Что такое биомеханика в медицине простыми словами
Вопрос 3. Биомеханика тела и ее особенности для медицинского персонала
Биомеханика – это наука, изучающая законы механического движения в живых системах.
В самом широком смысле к живым системам в биомеханике относятся:
§ целостные системы, например – человек;
§ его органы и ткани;
§ объединения организмов, то есть совершающая совместные действия группа людей.
Все движения человека осуществляются в полном соответствии с законами физики, но биомеханика много сложнее, чем механика неживых тел.
Движения человека обеспечиваются совместной работой скелета, мышц, вестибулярного аппарата и нервной системы.
Биомеханика в медицине изучает координацию усилий костно-мышечной, нервной системы и вестибулярного аппарата, направленных на поддержку равновесия и обеспечение наиболее физиологичного положения тела в покое и при движении: ходьбе, подъёмах тяжестей, наклонах, в положении сидя, стоя, лежа, а также при выполнении повседневных жизненных функций.
По законам биомеханики, эффективно лишь то движение, которое обеспечивает достижение поставленной цели с наибольшей выгодой для организма: наименьшим напряжением мышц, расходом энергии и нагрузкой на скелет.
Медицинская сестра должна быть знакома с правилами биомеханики, уметь применять их в своей работе и обучить пациента пользоваться ими. Сидеть, стоять и поднимать тяжести нужно с соблюдением определенных правил, обеспечивающих правильное положение вашего тела.
Правильная биомеханика в положении сидя заключается в следующем:
1. Колени должны быть чуть выше бедер (это позволит перераспределить массу тела и уменьшить нагрузку на поясничный отдел позвоночника).
2. Спина должна быть прямой, а мышцы живота – напряженными.
3. Плечи должны быть расправлены и расположены симметрично бедрам.
4. Чтобы повернуться в сидячем положении, делайте это сразу всем корпусом, а не только грудью или плечами.
5. При выборе подходящего стула сядьте на него и обопритесь на спинку. Высота стула и его глубина подобраны для вашего тела правильно, если две трети длины ваших бедер находятся на сидении, а стопы без напряжения касаются пола. Если размер вам не подходит, выберите другой стул или же используйте такие приспособления, как жесткие подушки или подставки под ноги, для того чтобы биомеханика тела была правильной.
Правильная биомеханика тела в положении стоя заключается в следующем:
1. Колени должны быть расслаблены так, чтобы коленные суставы двигались свободно.
2. Масса тела должна быть распределена равномерно на обе ноги.
3. Ступни должны быть расставлены на ширину плеч.
4. Для того чтобы снизить нагрузку на поясничный отдел позвоночника, встаньте прямо и напрягите мышцы живота и ягодиц; голову при этом следует держать прямо, чтобы подбородок находился в горизонтальной плоскости.
5. Расположите плечи в одной плоскости с бедрами.
6. Поворот тела начинайте со ступней, чтобы за ступнями следовали остальные части тела. Не начинайте поворот с поясницы!
Правильная биомеханика при поднятии тяжестей заключается в следующем:
1. Перед поднятием тяжестей расположите стопы на расстоянии 30 см друг от друга, выдвинув одну стопу слегка вперед (такое положение обеспечивает хорошую опору, не позволяющую вам потерять равновесие и упасть).
2. Встаньте рядом с человеком, которого вам нужно будет поднимать, так, чтобы вам не нужно было наклоняться вперед.
3. Прижимайте поднимаемого человека к себе в процессе подъема.
4. Сгибайте только колени, поднимая человека, сохраняя туловище в вертикальном положении.
5. Поднимайте груз плавно, не делайте резких движений.
6. Чтобы повернуться, сначала поднимите груз, а затем, опираясь на ступни, плавно поворачивайтесь, не сгибая туловища, пока груз находится в руках.
Кроме выполнения перечисленных правил биомеханики, необходимо также избегать натуживаний на высоте вдоха. Натуживание на высоте вдоха вызывает нарушения сердечного ритма и коронарного кровотока – эффект Вальсальвы.
Резкое изменение положения тела в пространстве может вызвать постуральный рефлекс у человека – появление головокружения, шума в ушах, сердцебиения, иногда потерю сознания.
Используя правильную биомеханику тела, медицинская сестра обеспечивает себе безопасность, а стало быть, сохраняет свое здоровье.
БИОМЕХАНИКА
БИОМЕХАНИКА (греч. bios жизнь + mechane орудие, машина) — раздел биофизики, изучающий механические свойства живых тканей, органов и организма в целом, а также физические явления, происходящие в них в процессе жизнедеятельности и перемещения тела в пространстве. Термином «биомеханика» ранее называли также раздел эмбриологии — механику развития (см. Эмбриология). Опираясь на данные анатомии и используя методы теоретической и прикладной механики, Б. исследует деформации структурных элементов тела, движение жидкостей и газов в живом организме, перемещения звеньев тела относительно друг друга и всего тела в пространстве, устойчивость и управляемость движений и другие вопросы, доступные методам механики.
Б. движений исследует структуру опорно-двигательного аппарата (характер подвижных сочленений, число степеней свободы), кинематику движений (скорость, ускорения, траектории), динамику движений — картину действующих сил. Чаще всего задача биомеханического исследования состоит в том, чтобы по кинематическим характеристикам движения определить картину действующих сил.
Современная Б. не ограничивается анализом движений. Сфера приложений Б. расширяется, и сейчас она включает в себя изучение дыхательной системы, системы кровообращения, специализированных рецепторов и т. п.
Б. дыхательного аппарата изучает кинематику и динамику дыхательных движений, сопротивление дыханию, обусловленное трением воздуха при движении по гортани, трахее и бронхам (неэластическое сопротивление), сопротивление, связанное с упругостью грудной клетки, эластичностью тканей легких, а также поверхностным натяжением жидкости, тонким слоем покрывающим альвеолы (эластическое сопротивление). Б. кровообращения изучает реологические свойства крови, сосудистой стенки и периваскулярных тканей, особенности тока крови в ветвящихся сосудах, в сосудах малого диаметра и капиллярах, гидродинамические явления в полостях сердца и магистральных сосудах, возникновение акустических колебаний в сердечно-сосудистой системе, вопросы теплообмена и др.
История. Начало исследованиям по Б. было положено Леонардо да Винчи, который проявлял большой интерес к различным видам движения человека и животных. Изучая полет птиц и движения человека, работу скелетных мышц и сердца, механику дыхания и голосообразования, он считал, что функционирование ряда систем организма подчинено законам механики.
Значительное влияние на развитие Б. оказали труды Дж. Борелли; в книге «О движении животных» он дает анализ различных движений тела при ходьбе, беге, плавании с позиций механики. Борелли впервые определил положение центра тяжести тела человека. Экспериментальное исследование ходьбы было проведено братьями Вебер (Е. и W. Weber, 1836). Они определили отношение продолжительности и длины шага, амплитуду вертикальных перемещений тела при ходьбе, изменения функциональной длины конечности при ходьбе и др. Изобретение моментальной фотографии и кинематографии способствовало бурному расцвету Б. движений в Германии [Аншютц (Anschutz)], Франции (Э. Марей) и Америке [Майбридж (Е. Muybridge)]. Существенные результаты по биодинамике локомоций были получены нем. учеными Брауне и Фишером (Cii. W. Braune, О. Fischer), Эльфтманом (H. Elftnian).
В России начало изучения вопросов Б. положено работами И. М. Сеченова π П. Ф. Лесгафта. В «Очерках рабочих движений человека» (1901) И. М. Сеченов дал сводку важнейших биомеханических характеристик движений человека; разработка проблем теоретической анатомии опорно-двигательного аппарата проводилась П. Ф. Лесгафтом с привлечением данных сравнительной анатомии и механики. В СССР в 20—30-е годы вопросами прикладной Б. (с целью рационализации рабочего места, форм инструментов, приемов работы, рабочей позы и т. д.) занимался ряд институтов (Центральный ин-т труда. Всесоюзный ин-т экономики, Центральный ин-т труда инвалидов). С 1924 г. в Ленинградском ун-те А. А. Ухтомский начал читать курс физиологии двигательного аппарата, куда был включен раздел Б. В книге «Физиология двигательного аппарата» (1927) он изложил обширный материал по Б. мышц, суставов и координации движений. В качестве вводного курса в ортопедию Б. читал в Ростовском мед. ин-те Н. В. Парийский.
Значительный вклад в развитие Б. внес Н. А. Бернштейн, значительно усовершенствовавший методы регистрации и анализа движений (кимоциклография, циклограмметрия), проведший биодинамический анализ ходьбы здоровых людей, ее эволюцию у детей и стариков, бега, прыжков, марша и т. д. В 1938 г. В. А. Энгельгардтом и М. Н. Любимовой впервые продемонстрировано наличие связи между механическими и хим. процессами. В наст, время Б. преподается в Ин-те физической культуры. Существует международное общество биомеха-ников; проводятся Международные конгрессы по Б. С 1968 г. издается международный журнал «Biomechanics».
Методы биомеханических исследований включают различные приемы регистрации положения и движения тела, измерений силы групп мышц, моментов инерции звеньев тела и др. Для изучения положения тела существуют приборы, позволяющие определять положение общего центра тяжести по отношению к поверхности опоры, величину опорного контура, степень устойчивости тела в пространстве. Для регистрации движений используются различные варианты световой записи. Циклография (см.) заключается в регистрации на неподвижной фотопластинке нескольких избранных точек движущегося тела. Для регистрации движений, траектории которых могут накладываться друг на друга (напр., циклические движения), применяют кимоциклографию (см.) — регистрацию движений на равномерно движущейся пленке. Система обработки циклограмм (циклограмметрия) позволяет по циклограмме определить амплитуду движения, скорости и ускорения. Большое распространение получили методы электрической регистрации биомеханических параметров движения. С помощью различных датчиков можно непосредственно регистрировать кривые движения в суставах, составляющие опорных реакций и точку приложения их равнодействующей, линейные и угловые скорости и ускорения и др. При изучении рабочих движений человека используют специальные насадки к рабочему инструменту с датчиками, позволяющими регистрировать величину прилагаемых мышечных моментов в различных плоскостях, силу удара и т. п. При электрической регистрации параметров движения возможен их непосредственный ввод в ЭВМ. Это дает возможность получения в реальном масштабе времени таких важнейших показателей движения, как моменты сил, действующих в суставе, работа и мощность.
Значение биомеханики для медицины
Результаты биомеханических исследований представляют интерес для физиологии и клинической медицины. На основе этих исследований могут быть составлены биомеханические характеристики органов и систем организма, знание которых является важнейшей предпосылкой для изучения процессов регуляции. Значительный интерес представляет Б. для протезирования, являясь основой конструирования протезно-ортопедических изделий. Многие характеристики опорно-двигательного аппарата используются при проектировании других технических систем (см. Бионика). Ряд биомеханических показателей состояния кровообращения (напр., баллистокардиография, динамокардиография) и дыхания играет роль важных количественных показателей в диагностике, в определении показаний и противопоказаний к операциям на сердце и легких. Исследования Б. дыхания и кровообращения использованы при создании аппарата «сердце — легкие». Характеристики прочности костей, суставов и связок, упруго-вязких свойств мышц и других тканей представляют значительный интерес для травматологии и ортопедии, для понимания механизмов действия повреждающих факторов и предупреждения травм. Изучение Б. спортивных движений и физических упражнений раскрывает основы мастерства и помогает разработке научно обоснованной системы тренировок.
Изучение Б. трудовых процессов позволяет оценить экономичность разных вариантов движений и совершенствовать их структуру.
Важной проблемой Б. является изучение биомеханических свойств тканей, то есть свойств органов и тканей человека и животных, проявляющихся при различных видах механического воздействия. Некоторые данные о биомеханических свойствах тканей стали достоянием практической медицины, их используют в протезировании, травматологии, для определения оптимальных нагрузок у спортсменов.
Библиография: Александер Р. Биомеханика, пер. с англ., М., 1970, библиогр.; Бернштейн Н. А. Общая биомеханика, М., 1926, библиогр.; о н ж е, О построении движений, М., 1947; он же, Очерки по физиологии движений и физиологии активности, М., 1966, библиогр.; Исследования по биодинамике локомоций, под ред. Н. А. Бернштейна, М.— JI., 1935; Исследования по биодинамике ходьбы, бега, прыжка, под ред. Н. А. Бернштейна, М., 1940, библиогр.; Николаев JI. П. Руководство по биомеханике в применении к ортопедии, травматологии и протезированию, ч. 1—2, Киев, 1947—1950, библиогр.; Сеченов И. М. Очерки рабочих движений человека, М., 1901; Burton А. С. Physiologie und Biophysik des Kreislaufs, В., 1969, Bibliogr.; Frost Η. M. An introduction to biomechanics, Springfield, 1967; Pulsatile blood flow, ed. by E. O. Atinger, N. Y., 1964, bibliogr.; Y a m a d a H. Strength of biological materials, Baltimore, 1970.
Биомеханические свойства тканей — Аникин Ю. М. Физико-механические свойства позвонков человека, Учен. зап. Моск. обл. пед. ин-та, т. 273 — Зоология, в. 8, с. 12, 1970, библиогр.; Лeсгафт П. Ф. Основы теоретической анатомии, ч. 1, Спб., 1892; О б ы с о в А. С. Надежность биологических тканей, М., 1971, библиогр.; Evans F. G., L i s-s n e r H. R. a. Pedersen H. E. Deformation studies of the femur under dynamic vertical loading, Anat. Rec., v. 101, p- 225, 1948, bibliogr.; Trie-p e 1 H. Ober gelbes Bindegewebe, Anat. Anz., Bd 15, S. 300, 1898.
Биомеханика: как работает наше тело
К любой технике есть инструкция, если ее не соблюдать – техника сломается. К нашему телу тоже есть инструкция?
Если мы начинаем ходить неправильно, что происходит?
В нашем теле все мышцы парные, то есть в одном движении задействованы две мышцы. Если какая-то мышца, ослабев, выключается из ежедневной деятельности, то ее функцию в поддержании положения тела частично берёт на себя вторая мышца-синергист. Наступает мышечный дисбаланс, а далее происходит цепная реакция и перестройка всего тела по типу «слабость-перенапряжение», приводящая к возникновению хронических болей в спине.
Какие причины приводят к мышечному дисбалансу?
Какие могут быть последствия мышечных дисбалансов?
В это время организм пытается компенсировать неполадки, «подстраивается» под ситуацию, меняя работу всего организма. Процесс длится годами и примерно в 35-40 лет заходит в тупик. Начинают проявляться хронические боли, протрузии, грыжи, заболевания суставов. И эти изменения касаются не только опорно-двигательного аппарата, также нарушается сон, появляются головные боли и хроническая усталость.
Возможно ли исправить эти изменения, повернуть их вспять?
Распутать этот клубок проблем с каждым годом становится сложнее, дороже и занимает больше времени. Поэтому мы рекомендуем проходить диагностику раз в год, начиная с 18 лет. Часто я встречаю людей, которым врачи рекомендуют массаж, медикаментозное лечение, иглоукалывание, физиопроцедуры. И только в конце списка стоит лечебная физкультура (ЛФК). В большинстве случаев люди выполняют первые пункты, боль уходит, но через какое-то время возвращается снова. Это закономерно, ведь процедуры устраняют только симптом мышечного дисбаланса (боль), а не истинную причину.
Как нужно действовать правильно?
Что такое биомеханика в медицине простыми словами
Быковская В. В.
Бакалинская Е. В., операционная сестра эндоскопического отделения РОНЦ им. Н. Н. БЛОХИНА РАМН
г. Москва
Медицинская эргономика — перемещение грузов и неодушевленных предметов является наиболее тяжелой и часто встречающейся работой в здравоохранении. При перемещении грузов и пациента эргономика учитывает 6 главных параметров: Задача (выполняемая работа), груз (пациент), окружающая среда (включая оборудование), человек, выполняющий данную работу, организация труда, обучение – должно быть реливатным (по существу), под наблюдением и должно быть оценено! Эргономично выполненная работа это умение произвести оценку вышеупомянутых факторов, определить степень риска и снизить его таким образом, чтобы выполнение задачи стало людям по силам.
Приспособление к новым условиям идет в течение 7–10 дней. Если через 10 дней сохраняется дискомфорт эта работа не эргономична (условия не эргономичны) т. е. нужно менять условия, работу. Цель любого передвижения и перемещения грузов в ручную, (эргономичного перемещения) переместить пациента (объект) настолько удобно и эффективно, насколько это возможно с минимальными условиями и максимальной безопасностью.
Таблица 1. Обеспечение безопасности пациента | |
Меры профилактики | Обоснования |
Размещать пациентов с высоким риском падения в палатах, находящиеся рядом с сестринским постом | Сестра может быстрее ответить на вызов пациента |
Пользоваться ночным освещением палаты | Помогает пациенту лучше ориентироваться в темное время при самостоятельном перемещении |
Убедить пациента и его родственников в необходимости оказания ему помощи при вставании и перемещении | Исключается риск падения |
Обеспечить пациента легко доступным средством связи с сестринским постом ( световая сигнализация и т. п.) | Сестра сможет быстрее ответить на вызов пациента |
Хранить предметы первой необходимости (очки, трость и т. п.) в легко доступном месте | Исключается поиск предметов первой необходимости, во время которого было бы возможно падение |
Обеспечить пациенту возможность своевременно посетить туалет | Исключается опасность падения вследствие ускорения передвижения |
Оценивать риск падения при каждом перемещении пациента | Обеспечивается безопасность пациента |
Наблюдать пациента как можно чаще | Обеспечивается безопасность пациента |
Надежно закреплять боковые ограждения на кровати и тормоза | Обеспечивается безопасность пациента |
Памятку по оценке и выявлению пациентов с высоким риском падения и обеспечению риска падения вывесить на каждом посту | Обеспечивается унификация при составлении плана ухода за пациентами и предупреждение их травматизации. |
Биомеханика
Это наука о применении принципов механики для изучения движений тела человека. Рассматривает движение тела, как перемещение в системе взаимосвязанных двигательных сегментов, то есть движение отдельных частей относительно друг друга.
Биомеханика в медицине изучает координацию усилий костно-мышечной, нервной системы и вестибулярного аппарата, направленных на поддержку равновесия и обеспечение наиболее физиологичного положения тела в покое и при движении: ходьбе, подъемах тяжестей, наклонах, в положении сидя, стоя, лежа. По законам биомеханики, эффективно лишь то движение, которое обеспечивает достижение поставленной цели с наибольшей выгодой для организма: наименьшим напряжением мышц, расходом энергии и нагрузкой на скелет. В равной мере сказанное относится и к неподвижному положению тела человека: лежа, сидя, стоя. По законам биомеханики, эффективно лишь то движение, которое обеспечивает достижения поставленной цели с наибольшей выгодой для организма: наименьшим напряжением мышц, расходом энергии и нагрузкой на скелет. В равной мере сказанное относится и к неподвижному положению тела человека: лежа, сидя, стоя.
Медицинская сестра должна быть знакома с правилами биомеханики, уметь применять их в своей работе и обучить пациента пользоваться ими для наиболее эффективного удовлетворения потребностей «двигаться». Чтобы уменьшить отрицательное влияние на пациента ограниченного режима двигательной активности, предотвратить повреждения органов и тканей при осуществлении различных перемещений тяжелобольного человека, а также снизить риск возможных травм у медсестры, которая осуществляет уход за таким пациентом, ей необходимо знать и соблюдать целый ряд правил биомеханики.
Статические и динамические нагрузки
Статическая работа в медицине: подъем, удержание позы, заданное положение. Она хуже переносится операционными медсестрами, хирургами, стоматологами. Динамическая работа в медицине — перемещение. Для того чтобы выработался эргономический график нужно работу уменьшить по мощности, но растянуть по времени, разбить на несколько этапов.
Биомеханика движений человека
Что такое биомеханика?
Название включает в себя греческие слова bios — жизнь и mexane — механизм, рычаг. В отличие от традиционной механики, в которой рассматривается движение и взаимодействие предметов, биомеханика это наука, которая изучает и анализирует многогранные и разносторонние движения живых существ. В фитнесе, да и во всех видах спорта, особенно подвижных, биомеханика рассматривается и используется, как базовая наука и имеет большое значение. Основу биомеханики составляют физиология, геометрия, математика, анатомия и физика в разделе механики. Не меньше биомеханика связана с психологией и биохимией. Все варианты взаимодействия прикладных наук полезны и приносят ощутимую пользу.
Биомеханическая мускульная работа
Работа любой мышцы человеческого опорно-двигательного аппарата основаны на умении и возможности мышцы сокращаться. В момент мышечного сокращения сама мышца укорачивается, а обе точки крепления к костям сближаются одна относительно другой. Подвижная точка Insertion начинает приближаться к начальной неподвижной точке крепления Origin, так осуществляется движение данной конечности.
Если применить это качество и свойство мышечной материи к области фитнеса, то открывается возможность выполнения определенной механической работы (подъем штанги, перемещение конечности с гантелей), прилагая разную степень мышечного усилия. Мышечная сила в данном случае будет определяться площадью сечения мышечных волокон, или говоря простым языком площадью разреза мышцы в поперечнике. Размер мышечного сокращения определен длиной мышечного волокна. Соединения костей и взаимодействие с мышечными группами устроено в форме механического рычага, позволяющего выполнять простейшую работу по поднятию и передвижению предметов.
Механика учит нас, что чем дальше от оси будет приложена сила, тем выше кпд, ибо благодаря большому плечу рычага, работу можно выполнить с меньшими усилиями. Так и в биомеханике — если мышца крепится дальше от опорной точки, тем более выгодно будет использована ее сила. П.Ф. Лесгафт в этом смысле квалифицировал мышцы на сильные, имеющие крепление дальше от опорной точки и быстрые или ловкие, имеющие точку крепления вблизи опоры.
Мышечное движение всегда производится в двух противоположных направлениях. По этой причине для выполнения двигательного процесса вокруг одной опорной точки необходимо наличие двух мышц на противоположных сторонах одна от другой. Направления движения в биомеханике тоже получили свои определения: сгибание и разгибание, приведение и отведение, горизонтальное приведение и горизонтальное отведение, ротация медиальная и ротация латеральная.
Мышца, которая вызывает момент движения при сокращении и принимает на себя основную нагрузку, называется агонистом — Prime mover. Каждое сокращение мышцы-агониста приводит к полному расслаблению противоположной ей мышцы-антагониста. Если мы выполняем сгибание в локте, агонистом будет являться сгибатель локтя — бицепс, а антагонистом в этот момент будет разгибатель локтя — трицепс. После окончания движения обе мышцы будут уравновешивать друг друга, находясь в немного растянутом состоянии. Это явление называется мышечным тонусом. Мышцы, помогающие выполнять движение мышце-агонисту и действующие в одном с ним направлении, но испытывающие меньшую нагрузку и меньшую степень сокращения называются синергистами. Мышцы, обеспечивающие устойчивость и равновесие определенному суставу при выполнении движения, называются фиксаторами. Помимо фиксаторов значительную роль в тренировочном процессе выполняют мышцы стабилизаторы, которые работают в качестве элементов равновесия тела при смещении центра тяжести и увеличении общей силовой нагрузки. Кроме того мышцы стабилизаторы участвуют в повседневной жизни человека в обеспечении равновесного расположения частей тела относительно друг друга вне силовой тренировки.
В любой момент движения, кости образуют механические рычаги, следуя за мышечными командами.
Биомеханика выделяет три вида биомеханических рычагов:
Рассмотрим виды рычагов более подробно:
Рычаг 1 рода
В биомеханике он называется «рычагом равновесия». Поскольку точка опоры расположена между двумя точками приложения силы, рычаг еще называют «двуплечим». Такой рычаг нам демонстрирует соединения позвоночника и черепной коробки. Если вращающий момент силы, действующей на затылочную часть черепа равен вращающему моменту силы тяжести, действующему на переднюю часть черепа, и они имеют одинаковое плечо рычага, достигается равновесие. Нам удобно, мы не замечаем разнонаправленного действия, и мышцы не напряжены.
Рычаг 2 рода
В биомеханике он подразделяется на два вида. Название и действие этого рычага зависят от места расположения приложения нагрузки, но у рычагов обоих видов точка приложения силы точка приложения сопротивления находятся по одну сторону от точки опоры, поэтому оба рычага являются «одноплечими». Рычаг силы образуется при условии, что длина плеча приложения силы мышц длиннее плеча приложения силы тяжести (сопротивления). В качестве наглядного примера можно продемонстрировать человеческую стопу. Осью вращения здесь являются головки плюсневых костей, пяточная кость служит точкой приложения силы, а тяжесть тела образует сопротивление в голеностопном суставе. Здесь имеет место выигрыш в силе, за счет боле длинного плеча приложения силы и проигрыш в скорости. Рычаг скорости имеет более короткое плечо приложения мышечной силы, чем плечо силы противодействия (силы тяжести). Примером может служить работа мышц сгибателей в локтевом суставе. Бицепс крепится вблизи точки вращения (локтевой сустав) и с таким коротким плечом необходима дополнительная сила мышце сгибателю. Здесь имеет место выигрыш в скорости и ходе движения, но проигрыш в силе. Можно заключить, что чем ближе от места опоры будет крепиться мышца, тем короче будет плечо рычага, и тем значительнее будет проигрыш в силе.
При соединении двух костных пар образуется биокинетическая пара, характер движения в которой определяется строением костного сочленения (сустава), работой мышц, сухожилий и связок. Подвижность в суставе может зависеть от многочисленных факторов: пола, возраста, генетического строения, состояния ЦНС.
Для того чтобы оптимально и правильно принять исходное положения для выполнения упражнений необходимо напрямую руководствоваться знанием законов рычагов первого и второго типов. Если мы изменим положение конечности или туловища, то в свою очередь определенным образом изменится длина плеча рычага конечности или туловища. В любом случае всегда исходное положение выбирается таким образом, чтобы начальный период тренировки сопровождался менее нагрузочными положениями конечностей и корпуса. В дальнейшем, в зависимости от состояния и формы тренирующегося, можно постепенно увеличивать длину плеча рычага, для усиления воздействия на определенную мышечную группу. Увеличение силы противодействия одновременно с удлинением плеча рычага в свою очередь еще больше акцентирует внимание на укрепление силы конкретной мышечной группы или одной мышцы.
Для осуществления технически грамотного движения в момент выполнения упражнения, необходимо и важно знать, в каком направлении работает сустав, соединяющий активную мышечную группу. Здесь нам необходимо опять обратиться к анатомическим плоскостям. Виды и описание осей и плоскостей даны в разделе кинезиологии. Виды и названия суставов вы можете найти в разделе анатомии. Опорно-двигательный аппарат человека представляет собой различные костные сочленения, соединенные друг с другом посредством суставов. Тело человека может свободно перемещаться в шести направлениях: вперед и назад, вправо и влево, вверх и вниз. Определенная классификация суставов позволяет движения в этих направлениях.
Суставы трехосные — это самые подвижные суставы, они свободно обеспечивают движение в трех направлениях. Примером служат: соединения черепа и позвоночника, межпозвонковых дисков, плечевые суставы, лучевой и тазобедренный. Подобные суставы имеют шарообразную форму. Движения в этих суставах происходят в сагиттальной, корональной и трансверсальной плоскостях. В этих суставах тренирующийся имеет возможность выполнять все виды движений: сгибание и разгибание, приведение и отведение, горизонтальное приведение и отведение, медиальную и латеральную ротацию.
Суставы двухосные — обеспечивают движение в двух направлениях, менее подвижны. Они имеют форму эллипса или седла. Движения в этих суставах происходят в сагиттальной и корональной плоскостях. Примером служат суставы пальцев рук, лучезапястный сустав. Здесь возможны сгибание и разгибание, приведение и отведение.
Суставы одноосные — обеспечивают однонаправленное движение. Они имеют форму цилиндров и блоков. Примером служат плече локтевой, лучевой, коленный, голеностопный суставы. Движения возможны в сагиттальной плоскости и это сгибания и разгибания. В лучевом суставе возможна ротация латеральная (супинация) и ротация медиальная (пронация).
Несмотря на то, что многие крупные мышцы рассматриваются в анатомии как единое целое, различные части и отделы больших мышц могут осуществлять неодинаковые движения. В сгибании плеча, например, принимает участие Deltoid Anterior, в отведении плеча Middle Deltoid, а в разгибании Deltoid Posterior. Данные знания являются основой для составления индивидуальной программы тренировок, которую инструктор или тренер готовит для тренирующегося. Это позволяет грамотно осуществить подбор необходимых упражнений для воздействия на конкретную мышцу или мышечную группу.
В зависимости от того, какое исходное положение принимает тренирующийся, выполнение определенного упражнения может усложняться или облегчаться. Поэтому общая эффективность тренировки также зависит от исходного положения в выполнении упражнения. В фитнесе мы применяем следующие исходные положения: положение лежа — самое простое и легкое, положение сидя — менее легкое и положение стоя — с малой площадью опоры и поэтому достаточно сложное для удержания равновесия.
Для сглаживания разбалансировки в положениях тела с неустойчивым равновесием используются упоры. Очень распространенным является упор лежа. Это закрытая кинематическая цепь, поскольку все части тела замкнуты. Устойчивость и равновесие имеют достаточно высокую степень, центр тяжести расположен низко, площадь опоры большая.
Для примера верхней опоры могут послужить висы. Висы тоже считаются достаточно устойчивыми. Тело человека испытывает силу растяжения под тяжестью собственного веса. Руки прямые и соприкасаются с опорой в фиксировано положении. Вис является силовым упражнением уже сам по себе. Подтягивания на перекладине являются сложным силовым упражнением, которое может выполнить только подготовленный спортсмен с сильно развитыми мышцами верхнего пояса и верхних конечностей. В таком положении любая двигательная активность является сложно выполнимой, поэтому можно использовать опору для ног.
Ходьба — повседневная двигательная активность человека. Это попеременное движение ног. Одна нога служит опорой в тот момент, когда другая находится в воздухе и движется вперед. Ноги поочередно сменяют друг друга, меняя последовательно опорную фазу на двигательную.
Бег — быстрые циклические шаги, требующие от опорно-двигательного аппарата достаточно больших энергозатрат, напряжения центральной нервной системы, хорошей физической формы. Измеряется длиной шага, скоростью бега и длительностью временного промежутка.
Приседания — выполняются мышцами нижних конечностей. Площадь опоры достаточно мала, равновесие не обладает достаточной устойчивостью. При опоре руками выполнение приседаний значительно облегчается. Чем приседания глубже, тем они тяжелее. Усложнение упражнений осуществляется за счет темпа и числа приседаний, возможно дополнительное отягощение на плечи.
Прыжки — это поочередные отталкивания тела от площади опоры. Главную работу выполняют мышцы нижних конечностей, мышцы туловища и рук участвуют в движении, обеспечивая вспомогательную функцию.