кислота тяжелорастворима в воде и спирте, нерастворима в эфире, с FeCl3 дает зеленую окраску. Кислота образуется при гидролизе дубильных веществ дуба.

Галловая кислота (С7Н6О5) имеет молекулярную массу 170, кристаллизуется из воды с одной молекулой воды, нерастворима в хлороформе, бензоле. Галловая кислота имеет антиоксидантное действие по отношению к терпенам и жирным маслам, является постоянным сопутствующим компонентом древесины дуба.

Углеводы и продукты их преобразований. Углеводы и продукты их преобразований в коньячных спиртах представлены простейшими моносахарами – фруктозой, глюкозой, ксилозой, арабинозой, рамнозой, маннозой и небольшим количеством декстринов. Кроме того, при купаже коньяка добавляют колер (продукт карамелизации сахарозы) и сахарозу.

Фруктоза (С6Н12О6) – кетоспирт, имеет молекулярную массу 180, температуру плавления 102. 104 оС, плотность ρ=1,669 кг/дм3. Одна из форм фруктозы фруктопираноза может существовать в двух модификациях: α и β-формах. В кристаллах всегда находится β-D-фруктоза. В водных растворах D-фруктоза представлена в виде фруктопиранозы и фруктофуранозы.

Глюкоза (С6Н12О6) – имеет молекулярную массу 180, температуру плавления 146 оС, плотность ρ=1,544 кг/дм3. Это многоатомный альдегидоспирт.

Альдегидная форма глюкозы имеет четыре асимметрические атома углерода, а в циклической форме появляется пятый асимметрический атом. Поэтому D-глюкоза может существовать в двух модификациях: α и β-формах. α-D-глюкоза тяжело растворяется в воде, а β- D-глюкоза более растворима в воде.

Как и все другие моносахара, глюкоза является сильным восстановителем. Нагревание глюкозы в растворах минеральных кислот приводит к потере трех молекул воды и образованию оксиметилфурфурола – маслянистой жидкости с запахом переспевших яблок, имеющей сильные восстанавливая свойства. В дальнейшем это вещество распадается на левулиновую и муравьиную кислоты.

Ксилоза (С5Н10О5) – имеет молекулярную массу 150,13, температуру плавления 154 оС, плотность ρ=1,535 кг/дм3. Это кристаллическое вещество, в два раза менее сладкая, чем сахароза. Ксилоза восстанавливает Феллинговую жидкость в той же мере, как и глюкоза, а при кипячении с разбавленными минеральными кислотами дает фурфурол.

Арабиноза (С5Н10О5) характеризуется как восстановитель Феллинговой жидкости с образованием оксида меди. Молекулярная масса 150,13, температура плавления 160 оС, плотность ρ=1,585 кг/дм3. Арабиноза представляет собой кристаллическое вещество, менее сладкая на вкус, чем глюкоза. Под действием разбавленных минеральных кислот теряет три молекулы воды и образует фурфурол.

Рамноза (С6Н12О5) кристаллизуется из одной молекулой воды, имеет молекулярную массу 182,17; гидрат рамнозы плавится при температуре близкой 93…97 оС, а безводная рамноза – при 122…126оС. Рамноза плохо растворяется в эфире, хорошо – в воде и спирте. На воздухе безводная рамноза поглощает воду и переходит в моногидрат. Рамноза имеет сладкий вкус, но сахароза слаще ее втрое, а глюкоза – вдвое.

Сахароза (С12Н22О11) при купаже коньяков является их неотъемлемой частью. Молекулярная масса 342,3, температура плавления 184…185оС, плотность ρ=1,583 кг/дм3. Это дисахарид, расщепляющийся под действием разбавленных минеральных кислот или фермента инвертазы на смесь равных количеств D-глюкозы и D-фруктозы (инвертный сахар).

Сахароза представляет собой кристаллическое бесцветное вещество, сладкое на вкус. Расплавленная сахароза при охлаждении застывает в стекловидную массу. Сахароза распадается до вещества, которое не кристаллизуется (карамель) при температуре выше точки плавления.

В эфире и хлороформе сахароза нерастворима, но хорошо растворяется в воде, в абсолютном спирте малорастворима, в водно-спиртовых растворах – лучше.

Колер представляет собой продукт карамелизации сахарозы при температуре 180…200оС, т. е. выше температуры плавления сахарозы. При карамелизации происходит дегидратация сахарозы с образованием разных полимерных продуктов: карамелей, органических кислот и других соединений. Цвет колера зависит не от бесцветных ангидридов сахарозы, а от гуминовых кислот, которые при этом образуются. Колер содержит от 35 до 60 % сахара. Он хорошо растворяется в коньячном спирте и воде. При разведении 1 мл в 1 л воды его цвет должен отвечать цвету 10 мл 0,1н йода в 1 л воды. Плотность колера равна 1,3. 1,4 кг/дм3.

Если в коньячных спиртах сахароза не находится, то в коньяках (в результате добавления сахарного сиропа) ее содержание – до 25 г/дм3. Колер в основном добавляют только к ординарным коньякам.

Альдегиды фуранового ряда. Из этих альдегидов в коньячных спиртах найдены фурфурол, метилфурфурол и оксиметилфурфурол.

Фурфурол (С5Н4О2) имеет молекулярную массу 96,08, плотность ρ=1,1598 кг/дм3, температуру плавления – 38,7 оС, температуру кипения – 161,7 оС. Это бесцветная жидкость с характерным запахом, хорошо растворяется в спирте и эфире. При хранении фурфурол медленно раскладывается с образованием муравьиной кислоты и гуминовых веществ коричневого цвета. Фурфурол в кислой среде дает характерный розовый цвет с анилином. Эта цветная реакция используется для количественного определения.

Метилфурфурол (С6Н6О2) имеет молекулярную массу 110,0, плотность ρ=1,1072 кг/дм3, температуру кипения – 187 оС. Легко растворяется в тридцати частях воды.

Оксиметилфурфурол (С6Н6О3) имеет молекулярную массу 126, температуру плавления – 35. 35,5 оС, температуру кипения – 114. 116 оС. Хорошо растворяется в этаноле, воде, уксусноэтиловом эфире. Образуется при гидратации глюкозы и фруктозы.

Минеральные и другие вещества. В среднем в коньячных спиртах содержание золы колеблется от 0,034 г/дм3 и выше, в молодых коньячных спиртах до 0,118 г/дм3, в старых (больше 20 лет выдержки) около 1 % от экстракта.

Состав зольных элементов коньячных спиртов и коньяков во многих случаях зависит от состава дерева дуба. Можно ожидать присутствие К, Са, Na, Mg, Cl, P, Si и др. При перегонке виноматериалов, вследствие контакта с медной и железной аппаратурой, в коньячный спирт переходит заметное количество железа и меди. Коньячные спирты, сохраняемые в алюминиевых цистернах без покрытия, могут содержать до 20 мг/дм3 алюминия, который негативно отражается на вкусе и аромате спиртов.

При выдержке коньячных спиртов происходит закономерное увеличение экстрактивных веществ и золы, зольность (% золы в экстракте) при этом снижается, что обусловлено выпадением в осадок ряда элементов, входящих в состав минеральных веществ. Заметно уменьшается при выдержке коньячных спиртов количество таких элементов как Cu, Fe, Mg, что объясняется их осаждением в виде труднорастворимых солей дубильных и органических кислот. Содержание К і Na увеличивается в результате экстракции из древесины дуба и концентрирования вследствие испарения спирта из бочек при выдержке.

Согласно действующим технологическим инструкциям, в коньячных спиртах и коньяках допускается следующее количество тяжелых металлов: свинец – не допускается, железо – не более 1 мг/дм3, олово – не более 5 мг/дм3 и медь – не более 8 мг/дм3.

В коньячных спиртах, кроме минеральных веществ, содержатся и азотистые вещества, количество которых составляет около 2 % от экстрактивных веществ спиртов. Так, в 24-летнем коньячном спирте содержание общего азота достигает 82 мг/дм3. Среди азотистых веществ в коньячных спиртах преобладают такие аминокислоты как гликокол, глютаминовая кислота, пролин и др.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *