Что такое взаимо обратные числа в математике 6 класс
Взаимно обратные числа
Взаимно обратные числа — это два числа, произведение которых равно единице:
Обратное число к данному числу — это число, умножение которого на данное число, даёт в результате единицу. Так, если числа p и q взаимно обратные, то можно сказать, что число p — это число, обратное числу q, а число q — это число, обратное числу p:
Как находить обратные числа
Если взять обыкновенную дробь и перевернуть её, т. е. поменять местами числитель со знаменателем, то мы получим дробь обратную данной.
Возьмём дробь и перевернём её, получится дробь
:
Проверить, правильно ли найдено обратное число к данному можно с помощью умножения:
Теперь рассмотрим, как найти число, обратное натуральному числу: возьмём к примеру число 15, представим его в виде дроби , затем «перевернём» эту дробь, получится дробь
.
Из сказанного следует, что:
Число, обратное данному натуральному числу, получается от деления единицы на это натуральное число.
Чтобы найти число обратное смешанному числу нужно:
Найдём обратное число для :
Обратное число для десятичной дроби находится точно так же, как и для смешанного числа:
Для единицы обратным числом является сама единица, так как:
Для нуля не существует обратного числа, так как невозможно умножить нуль на какое-то число и получить единицу.
Таким образом, для любого числа, кроме нуля, существует обратное число.
Взаимно обратные числа – примеры (6 класс, математика)
Взаимно обратные числа это очень интересная тема математики 6 класса. Умение обращаться с взаимно обратными числами лежит в основе правильного деления дробей. К тому же существует ряд задач направленных на нахождение числа обратного заданному, поэтому разберемся в вопросе вместе.
Что такое обратное число?
Обратным числом называют число, при умножении на которое в результате получается 1.
Как найти число, обратное данному?
Разберем различные ситуации нахождения обратного числа.
Общий случай
В общем случае формула для нахождения обратного числа выглядит так:
В математике эту операцию иногда называют словом «перевернуть»
$18*<1over<18>>=1$ – значит формула работает.
Смешанное число
Обыкновенная дробь
Чтобы найти обратное число для обыкновенной дроби, нужно ее просто перевернуть, так же, как и во втором пункте предыдущего алгоритма.
Десятичная дробь
Куда интереснее способ нахождения обратного числа для десятичной дроби. Приведем небольшой алгоритм на примере нахождения числа, обратного для 3,14:
Проверку нужно выполнять всегда. Причем важно именно проводить вычисления, а не писать ответ сразу, «для галочки». В простых выражениях это кажется не нужным, но именно на простых выражениях вырабатывается навык. Так, в последнем выражении вполне можно было ошибиться, например, не перевернуть дробь в самом конце расчета.
Что мы узнали?
Мы поговорили о взаимно обратных числах. Рассмотрели все варианты нахождения таких чисел, привели примеры взаимно простых чисел и указали на места возможных ошибок.
Урок 17 Бесплатно Взаимно обратные числа
В этом уроке мы узнаем, какие числа называются взаимно обратными, как найти число, обратное данному, а также разберем все эти случаи для смешанных чисел.
Взаимно обратные числа
Введем определение: взаимно обратными числами называются такие два числа, произведение которых равняется единице.
То есть, если имеются две обыкновенных дроби, каждую из которых нельзя сократить, то необходимо ответить на вопрос: являются ли они взаимно обратными? Для этого достаточно проверить два равенства:
Можно не запоминать что с чем сравнивать. Если начнем записывать выражение для произведения, то заметим, что в случае взаимно обратных чисел числители и знаменатели сократятся, и результатом будет единица.
Перед сравнением важно, чтобы дроби уже были сокращены!
Допустим, имеются две дроби: \(\mathbf<\frac<2><3>>\) и \(\mathbf<\frac<6><4>>\)
Если к ним просто применить признак и сравнить по отдельности числитель первой дроби с знаменателем второй и наоборот, то мы заменим, что равенства не выполняются. Но, если их перемножить, мы заметим, что произведение равняется 1, следовательно, они являются взаимно обратными.
Итак, имеются два способа проверить, являются ли числа взаимно обратными.
Пример 1
Являются ли числа \(\mathbf<\frac<2><5>>\) и \(\mathbf<\frac<3><2>>\) взаимно обратными?
Воспользуемся вторым способом. Как можно заметить, дроби уже сокращены.
Пример 2
Являются ли числа \(\mathbf<\frac<2><5>>\) и \(\mathbf<\frac<5><2>>\) взаимно обратными?
Воспользуемся первым способом.
В процессе умножения все множители в числителе и знаменателе сократились и результатом произведения оказалась единица.
Значит \(\mathbf<\frac<2><5>>\) и \(\mathbf<\frac<5><2>>\) являются взаимно обратными.
Рассмотрим еще один момент.
Допустим, нас просят проверить, являются ли взаимно обратными два числа, одно из которых является обыкновенной дробью, а второе натуральным числом.
В таком случае нам достаточно представить натуральное число в виде дроби, у которой числитель будет равняться данному натуральному числу, а знаменатель единице.
Дальше можно действовать одним из двух разобранных способов.
Пример 3
Являются ли числа \(\mathbf<\frac<2><126>>\) и 63 взаимно обратными?
Представим 63 как обыкновенную дробь.
Далее воспользуемся вторым способом.
Теперь сравним числитель первой дроби со знаменателем второй: единица равна единице.
Сравним знаменатель первой дроби с числителем второй: 63 равно 63
Делаем вывод, что числа \(\mathbf<\frac<2><126>>\) и 63 являются взаимно обратными.
Пройти тест и получить оценку можно после входа или регистрации
Взаимно обратные числа и их объяснение в математике 6 класса
При сокращении выражений дробного типа ученики иногда сталкиваются с понятием «взаимно обратных чисел». В математике 6 класса эта тема рассматривается подробнее, поскольку количество задач на упрощение тождеств увеличивается по следующим причинам, а именно: доказательства теорем и различных соотношений, выведение формул и выполнение операций вычисления. Специалисты сначала рекомендуют изучить теорию, а затем переходить к практике.
Общие сведения
Одним из правил сокращения выражений или, как называют эту операцию математики, упрощение является работа со взаимно обратными величинами. Чтобы понять суть термина, специалисты рекомендуют разобраться в основном отличии числа от цифры. Это связано с тем, что ученики постоянно путаются в терминологии и заучивают неправильные понятия. Данные действия могут привести к ухудшению понимания самой дисциплины (математики) в целом.
Следует отметить, что математика — точная дисциплина, в которой недопустимы погрешности в определении терминах, формулах и при расчетах. Например, некоторые ученики считают, что величины «3» и «-3» являются взаимнообратными значениями. На самом деле это не так, поскольку у них другое название — противоположные. Эти два термина существенно отличаются.
Взаимно обратные значения
Для понимания темы взаимно обратных величин необходимо рассмотреть определение, которое поможет выяснить, какие из них можно отнести к этому типу. Взаимно обратными называются значения, произведения которых эквивалентно единице. В математической форме запись имеет следующий вид: а * 1/а = 1.
Расшифровывается определение для чайников следующим образом: число обратное числу «а» эквивалентно величине правильной дроби, числитель которой равен 1, а знаменатель этой величине, т. е. 1/а.
Следует отметить, что обратное число 1 является единица. Это утверждение очень просто доказать. Для этого необходимо по формулировке определения представить взаимообратные величины, т. е. 1 * 1/1 = 1 * 1 = 1. Далее необходимо разобрать пример решения задачи.
Пример задачи
Задание сводится к обыкновенной теореме, в которой нужно вывести формулу суммы обратных величин. В 6 классе на уроке математики можно найти решение этой задачи. Однако не для всех учеников понятен сам процесс выведения соотношения. Решать задачу следует таким образом:
В итоге теорему о сумме обратных выражений можно сформулировать следующим образом: сумму взаимно обратных математических элементов необходимо рассматривать в виде обыкновенной дроби, числитель которой соответствует искомому числу, а знаменатель — квадрат исходного компонента, увеличенного на единицу.
Таким образом, взаимно обратными выражениями называются числовые значения, произведение которых эквивалентно единице.
Взаимно обратные числа, нахождение обратного числа.
Дадим определение и приведем примеры взаимно обратных чисел. Рассмотрим, как находить число, обратное натуральному числу и обратное обыкновенной дроби. Помимо этого, запишем и докажем неравенство, отражающее свойство суммы взаимно обратных чисел.
Взаимно обратные числа. Определение
Как найти число, обратное данному
Для натуральных чисел и обыкновенных дробей найти обратное число довольно просто. Можно сказать, даже очевидно. В случае нахождения числа, обратного иррациональному или комплексному числу, придется произвести ряд вычислений.
Рассмотрим наиболее часто встречающиеся на практике случаи нахождения обратного числа.
Число, обратное обыкновенной дроби
Число, обратное натуральному числу
Отдельное внимание стоит уделить единице, так как это единственное число, обратное число для которого равно ему самому.
Других пар взаимно обратных чисел, где обе составляющие равны, не существует.
Число, обратное смешанному числу
Число, обратное десятичной дроби
Десятичная дробь также можно представить в виде обыкновенной дроби. Нахождение обратного десятичной дроби числа сводится к представлению десятичной дроби в виде обыкновенной дроби и нахождению обратного числа для нее.
Рассмотрим еще один пример.
Пример. Нахождение числа, обратного десятичной дроби
Переводим десятичную дробь в обыкновенную:
Аналогично и для иррациональных чисел, отвечающим непериодическим бесконечным дробям, обратные числа записываются в виде дробных выражений.
Взаимно обратные числа с корнями
Обратимся к практике.
Пример. Взаимно обратные числа с корнями
Чтобы узнать, являются ли числа взаимно обратными, вычислим их произведение.
Произведение равно единице, значит, числа взаимно обратны.
Рассмотрим еще один пример.
Пример. Взаимно обратные числа с корнями
Взаимно обратные числа со степенями
Пример. Взаимно обратные числа со степенями
Взаимно обратные числа с логарифмами
Пример. Взаимно обратные числа с логарифмами
Число, обратное комплексному числу
Как уже отмечалось ранее, определение взаимно обратных чисел справедливо не только для действительных чисел, но и для комплексных.
Пример. Число, обратное комплексному числу
Помимо алгебраической формы, комплексное число может быть представлено в тригонометрической или показательной форме следующим образом:
z = r · cos φ + i · sin φ
Соответственно, обратное число будет иметь вид:
Рассмотрим примеры с представлением комплексных чисел в тригонометрической и показательной форме.
Пример. Найти число, обратное комплексному числу
Ответ: 1 2 · e i 2 π 5
Сумма взаимно обратных чисел. Неравенство
Существует теорема о сумме двух взаимно обратных чисел.
Сумма взаимно обратных чисел
Приведем доказательство теоремы. Как известно, для любых положительных чисел a и b среднее арифметическое больше или равно среднему геометрическому. Это можно записать в виде неравенства:
a + 1 a 2 ≥ a · 1 a a + 1 a ≥ 2
Что и требовалось доказать.
Приведем практический пример, иллюстрирующий данное свойство.
Пример. Найти сумму взаимно обратных чисел
Вычислим сумму чисел 2 3 и обратного ему числу.
2 3 + 3 2 = 4 + 9 6 = 13 6 = 2 1 6
Как и говорит теорема, полученное число больше двух.