Что такое базисный период что такое отчетный
Базисный и отчетный периоды
В индексах отчетный период обозначается подстрочным знаком:
В индексах базисный период обозначается подстрочным знаком:
В индексах, характеризующих изменения явления во времени базисный период – это период времени, к которому относится величина:
Принятая за базу сравнения
В индексах, характеризующих изменения явления во времени отчетный период – это период времени, к которому относится величина:
Подвергающаяся сравнению
Сводный индекс состоит из двух элементов:
Индексируемой величины и веса
Индексируемая величина в сводном индексе – это значение статистической совокупности, являющаяся:
Объектом исследования
«Вес» в сводном индексе – это показатель, вводимый для целей:
Соизмерения
В зависимости от объекта исследования индексы подразделяются на
Количественные и качественные
В зависимости от базы сравнения индексы могут быть:
Цепные и базисные
В зависимости от методологии расчета общие индексы могут быть в:
Агрегатной форме или форме среднего индекса
В сводном количественном индексе в агрегатной форме изменяется:
Только индексируемая величина
В сводном количественном индексе в агрегатной форме изменение изучаемого явления в абсолютном выражении определяется как:
Разность числителя и знаменателя индекса
В сводном качественном индексе в агрегатной форме изменяется:
Только индексируемая величина
В сводном качественном индексе в агрегатной форме изменение изучаемого явления в абсолютном выражении определяется как:
Разность числителя и знаменателя индекса
В статистической практике в большинстве случаев принято все количественные индексы рассчитывать как:
Средние арифметические
В статистической практике в большинстве случаев принято все качественные индексы рассчитывать как:
Средние гармонические
Индекс постоянного (фиксированного) состава может быть:
Значение сводного индекса превышать 200 %:
Может
Средний из индивидуальных индексов и сводный индекс в агрегатной форме:
Могут быть равными
Индексы характеризуют изменение социально-экономических явлений:
В динамике и пространстве
Средний арифметический индекс показателя и агрегатный индекс этого же показателя:
Тождественны
Произведение сводных цепных индексов равно базисному индексу при соблюдении одного из условий:
Базисные и цепные индексы имеют постоянные веса
Индексы переменного состава рассчитываются:
Базовый год, базисный период
Базовый год, базисный период [basal, base year, base period] — в прогнозировании, планировании и других экономических расчетах, год (соответственно, период), к которому приводятся для сопоставимости расчетные показатели последующих лет (периодов, шагов расчета), называемые текущими.
Если экономические показатели данного года приняты за базу сравнения, то возможны три основных способа сопоставления с ними показателей сравниваемого года (текущих показателей):
1.База сравнения принимается за единицу. Тогда относительные величины, приводящие показатель сравниваемого года к Б.г., называются коэффициентами или показателями кратности и выражаются целым или дробным числом.
2. База сравнения принимается за 100. Тогда относительные величины, приводящие показатели сравниваемого года к Б.г., выражаются процентами или долями процента.
3. База сравнения принимается за 1000. Тогда относительные величины, приводящие показатели сравниваемого года к Б.г., выражаются в промилле (единице, в 10 раз меньшей чем процент).
Смотреть что такое «Базовый год, базисный период» в других словарях:
базовый год — базовая дата При расчете индексов первый из ряда лет. Его часто принимают за 100, чтобы можно было сразу в процентах увидеть рост или падение, например, если индекс цен показывает, что нынешний показатель равен 120, это имеет смысл только в… … Справочник технического переводчика
Дефлятор — (Deflator) Дефлятор это коэффициент перевода экономических показателей, рассчитанных в текущих ценах Формула расчета дефлятора, дефлятор внп, дефлятор ввп, формула расчета дефлятора внп, формула расчета дефлятора ввп, коэффициент дефлятор… … Энциклопедия инвестора
Валютная система — (Monetary system) Валютная система это правовая форма организации валютных отношений Валютная система: Ямайская, Европейская, Бреттон Вудская, Парижская, Генуэзская, Российская Содержание >>>>>>>>>> … Энциклопедия инвестора
НАЛОГ НА СВЕРХПРИБЫЛЬ — EXCESS PROFITS TAXВ ноябре 1950 г. президент в своем послании Конгрессу потребовал немедленного восстановления с 1 июля 1950 г. Н.нас. корпораций, получающих доход в размере 4 млрд дол. путем взимания Н.нас. корпораций, резко увеличившуюся… … Энциклопедия банковского дела и финансов
Дериватив — (Derivative) Дериватив это ценная бумага, основанная на одном или нескольких базовых активах Дериватив, как производный финансовый инструмент, виды и классификация ценных бумаг, рынок деривативов в мире и России Содержание >>>>>>> … Энциклопедия инвестора
Опцион — (Оption) Определение опциона, параметры опционов, виды и типы опционов Информация об определении опциона, параметры опционов, виды и типы опционов Содержание Содержание Параметры опциона Что дает опционами? Примеры опционных стратегий Формы… … Энциклопедия инвестора
Фьючерс — (Futures) Фьючерс это срочный биржевой контракт на покупку рыночного актива Что такое фьючерс, фьючерсный контракт, рынок фьючерсов, торговля фьючерсами, стратегия фьючерс, виды ценных бумаг на фьючерсном рынке, хеджирование рисков с помощью… … Энциклопедия инвестора
Лимит — (Limit) Содержание Содержание Определения описываемого предмета Лимитирование банковских операций Позиционные Объемные лимиты Лимиты на характеристики позиций, на взвешенный объем Структурные лимиты (долевые лимиты, лимиты концентрации) Лимиты… … Энциклопедия инвестора
Спотовый рынок — (Spot Market) В современных условиях широкое распространение получили спотовый и срочный рынки Сделки и формирование цен на спотовом и срочном рынках, инструменты, используемые участниками срочного и спотовго рынка для заключения сделок… … Энциклопедия инвестора
Отчетный и базисный период
Такой период называется текущим периодом (иногда отчетным периодом) или предстоящим (прогнозным).
При исчислении относительных величин динамики, индексов, темпов роста величина показателя за базисный период служит знаменателем дроби и называется базисной величиной:
Базисный период индекса и базисный период весов, как правило, совпадают, но не обязательно.
Базисный период индекса не будет совпадать с базисным периодом весов.
В мировой практике базисный период весов рекомендуется менять не реже, чем раз в 5 лет, однако в случае значительных изменений в структуре экономики и цен возможно и более частое изменение базисного периода.
В этом случае индекс физического объема за длительный период исчисляют методом цепных индексов.
В качестве базисного периода в экономических расчетах используются, как правило, год, квартал, месяц или момент (дата).
При исчислении индексов данные базисного периода служат знаменателем дроби и называются базисной величиной (базой сравнения, базисным уровнем).
Авансовый отчет
Бухгалтерская отчетность
Бюджетная отчетность
Годовая отчетность
Консолидируемая отчетность
Получите консультацию: 8 (800) 600-76-83
Звонок по России бесплатный!
Не забываем поделиться: |
Отчетный периодВ бухгалтерском учете отчётный период – промежуток времени, который включает происходившие на его протяжении или относящиеся к нему факты хозяйственной деятельности, отражаемые экономическим субъектом в бухгалтерском учёте и бухгалтерской отчётности. Основным отчетным периодом является год, промежуточными – месяц и квартал. Отчетный период, который начинается 1 января и заканчивается 31 декабря, называется календарным отчетным периодом. Если же отчетный период, имея ту же продолжительность, начинается в любую другую дату, то отчетный период именуется финансовым годом. Наиболее распространёнными являются квартальные и годовые отчетные периоды: Квартальная отчётность формируется за период времени, возникающий каждый квартал (3 месяца) в году. Первым отчетным годом является период с даты государственной регистрации экономического субъекта по 31 декабря того же календарного года включительно. В случае, если государственная регистрация экономического субъекта произведена после 30 сентября, первым отчетным годом является период с даты государственной регистрации по 31 декабря календарного года, следующего за годом его государственной регистрации, включительно. Таким образом, годовая отчётность формируется за период времени, возникающий каждый год. Например, отчетными периодами по налогу на прибыль признаются первый квартал, полугодие и девять месяцев календарного года. В тоже время отчетными периодами для налогоплательщиков, исчисляющих ежемесячные авансовые платежи исходя из фактически полученной прибыли, признаются месяц, два месяца, три месяца и так далее до окончания календарного года. По итогам каждого отчетного периода следует уплатить авансовые платежи по налогу. Так как в налоговом учете отчетные периоды формируются поквартально либо помесячно, то имеет смысл устанавливать такие же отчетные периоды и в бухучете. Остались еще вопросы по бухучету и налогам? Задайте их на бухгалтерском форуме. 14. Индексы в статистике: методы исчисления, примеры«Индекс» в переводе с латинского – указатель, показатель. В статистике под индексом понимается относительная величина, характеризующая соотношение значений определенного показателя во времени, пространстве, а также сравнение фактических данных с планом или другим нормативом. С помощью индексов можно определить количественные изменения самых различных показателей функционирования народного хозяйства, развития социально-экономических процессов и т.п. В экономической работе с помощью индексов можно объективно и точно показать изменения в росте или снижении производства, изменения в урожайности, состоянии себестоимости и цен выпускаемой продукции, численности работающих, производительности труда, заработной платы, изменения в цене акций на фондовых рынках (индекс Доу Джонса), сравнительную характеристику изменения погоды за определенный период времени (температуры, влажности, давления) и т.д. и т.п. Индексы в своей основе представляют разновидность относительных величин, характеризующих средние показатели исследуемых процессов или явлений в социально-экономических и других областях деятельности общества. Однако от средних величин, рассмотрению которых посвящены были предыдущие темы, индексы отличаются тем, что они воплощают в себе, как правило, сводные, обобщающие показатели, т.е. выражают собой некоторое содержание, свойственное всем рассматриваемым явлениям и процессам. Индексный метод имеет свою терминологию и символы. Обозначения индексируемых величин:i – индивидуальный индекс, его вычисляют для одной единицы совокупности; I – общий (сводный) индекс (он определяется для всех единиц совокупности); q – количество (объем) какого-либо товара в натуральном выражении; p – цена единицы товара; z – себестоимость единицы продукции; t – затраты времени на производство единицы продукции, трудоемкость; T – общие затраты времени на производство (tq) или численность рабочих; pq – стоимость продукции или товарооборот; zq – издержки производства. Знак внизу справа означает период, например: Экономический индекс – это относительная величина, которая характеризует изменение исследуемого явления во времени, в пространстве или по сравнению с некоторым эталоном (планируемым, нормативным уровнем и т.п.). Если в качестве базы сравнения используется уровень за какой-либо предшествующий период – получают динамический индекс; если же базой является уровень того же явления по другой территории – территориальный индекс. Индексируемая величина – показатель, изменение которого характеризуется индексом, она содержится в названии самого индекса, например: индекс цен, индекс заработной платы, индекс физического объема продукции и т.д. Вес индекса – величина, служащая для целей соизмерения индексируемых величин. Классификация индексов:В экономическом анализе индексы используются не только для сопоставления уровней изучаемого явления, но главным образом для определения экономической значимости причин, объясняющих абсолютное различие сравниваемых уровней. Экономические индексы позволяют: 1) измерить динамику социально-экономического явления за два и более периодов времени; 2) измерить динамику среднего экономического показателя; 3) измерить соотношение показателей по разным регионам; 4) определить степень влияния изменений значений одних показателей на динамику других; 5) пересчитать значения макроэкономических показателей из фактических цен в сопоставимые. Методика построения агрегатного индекса предусматривает решение трех вопросов: 1) какая величина будет индексируемой; 2) по какому составу разнородных элементов явления необходимо исчислить индекс; 3) что будет служить весом при расчете индекса. Правило при выборе индекса При выборе веса индекса принято руководствоваться следующим правилом: если строится индекс количественного показателя, то веса берутся за базисный период, при построении индекса качественного показателя используются веса отчетного периода. Расчет индивидуальных индексов Простейшим показателем, используемым в индексном анализе, является индивидуальный индекс, который характеризует изменение во времени экономических величин, относящихся к одному объекту, например: – индекс цены определенного продукта (товара), где ‑ индекс объема одного определенного продукта (товара) ‑ индекс себестоимости единицы отдельного продукта ‑ индекс численности работников и т.д. Все индивидуальные индексы показывают, каково соотношение между отчетным (со знаком «1») и базисным (со знаком «0») показателями или во сколько раз увеличилась (уменьшилась) индексируемая величина. Все индивидуальные индексы по сути являются относительными величинами динамики или коэффициентами (темпами) роста (снижения). Индивидуальные индексы характеризуют изменение отдельных единиц статистической совокупности. Характерной чертой индексов является то, что все они образуют системы взаимосвязанных показателей. Расчеты индивидуальных индексов просты по своей сущности и выполняются путем вычисления отношения двух индексируемых величин. Индивидуальные индексы могут исчисляться в виде индексного ряда за несколько периодов. Существуют два способа расчета индивидуальных индексов: цепной и базисный. При цепном способе расчета за базу отношения принимается индексируемая величина соседнего прошлого периода, в этом случае база расчета в ряду постоянно меняется. При базисном способе расчета за базу принимается индексируемая величина какого-либо отдельного периода. Расчет общих индексов В области экономических явлений наряду с индивидуальными индексами, характеризующими изменения единичных элементов, возникает необходимость расчета сводных относительных величин, обобщающих изменения определенного показателя в сложной совокупности, отдельные элементы которой несопоставимы (в физических единицах) и не могут суммироваться. Например, нельзя тонны нефти и тонны стали, а также цены на разные товары (мясо, молоко, обувь, одежду и т.п.). Для обобщения относительного изменения определенного показателя в сложной совокупности рассчитываются общие (сводные ) индексы. Общий (сводный) индекс – показатель, измеряющий динамику сложного явления, составные части которого непосредственно несоизмеримы в физических единицах. Например, по данным органов статистики, цены на продовольственные товары в декабре 2018 г. составили 116,1% по отношению к предыдущему месяцу (ноябрю) и 175 % по отношению к декабрю 2017 г. С помощью общих индексов характеризуется изменение цен на товары, изменение уровня жизни, развитие производства отдельных отраслей и экономики в целом и многое другое. Индексы могут иметь разный характер. Одни являются объемными (количественными); другие условно можно назвать качественными: они представляют собой показатели, определяемые на какую-то единицу (цена единицы товара, себестоимость единицы продукции, урожайность с 1 га и т.д.). В соответствии с этим и индексы можно подразделить на индексы количественных показателей (индекс физического объема производства, индекс продаж акций и т.п.) и качественных (индекс цен, индекс себестоимости, индекс заработной платы и пр.) Каждый из этих индексов имеет свои особенности, но любой общий индекс может быть исчислен двумя способами: как агрегатный и как средний из индивидуальных. Рассмотрим оба способа построения (исчисления) общих индексов. Общий индекс, полученный путем сопоставления итоговых показателей, количественно выражающих сложное явление в отчетном и базисном периодах с помощью соизмерителей, называют агрегатным. Соизмерители необходимы для перехода от натуральных измерителей, разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется только значение индексируемой величины, а их соизмерители являются постоянными величинами и фиксируются на одном уровне ‑ это необходимо для того, чтобы на величине индекса сказывалось лишь влияние фактора, который определяет изменения индексируемой величины. Пример. В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цена, количество, себестоимость единицы продукции или затраты на единицу продукции и др. При сравнении числителя и знаменателя данной формулы в разности определяется показатель абсолютного прироста. При сравнении разности числителя и знаменателя индексного отношения получаем показатель, характеризующий прирост суммы в текущем периоде по сравнению с базисным периодом. Обозначая объем продукции (товаров через q, а цены – через p, можно представить стоимость продукции в базисном периоде как Который показывает относительное изменение стоимости продукции как за счет изменения цен, так и за счет изменения объема отдельных товаров. Если же продукцию двух сравниваемых периодов оценить в одних и тех же неизменных ценах, то очевидно, что стоимость продукции двух периодов будет отличаться лишь за счет изменения объема продукции. Поэтому общий индекс, исчисленный как отношение стоимости продукции двух периодов в одних и тех же ценах, называют агрегатный индекс физического объема В агрегатном индексе физического объема в качестве соизмерителя различных товаров принимаются цены базисного периода где Отметим, что суммы в числителе и знаменателе имеют вполне реальный смысл: Разность между числителем и знаменателем агрегатного индекса характеризует изменение в абсолютном выражении результативного показателя за счет изменения индексируемой величины. Пример. Предположим, предприятие выпускает три вида неоднородной продукции. Данные о производстве и цены за два периода приведем в (табл. 14.1). Таблица 14.1. – Данные о производстве продукции за 2 периода
Следовательно, общий объем (выпуск) продукции в отчетном периоде по сравнению с базисным составил 70,2% (или снизился на 29,8%). А в абсолютном выражении за счет уменьшения выпуска стоимость продукции в отчетном периоде снизилась на 650 тыс. руб., вычитаем из числителя знаменатель Как уже отмечалось, при построении агрегатного индекса физического объема могут использоваться и другие соизмерители. Так, например, если принять в качестве соизмерителей себестоимость единицы продукции в базисном периоде z0, то агрегатный индекс физического объема можно записать как: Разность между числителем и знаменателем покажет, как изменились общие затраты (издержки) на производство в связи с изменением выпуска продукции:ли в качестве соизмерителей принять затраты времени на единицу продукции в базисном периоде, то формула агрегатного индекса физического объема будет иметь вид: разность будет характеризовать изменение общих затрат времени на производство продукции за счет изменения объема выпуска. Агрегатный индекс цен. По аналогии с индексом физического объема для определенного набора товаров (продуктов) может быть построен и агрегатный индекс цен (индекс качественного показателя). При этом рассуждения остаются теми же: если нельзя суммировать цены на различные товары, то можно суммировать и сопоставлять стоимости этих товаров. Однако, сопоставляя два значения стоимости рq, мы должны показать изменение последней лишь за счет изменения цен р, т.е. необходимо устранить влияние изменения количества производимой (или реализуемой) в разные периоды продукции q на стоимостный показатель продукции. Для этого один и тот же количественный набор продуктов надо оценить в ценах отчетного и базисного периодов и затем сопоставить первую величину со второй. Таким образом, в агрегатном индексе цен индексируемой величиной является, естественно, цена р, а соизмерителем (весами) ‑ количество произведенных (реализованных) товаров q, принятое на уровне базисного или отчётного периода. Агрегатная формула общего индекса цен была впервые предложена в 1864 г. немецким ученым Э. Ласпейресом. Он предлагал строить агрегатный индекс цен, приняв в качестве весов продукцию базисного периода q0: В 1874 г. другой немецкий учёный, Г. Пааше, предложил строить агрегатный индекс цен по продукции текущего периода q1: Каждый из этих индексов имеет свои особенности, которым отдается предпочтение в конкретных условиях, использования. Так, например, индекс Цен Ласпейреса удобен для оперативной (недельной, месячной, квартальной) информации об изменении цен на определенный фиксированный набор товаров, когда пересчет каждый раз на текущий набор (количество) товаров сопряжен с большими затратами, труда и времени. По формуле Ласпейреса рассчитывают индекс потребительских цен (ИПЦ). В то же время формуле Пааше отдается предпочтение, когда индекс цен рассматривается в системе с индексом стоимости и индексом физического объема. В этом случае, чтобы обеспечивать взаимосвязь между индексом стоимости и индексом физического объема. Кроме того, при расчете индекса цен; по формуле Пааше, вычитая из числителя знаменатель, легко определить в абсолютном выражении сумму потерь (или прибыли) за счет изменения цен на продукцию отчетного (текущего) периода. Рассмотрим расчет агрегатных индексов цен на примере. Таблица 14.2. – Данные о реализации продукции за 2 периода (цифры условные) изм | Базисный период | Отчетный период | Стоимость базисного периода, руб | Стоимость отчетного периода, руб | |||||||||||||||||||||||||||||||||||||||||||||
Про-дано ед. q0 | Цена руб p0 | Про-дано ед. q1 | Цена руб p1 | q0p0 | q0p1 | q1p0 | q1p1 | ||||||||||||||||||||||||||||||||||||||||||
Говядина | Кг | 1000 | 25 | 900 | 30 | 25000 | 30000 | 22500 | 27000 | ||||||||||||||||||||||||||||||||||||||||
Картофель | Кг | 3000 | 2 | 4000 | 2,5 | 6000 | 7500 | 8000 | 10000 | ||||||||||||||||||||||||||||||||||||||||
Молоко | л | 5000 | 3 | 6000 | 3,2 | 15000 | 16000 | 18000 | 19200 | ||||||||||||||||||||||||||||||||||||||||
Всего | 46000 | 53500 | 48500 | 56200 |
Чтобы определить, как в среднем изменились цены на все продукты (или какова средняя величина изменения цен), рассчитаем сводный (общий) индекс цен в форме агрегатного индекса:
Расхождение не очень большое (на 0,4), но все же есть. Какому же индексу отдать предпочтение? На таком уровне исследования (по отдельному хозяйству и совокупности хозяйств) предпочтение следует отдать индексу Пааше, поскольку он показывает реальное изменение стоимости продукции, реализованной в отчетном периоде, за счет изменения цен. В этом индексе числитель ‑ реальная величина, фактическая выручка, полученная от реализации продукции в отчетном периоде, а знаменатель ‑ условная величина, показывающая, какой была бы выручка, если бы продукция отчетною периода продавалась по базисным ценам.
Разность между ними, (56200 ‑ 48500 = 7700 руб.), показывает в данном случае, какую прибыль дополнительно получило хозяйство при реализации продукции в отчетном периоде за счет роста цен.
В формуле же индекса цен Ласпейреса в знаменателе содержится реальная выручка (стоимость) от реализации в базисном периоде, а в числителе ‑ условная величина, характеризующая, какой была бы выручка от реализации продукции базисного периода по ценам отчетного периода. Разность практически не представляет интереса, так как эта величина слишком отвлеченная: она показывает, насколько изменилась бы выручка (стоимость) в прошлом (базисном) периоде, если бы базисная продукция была реализована по текущим (отчетным) ценам.
Кроме того, при расчете индекса цен по формуле Пааше, легко увязываются изменения трех взаимосвязанных показателей: стоимости (выручки), объема реализации и цен. Так, по данным табл. 14.2 индекс стоимости продукции
(или 122,2%), т.е. стоимость продукции (выручка от продажи) в отчетном периоде увеличилась на 22,2%, что составило в абсолютном выражении 10200 руб. (56200 – 46000).
Индекс физического объема реализаций по данным табл. 14.2
В абсолютном выражении увеличение стоимости за счет изменения объема реализации составило 2500 руб. (48500 – 46000)
Таким образом, имеет место увязка индексов (относительного изменения показателей):
А также абсолютных изменений: в нашем примере 10200 = 7700 + 2500,т.е. общее изменение стоимости продукции равно сумме приростов за счет изменения цен и за счет изменения объема.
В начале XX в. американский экономист И. Фишер предложил вместо формул индексов цен Ласпейреса и Пааше использовать среднюю геометрическую из них, т.е. корень квадратный из произведения индексов иен Ласпейреса и Пааше:
(Этот индекс назван им идеальным, поскольку в нем не отдается предпочтение ни продукция базисного периода, ни продукции текущего периода.
Кроме того, этот индекс «обратим» во времени, т.е. если рассчитывать индекс базисного периода к отчетному, он будет равен обратной величине первоначального индекса (т.е. отчетного периода к базисному). Другими словами, перемножение таких, «обратных» индексов дает единицу.
Однако индекс Фишера из-за его формальности и трудности экономической интерпретации используется редко, в основном при территориальных сопоставлениях.
Мы рассмотрели расчет агрегатных индексов физического объема и цен как наиболее типичных представителей агрегатных индексов соответственно для количественных и качественных индексируемых показателей.
По аналогии можно записать агрегатные индексы для многих других показателей.
Контрольные задания
- Что такое воротниковый фланец
- Что такое дубильный эффект в медицине