Что такое биопоэз в биологии
Биология в лицее
Site biology teachers lyceum № 2 Voronezh city, Russian Federation
Теория биопоэза
На основе гипотезы биохимической эволюции Опарина — Холдейна в 1947 году английский исследователь Джон Бернал сформулировал современную теорию возникновения жизни на Земле, названную теорией биопоэза (греч. bios — жизнь и poiesis — сотворение).
Она включала в себя три стадии:
Абиогенное возникновение органических мономеров
Наша планета возникла около 4,6 млрд лет назад.
Вода, постоянно испаряясь с поверхности Земли, конденсировалась в верхних слоях атмосферы и вновь выпадала в виде дождей на раскалённую земную поверхность. Постепенное снижение температуры привело к тому, что на Землю обрушились ливни, сопровождавшиеся непрерывными грозами. На земной поверхности начали образовываться водоёмы.
В горячей воде растворялись атмосферные газы и те вещества, которые вымывались из земной коры. В атмосфере из её компонентов под действием частых и сильных электрических грозовых разрядов, мощного ультрафиолетового излучения, идущего от Солнца, и активной вулканической деятельности, которая сопровождалась выбросами радиоактивных соединений, образовывались простейшие органические вещества (формальдегид, глицерин, аминокислоты, мочевина, молочная кислота).
Так как в атмосфере свободного кислорода ещё не было, эти соединения, попадая в воды древнего океана, не окислялись и могли накапливаться, усложняясь в строении и образуя концентрированный «первичный бульон» — термин, введённый А. И. Опариным. Органические вещества, накапливаясь миллионы лет в воде древнего океана, образовывали концентрированный раствор, или «первичный бульон».
Образование биологических полимеров и коацерватов
Первый этап биохимической эволюции был подтверждён многочисленными экспериментами, а вот что происходило на следующем этапе, учёные могут только предполагать, опираясь на знания химии и молекулярной биологии.
По-видимому, образовавшиеся простейшие органические вещества взаимодействовали друг с другом и с неорганическими соединениями, попадающими в водоёмы. Жирные кислоты, вступая в реакцию со спиртами, образовывали липиды, которые формировали жировые плёнки на поверхности водоёмов. Аминокислоты, соединяясь друг с другом, образовывали пептиды. Важным событием этого этапа стало появление нуклеиновых кислот — молекул, способных к редупликации.
Современные биохимики считают, что первыми образовывались короткие цепи РНК, которые могли синтезироваться самостоятельно, без участия специальных ферментов. Образование нуклеиновых кислот и взаимодействие их с белками стало необходимой предпосылкой для возникновения жизни, в основе которой лежат реакции матричного синтеза и обмен веществ.
А. И. Опарин считал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря особенностям строения эти молекулы способны образовывать сгустки — коллоидные комплексы, притягивающие к себе молекулы воды. Такие комплексы, сливаясь друг с другом, образовывали коацерваты — структуры, обособленные от остальной массы воды. Коацерваты были способны обмениваться веществами с окружающей средой и избирательно накапливать различные соединения. Поглощение коацерватами ионов металлов приводило к образованию ферментов. Белки в коацерватах защищали нуклеиновые кислоты от разрушающего действия ультрафиолета. Системы такого рода уже обладали некоторыми признаками живого, но для превращения их в первые живые организмы им не хватало биологических мембран.
Коацерват (лат. coacervatio — собирание в кучу, накопление) — сгустки с большей концентрацией коллоида (растворённого вещества), чем в остальной части раствора того же химического состава.
Коацерваты образуются в концентрированных растворах белков и нуклеиновых кислот. Они способны адсорбировать различные вещества. Из раствора внутрь коацерватных капель поступают химические соединения, которые преобразуются в результате реакций, проходящих в коацерватных каплях, и выделяются в окружающую среду.
Понятие «коацерват» имеет важное значение в ряде гипотез о происхождении жизни на Земле.
Формирование мембранных структур и первичных организмов (пробионтов)
Как могли сформироваться мембраны на ранних этапах возникновения жизни?
Поверхности водоёмов были покрыты жировыми плёнками. Длинные неполярные углеводородные «хвосты» липидных молекул торчали наружу, а заряженные «головки» были обращены в воду. Растворённые в водоёмах молекулы полипептидов и нуклеиновых кислот могли адсорбироваться на поверхности липидной плёнки благодаря электрическому притяжению к заряженным «головкам». При порывах ветра поверхностная плёнка изгибалась, от неё могли отрываться пузырьки. Такие пузырьки поднимались ветром в воздух, а когда падали на поверхность водоёма, то покрывались вторым липидным слоем. Это происходило за счёт гидрофобных взаимодействий между обращёнными друг к другу неполярными «хвостами» липидов. Такая двуслойная липидная оболочка удивительным образом напоминает нам современную биологическую мембрану и, возможно, могла быть её прародительницей.
Для дальнейшей эволюции жизни важны были те пузырьки, которые содержали в себе коацерваты с белково-нуклеиновыми комплексами. Биологические мембраны обеспечивали защиту и независимое существование коацерватам, создавая упорядоченность биохимических процессов. В дальнейшем сохранялись и превращались в простейшие живые организмы только те структуры, которые были способны к саморегуляции и самовоспроизводству. Так возникли пробионты (или протобионты : от греч. protos — первый и bios — жизнь) — примитивные гетеротрофные организмы, питавшиеся органическими веществами «первичного бульона». Произошло это 3,5—3,8 млрд лет назад. Закончилась химическая эволюция, наступило время биологической эволюции живой материи.
Пробионты, или протобионты (греч. protos — первый и bios — жизнь), — доклеточные образования, обладающие некоторыми свойствами клеток: способностью к обмену веществ, самовоспроизведением и др.
Пробионты были гетеротрофными организмами, потреблявшими органические вещества из «первичного бульона». Очевидно, они были анаэробными гетеротрофами, поскольку древняя атмосфера, как считают исследователи, не содержала кислорода.
Эти гипотетические первичные организмы, содержавшие макромолекулы белков и нуклеиновых кислот и приобретшие способность к самовоспроизводству, как считают учёные, положили начало всему современному разнообразию жизни на Земле.
Биопоэз
Возникновение жизни — процесс превращения неживой природы в живую.
В разное время относительно возникновения жизни на Земле выдвигались следующие теории:
В настоящее время теории самозарождения и стационарного состояния представляют собой только исторический или философский интерес, так как результаты научных исследований противоречат выводам этих теорий.
Теория панспермии не решает принципиального вопроса о возникновении жизни, она только отдаляет его в ещё более туманное прошлое Вселенной, хотя и не может исключаться как гипотеза о начале жизни на Земле.
Содержание
Биохимическая эволюция
Генобиоз и голобиоз
В зависимости от того, что считается первичным, различают два методологических подхода к вопросу возникновения жизни:
Генобиоз — методологический подход в вопросе происхождения жизни, основанный на убеждении в первичности молекулярной системы со свойствами первичного генетического кода.
Голобиоз — методологический подход в вопросе происхождения жизни, основанный на идее первичности структур, наделенных способностью к элементарному обмену веществ при участии ферментного механизма.
Белково-коацерватная теория Опарина
Согласно этой теории процесс, приведший к возникновению жизни на Земле, может быть разделён на три этапа:
Условия для начала процесса формирования белковых структур установились с момента появления первичного океана. В водной среде производные углеводородов могли подвергаться сложным химическим изменениям и превращениям. В результате такого усложнения молекул могли образоваться более сложные органические вещества, а именно углеводы.
Наука доказала, что в результате применения ультрафиолетовых лучей можно искусственно синтезировать не только аминокислоты, но и другие биохимические вещества. Большой победой современной биохимии является первый полный синтез молекулы белков: синтезирован гормон инсулин, управляющий углеводным обменом.
Согласно теории Опарина, дальнейшим шагом по пути к возникновению белковых тел могло явиться образование коацерватных капель. При определённых условиях водная оболочка органических молекул приобретала чёткие границы и отделяла молекулу от окружающего раствора. Молекулы, окружённые водной оболочкой, объединялись, образуя многомолекулярные комплексы — коацерваты.
Коацерватные капли также могли возникать при простом смешивании разнообразных полимеров. При этом происходила самосборка полимерных молекул в многомолекулярные образования — видимые под оптическим микроскопом капли.
Капли были способны поглощать извне вещества по типу открытых систем. При включении в коацерватные капли различных катализаторов (в том числе и ферментов) в них происходили различные реакции, в частности полимеризация поступающих из внешней среды мономеров. За счёт этого капли могли увеличиваться в объёме и весе, а затем дробиться на дочерние образования. Таким образом, коацерваты могли расти, размножаться, осуществлять обмен веществ.
Далее коацерватные капли подвергались естественному отбору, что обеспечило их эволюцию.
Мир РНК как предшественник современной жизни
Мир РНК — гипотетическая стадия возникновения жизни на Земле, в которую функции как хранения генетической информации, так и катализа химических реакций выполняли ансамбли молекул РНК. Впоследствии из их ассоциаций возникла современная ДНК-РНК-белковая жизнь, обособленная мембраной от внешней среды.
Панспермия
Согласно теории Панспермии, предложенной в 1865 году немецким ученым Г. Рихтером и окончательно сформулированной шведским ученым Аррениусом в 1895 году, жизнь могла быть занесена на Землю из космоса. Наиболее вероятно попадание живых организмов внеземного происхождения с метеоритами и космической пылью. Это предположение основывается на данных о высокой устойчивости некоторых организмов и их спор к радиации, глубокому вакууму, низким температурам и другим воздействиям. Однако до сих пор нет достоверных фактов, подтверждающих внеземное происхождение микроорганизмов, найденных в метеоритах. Но если бы даже они попали на Землю и дали начало жизни на нашей планете, вопрос об изначальном возникновении жизни оставался бы без ответа.
Самозарождение жизни
Эта теория была распространена в Древнем Китае, Вавилоне и Древнем Египте в качестве альтернативы креационизму, с которым она сосуществовала. Аристотель (384—322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. Согласно этой гипотезе, определенные «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.
С распространением христианства теория спонтанного зарождения жизни оказалась не в чести: ее признали лишь те, кто верил в колдовство и поклонялся нечистой силе, но эта идея все продолжала существовать где-то на заднем плане в течение еще многих веков.
Известный ученый Ван Гельмот описал эксперимент, в котором он за три недели якобы создал мышей. Для этого нужны были грязная рубашка, тёмный шкаф и горсть пшеницы. Активным началом в процессе зарождения мыши Ван Гельмот считал человеческий пот.
В 1688 году итальянский биолог и врач Франческо Реди подошел к проблеме возникновения жизни более строго и подверг сомнению теорию спонтанного зарождения. Реди установил, что маленькие белые червячки, появляющиеся на гниющем мясе, — это личинки мух. Проведя ряд экспериментов, он получил данные, подтверждающие мысль о том, что жизнь может возникнуть только из предшествующей жизни (концепция биогенеза).
Эти эксперименты, однако, не привели к отказу от идеи самозарождения, и хотя эта идея несколько отошла на задний план, она продолжала оставаться главной версией зарождения жизни.
В то время как эксперименты Реди, казалось бы, опровергли спонтанное зарождение мух, первые микроскопические исследования Антони ван Левенгука усилили эту теорию применительно к микроорганизмам. Сам Левенгук не вступал в споры между сторонниками биогенеза и спонтанного зарождения, однако его наблюдения под микроскопом давали пищу обеим теориям.
В 1860 году проблемой происхождения жизни занялся французский химик Луи Пастер. Своими опытами он доказал, что бактерии вездесущи и что неживые материалы легко могут быть заражены живыми существами, если их не стерилизовать должным образом. Учёный кипятил в воде различные среды, в которых могли бы образоваться микроорганизмы. При дополнительном кипячении микроорганизмы и их споры погибали. Пастер присоединил к S-образной трубке запаянную колбу со свободным концом. Споры микроорганизмов оседали на изогнутой трубке и не могли проникнуть в питательную среду. Хорошо прокипяченная питательная среда оставалась стерильной, в ней не обнаруживалось зарождения жизни, несмотря на то, что доступ воздуха был обеспечен.
В результате ряда экспериментов Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения.
Теория стационарного состояния
Согласно этой теории, Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень незначительно. Согласно этой версии, виды также никогда не возникали, они существовали всегда, и у каждого вида есть лишь две возможности — либо изменение численности, либо вымирание.
Однако гипотеза стационарного состояния в корне противоречит данным современной астрономии, которые указывают на конечное время существования любых звёзд и, соответственно, планетных систем вокруг звёзд. По современным оценкам, основанным на учете скоростей радиоактивного распада, возраст Земли, Солнца и Солнечной системы исчисляется
4,6 млрд лет. Поэтому эта гипотеза обычно не рассматривается академической наукой.
Сторонники этой теории не признают, что наличие или отсутствие определенных ископаемых остатков может указывать на время появления или вымирания того или иного вида, и приводит в качестве примера представителя кистеперых рыб — латимерию (целаканта). По палеонтологическим данным кистеперые вымерли в конце мелового периода. Однако это заключение пришлось пересмотреть, когда в районе Мадагаскара были найдены живые представители кистеперых. Сторонники теории стационарного состояния утверждают, что только изучая ныне живущие виды и сравнивая их с ископаемыми останками, можно сделать вывод о вымирании, да и в этом случае весьма вероятно, что он окажется неверным. Используя палеонтологические данные для подтверждения теории стационарного состояния, ее сторонники интерпретируют появление ископаемых остатков в экологическом аспекте. Так, например, внезапное появление какого-либо ископаемого вида в определенном пласте они объясняют увеличением численности его популяции или его перемещением в места, благоприятные для сохранения остатков.
Религиозные версии возникновения жизни
Креационизм
Креационизм (от англ. creation — создание) — религиозно-философская концепция, в рамках которой всё многообразие органического мира, человечества, планеты Земля, а также мир в целом, рассматриваются как намеренно созданные неким верховным существом или божеством. Теория креационизма, отсылая ответ на вопрос о возникновении жизни к религии (сотворение жизни Богом), по критерию Поппера находится вне поля научных изысканий (так как она неопровержима: научными методами невозможно доказать, как то что Бог не сотворял жизни, так и то, что Бог ее сотворял). Кроме того, эта теория не дает удовлетворительного ответа на вопрос о причинах возникновения и существования самого верховного существа, обычно просто постулируя его безначальность. [2]
Фламинго-НН
Автор: Гость | от | посмотрело: 8575
Теория биопоэза
На основе гипотезы биохимической эволюции Опарина — Холдейна в 1947 году английский исследователь Джон Бернал сформулировал современную теорию возникновения жизни на Земле, названную теорией биопоэза (греч. bios — жизнь и poiesis — сотворение).
Она включала в себя три стадии:
Абиогенное возникновение органических мономеров
Наша планета возникла около 4,6 млрд лет назад.
Вода, постоянно испаряясь с поверхности Земли, конденсировалась в верхних слоях атмосферы и вновь выпадала в виде дождей на раскалённую земную поверхность. Постепенное снижение температуры привело к тому, что на Землю обрушились ливни, сопровождавшиеся непрерывными грозами. На земной поверхности начали образовываться водоёмы.
В горячей воде растворялись атмосферные газы и те вещества, которые вымывались из земной коры. В атмосфере из её компонентов под действием частых и сильных электрических грозовых разрядов, мощного ультрафиолетового излучения, идущего от Солнца, и активной вулканической деятельности, которая сопровождалась выбросами радиоактивных соединений, образовывались простейшие органические вещества (формальдегид, глицерин, аминокислоты, мочевина, молочная кислота).
Так как в атмосфере свободного кислорода ещё не было, эти соединения, попадая в воды древнего океана, не окислялись и могли накапливаться, усложняясь в строении и образуя концентрированный «первичный бульон» — термин, введённый А. И. Опариным. Органические вещества, накапливаясь миллионы лет в воде древнего океана, образовывали концентрированный раствор, или «первичный бульон».
Образование биологических полимеров и коацерватов
Первый этап биохимической эволюции был подтверждён многочисленными экспериментами, а вот что происходило на следующем этапе, учёные могут только предполагать, опираясь на знания химии и молекулярной биологии.
По-видимому, образовавшиеся простейшие органические вещества взаимодействовали друг с другом и с неорганическими соединениями, попадающими в водоёмы. Жирные кислоты, вступая в реакцию со спиртами, образовывали липиды, которые формировали жировые плёнки на поверхности водоёмов. Аминокислоты, соединяясь друг с другом, образовывали пептиды. Важным событием этого этапа стало появление нуклеиновых кислот — молекул, способных к редупликации.
Современные биохимики считают, что первыми образовывались короткие цепи РНК, которые могли синтезироваться самостоятельно, без участия специальных ферментов. Образование нуклеиновых кислот и взаимодействие их с белками стало необходимой предпосылкой для возникновения жизни, в основе которой лежат реакции матричного синтеза и обмен веществ.
А. И. Опарин считал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря особенностям строения эти молекулы способны образовывать сгустки — коллоидные комплексы, притягивающие к себе молекулы воды. Такие комплексы, сливаясь друг с другом, образовывали коацерваты — структуры, обособленные от остальной массы воды. Коацерваты были способны обмениваться веществами с окружающей средой и избирательно накапливать различные соединения. Поглощение коацерватами ионов металлов приводило к образованию ферментов. Белки в коацерватах защищали нуклеиновые кислоты от разрушающего действия ультрафиолета. Системы такого рода уже обладали некоторыми признаками живого, но для превращения их в первые живые организмы им не хватало биологических мембран.
Коацерват (лат. coacervatio — собирание в кучу, накопление) — сгустки с большей концентрацией коллоида (растворённого вещества), чем в остальной части раствора того же химического состава.
Коацерваты образуются в концентрированных растворах белков и нуклеиновых кислот. Они способны адсорбировать различные вещества. Из раствора внутрь коацерватных капель поступают химические соединения, которые преобразуются в результате реакций, проходящих в коацерватных каплях, и выделяются в окружающую среду.
Понятие «коацерват» имеет важное значение в ряде гипотез о происхождении жизни на Земле.
Формирование мембранных структур и первичных организмов (пробионтов)
Как могли сформироваться мембраны на ранних этапах возникновения жизни?
Поверхности водоёмов были покрыты жировыми плёнками. Длинные неполярные углеводородные «хвосты» липидных молекул торчали наружу, а заряженные «головки» были обращены в воду. Растворённые в водоёмах молекулы полипептидов и нуклеиновых кислот могли адсорбироваться на поверхности липидной плёнки благодаря электрическому притяжению к заряженным «головкам». При порывах ветра поверхностная плёнка изгибалась, от неё могли отрываться пузырьки. Такие пузырьки поднимались ветром в воздух, а когда падали на поверхность водоёма, то покрывались вторым липидным слоем. Это происходило за счёт гидрофобных взаимодействий между обращёнными друг к другу неполярными «хвостами» липидов. Такая двуслойная липидная оболочка удивительным образом напоминает нам современную биологическую мембрану и, возможно, могла быть её прародительницей.
Для дальнейшей эволюции жизни важны были те пузырьки, которые содержали в себе коацерваты с белково-нуклеиновыми комплексами. Биологические мембраны обеспечивали защиту и независимое существование коацерватам, создавая упорядоченность биохимических процессов. В дальнейшем сохранялись и превращались в простейшие живые организмы только те структуры, которые были способны к саморегуляции и самовоспроизводству. Так возникли пробионты (или протобионты: от греч. protos — первый и bios — жизнь) — примитивные гетеротрофные организмы, питавшиеся органическими веществами «первичного бульона». Произошло это 3,5—3,8 млрд лет назад. Закончилась химическая эволюция, наступило время биологической эволюции живой материи.
Пробионты, или протобионты (греч. protos — первый и bios — жизнь), — доклеточные образования, обладающие некоторыми свойствами клеток: способностью к обмену веществ, самовоспроизведением и др.
Пробионты были гетеротрофными организмами, потреблявшими органические вещества из «первичного бульона». Очевидно, они были анаэробными гетеротрофами, поскольку древняя атмосфера, как считают исследователи, не содержала кислорода.
Эти гипотетические первичные организмы, содержавшие макромолекулы белков и нуклеиновых кислот и приобретшие способность к самовоспроизводству, как считают учёные, положили начало всему современному разнообразию жизни на Земле.