Что такое буферная система

Введение в метрологию. Единство измерений. Контроль качества измерений. Аналитические технологии.в КЛД

Растворы

1. Концентрации раствора

Концентрацию растворов можно выражать следующими способами:

1. Процентная концентрация по массе (ω, %) число единиц массы (например, число граммов) растворенного вещества (mр.в.), содержащихся в 100 единицах массы (например, в 100 граммах) раствора (mр-ра):

ω= (mр.в.·100%)/mр-ра.

Например, 15% раствор хлорида натрия – это такой раствор, в 100 г которого содержится 15 г NaCl и 85 г воды.

2. Молярность(См) число моль (n) растворенного вещества, содержащихся в 1 л раствора:

С м = n/V.

3. Молярная концентрация эквивалента (нормальность)(СН): число моль эквивалентов (nэкв) растворенного вещества, содержащихся в одном литре раствора: Так, 2н. H2SO4 означает раствор серной кислоты, в каждом литре которого содержится два эквивалента, т. е. 98 г H2SO4.

4. Моляльность(Сm) число молей растворенного вещества, приходящихся на 1000 г растворителя. Так, 2m H2SO4 означает раствор серной кислоты, в котором на 1000 г воды приходится два моля H2SO4. Мольно-массовая концентрация раствора – моляльность, в отличие от его молярности, не изменяется при изменении температуры.

5. Мольная доля(Ni) отношение числа молей данного вещества (n1) к общему числу молей всех веществ (n1, n2), имеющихся в растворе:

N1=n1/(n1+n2).

Пользуясь растворами, концентрация которых выражена нормальностью, легко заранее рассчитать, в каких объемных отношениях они должны быть смешаны, чтобы растворенные вещества прореагировали без остатка:

СН1V1= СН2V2,

где СН1, СН2 – молярные концентрации эквивалента (моль) растворенного вещества 1 и 2 соответственно; V1, V2 – объемы растворов (л) 1 и 2 соответственно. Таким образом, объемы растворов реагирующих веществ обратно пропорциональны их нормальностям.

m растворенного компонента

Для еще более разбавленных растворов или более низких содержаний компонента результаты чаще представляют числом частей на мллиард:

m растворенного компонента

При еще меньших содержаниях компонента, оперируют триллионными долями:

Источник

Что такое буферная система

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Для обеспечения стационарного состояния у всех организмов выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды. Это относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций организма человека и животных называется гомеостазом.

Этот процесс осуществляется преимущественно деятельностью лёгких и почек за счёт дыхательной и выделительной функции. В основе гомеостаза лежит сохранение кислотно-основного баланса. Для нормальной жизнедеятельности большинства клеток необходимы достаточно узкие пределы рН (6,9 – 7,8), и организм вынужден постоянно осуществлять нейтрализацию образующихся кислот. Этот процесс выполняют буферные системы, которые связывают избыток ионов водорода и контролируют их дальнейшие перемещения в организме. Буферные системы играют очень важную роль, т.к. в результате различных метаболических процессов в организме постоянно образуются различные кислоты, которые сразу же нейтрализуются буферными системами: гидрокарбонатной, фосфатной, белковой и гемоглобиновой.

Главной буферной системой организма является гидрокарбонатный буфер, состоящий из Н2СО3 и NaHCО3. При рН около 7,4 в организме преобладает гидрокарбонат-ион, и его концентрация может в 20 раз превышать концентрацию угольной кислоты. По своей природе угольная кислота очень нестойкая и сразу же после образования расщепляется на углекислый газ и воду. Реакции образования и последующего быстрого расщепления угольной кислоты в организме настолько совершенны, что им часто не придают особого значения. Эти реакции катализируется ферментом карбоангидразой, который находится в эритроцитах и в почках. Особенность гидрокарбонатной буферной системы состоит в том, что она открыта. Избыток ионов водорода связывается с гидрокарбонат-ионом, образующийся при этом углекислый газ стимулирует дыхательный центр, вентиляция лёгких повышается, а излишки углекислого газа удаляются при дыхании. Так в организме поддерживается баланс рН. Чем больше в клетках образуется ионов водорода, тем больше расход буфера. На этом этапе метаболизма подключаются почки, которые выводят избыток ионов водорода, и количество гидрокарбоната в организме восстанавливается.

Фосфатный буфер может действовать как в составе органических молекул, так и в качестве свободных ионов. Одна его молекула способна связывать до трёх катионов водорода. Белки могут присоединять к своей полипептидной цепочке как кислотные, так и основные группы.

Буферная ёмкость белковой буферной системы может охватывать широкий диапазон рН. В зависимости от имеющейся величины рН она может связывать как гидроксильные группы, так и ионы водорода. Третья часть буферной ёмкости крови приходится на гемоглобин. Каждая молекула гемоглобина может нейтрализовать несколько ионов водорода. Когда кислород переходит из гемоглобина в ткани, способность гемоглобина связывать ионы водорода возрастает и наоборот: когда в лёгких происходит оксигенация гемоглобина, он теряет присоединённые ионы водорода. Освободившиеся ионы водорода реагируют с гидрокарбонатом, и в результате образуется углекислый газ и вода. Образовавшийся углекислый газ удаляется из лёгких при дыхании.

Буферные свойства гемоглобина обусловлены соотношением восстановленного гемоглобина (ННb) и его калиевой соли (КНb). В слабощелочных растворах, каким является кровь, гемоглобин и оксигемоглобин имеют свойства кислот и являются донорами Н+ или К+. Эта система может функционировать самостоятельно, но в организме она тесно связана с гидрокарбонатной. Когда кровь находится в тканевых капиллярах, откуда поступают кислые продукты, гемоглобин выполняет функции основания: КНb + Н2СО3 ↔ ННb + КНСО3. В легких гемоглобин, напротив, ведет себя, как кислота, предотвращая защелачивание крови после выделения углекислоты.

Таким образом, механизм регуляции кислотно-основного равновесия крови в целостном организме заключается в совместном действии внешнего дыхания, кровообращения, выделения и буферных систем.

Источник

Буферные системы крови

Циркулирующая кровь представляет собой взвесь живых клеток в жидкой среде, химические свойства которой очень важны для их жизнедеятельности. У человека за норму принят диапазон колебаний pH крови 7,37-7,44 со средней величиной 7,4. Буферные системы крови слагаются из буферных систем плазмы и клеток крови и представлены [1] :

Содержание

Бикарбонатная буферная система

Что такое буферная система. Смотреть фото Что такое буферная система. Смотреть картинку Что такое буферная система. Картинка про Что такое буферная система. Фото Что такое буферная система

Фосфатная буферная система

Что такое буферная система. Смотреть фото Что такое буферная система. Смотреть картинку Что такое буферная система. Картинка про Что такое буферная система. Фото Что такое буферная система

В крови емкость фосфатной буферной системы невелика (составляет не более 1% общей буферной емкости), в связи с низким содержанием фосфатов в крови. Фосфатный буфер выполняет значительную роль в поддержании физиологических зна­чений рН во внутриклеточных жидкостях и моче.

Буфер образован неорганическими фосфатами. Роль кислоты в этой системе выполняет одноосновный фосфат (NaH2PО4). А роль сопряженного основания — двухосновный фосфат (Na2HPО4).

При рН = 7,4 соотношение [Н2РО4-/ НРО42-] равняется 1:4.

Буферные свойства системы при увеличении в крови содержания водородных ионов реали­зуются за счет их связывания с ионами НРО42- с образованием Н2РО4- (Н+ + НРО42- → Н2РО4-), а при избытке ионов ОН- — за счет связыва­ния их с ионами Н2Р04- (ОН- + Н2РО4- → НРО4-2 + Н2О).

Фосфатная буферная система крови тесно взаимосвязана с бикарбонатной буферной системой.

Белковая буферная система

В сравнении с другими буферными системами имеет меньшее значение для поддержания кислотно-основного равновесия.

Гемоглобиновая буферная система

Самая мощная буферная система крови (в 9 раз мощнее бикарбонатной), на долю которой приходится 75 % всей буферной ёмкости крови. [H+]=K*[HHbO2]/[KHb]

Механизм действия гемоглобинового буфера 1. [общий механизм] Hb- + H+ = HHb HHbO2 + OH- = H2O + HbO2- 2. Гемоглобин является белком, он амфотерен

Протеин протеин протеин H2CO3 > HHb

См. также

Примечания

Литература

Использованная литература

Ссылки

Полезное

Смотреть что такое «Буферные системы крови» в других словарях:

Буферные системы — буферные растворы, буферные смеси, системы, поддерживающие определённую концентрацию ионов водорода Н+, то есть определённую кислотность среды. Кислотность буферных растворов почти не изменяется при их разбавлении или при добавлении к ним … Большая советская энциклопедия

БУФЕРНЫЕ СВОЙСТВА — БУФЕРНЫЕ СВОЙСТВА, способность многих веществ ослаблять изменение активной реакции (см.) раствора, к рое без них произошло бы при прибавлении к раствору кислот или щелочей. Это стабилизирующее влияние на реакцию раствора называется буферным… … Большая медицинская энциклопедия

БУФЕРНЫЕ РАСТВОРЫ — буферные системы, р ры, поддерживающие постоянный водородный показатель (рН) среды при разбавлении, концентрировании или добавлении к т или щелочей (не превышая нек рого предела). Примеры Б. р.: р р уксусной к ты и её натриевой соли, р р борной к … Большой энциклопедический политехнический словарь

Газы крови — газы, содержащиеся в крови животных и человека в растворённом состоянии и в химически связанном виде. Полное исследование Г. к. человека было впервые проведено И. М. Сеченовым (1859). Г. к. состоят из газов, поступающих из окружающей… … Большая советская энциклопедия

Группа крови — У этого термина существуют и другие значения, см. Группа крови (значения). Нашивка над левым нагрудным карманом на форме военнослужащего РФ содержит информацию о группе крови и резус факторе бойца (на снимке во … Википедия

Общий анализ крови — Клетки крови под электронным микроскопом. Клинический анализ крови анализ, позволяющий оценить содержание гемоглобина в системе красной крови, количество эритроцитов, цветовой показатель, количество лейкоцитов, тромбоцитов. Клинический анализ… … Википедия

Плазма крови — (от греч. πλάσμα нечто сформированное, образованное) жидкая часть крови, в которой взвешены форменные элементы вторая часть крови. Процентное содержание плазмы в крови составляет 52 61 %. Макроскопически представляет собой… … Википедия

Компоненты крови — составляющие цельной крови, используемые в медицинских учреждениях. В современной службе крови цельная кровь практически не используется, так как ее переливание плохо соответствует принципам этиотропной терапии, дает слишком большое число… … Википедия

Заболевания крови — большая и разнородная группа заболеваний, сопровождающихся тем или иным нарушением функций или строения тех или иных клеток крови эритроцитов, лейкоцитов или тромбоцитов, или патологическим изменением их числа повышением либо снижением, или… … Википедия

Кислородная емкость крови — Кислородная емкость крови количество кислорода, которое может быть связано кровью при её полном насыщении; выражается в объёмных процентах (об%); зависит от концентрации в крови гемоглобина. Определение Кислородной емкости крови важно для… … Википедия

Источник

Буферные системы

Что такое буферная система. Смотреть фото Что такое буферная система. Смотреть картинку Что такое буферная система. Картинка про Что такое буферная система. Фото Что такое буферная система

Что такое буферная система. Смотреть фото Что такое буферная система. Смотреть картинку Что такое буферная система. Картинка про Что такое буферная система. Фото Что такое буферная система

Полезное

Смотреть что такое «Буферные системы» в других словарях:

Буферные системы крови — (от англ. buffer, buff смягчать удар) физиологические системы и механизмы, обеспечивающие кислотно основное равновесие в крови[1]. Они являются «первой линией защиты», препятствующей резким перепадам pH внутренней среды живых… … Википедия

БУФЕРНЫЕ СВОЙСТВА — БУФЕРНЫЕ СВОЙСТВА, способность многих веществ ослаблять изменение активной реакции (см.) раствора, к рое без них произошло бы при прибавлении к раствору кислот или щелочей. Это стабилизирующее влияние на реакцию раствора называется буферным… … Большая медицинская энциклопедия

БУФЕРНЫЕ РАСТВОРЫ — буферные системы, р ры, поддерживающие постоянный водородный показатель (рН) среды при разбавлении, концентрировании или добавлении к т или щелочей (не превышая нек рого предела). Примеры Б. р.: р р уксусной к ты и её натриевой соли, р р борной к … Большой энциклопедический политехнический словарь

Буферные растворы — см. Буферные системы … Большая советская энциклопедия

Буферный раствор — Буферные растворы (англ. buffer, от buff смягчать удар) растворы с определённой устойчивой концентрацией водородных ионов; смесь слабой кислоты и её соли (напр., СН3СООН и CH3COONa) или слабого основания и его соли (напр., NH3 и… … Википедия

Кислотно-щелочное равновесие — I Кислотно щелочное равновесие (синоним: кислотно основное равновесие, кислотно щелочной баланс, равновесие кислот и оснований) относительное постоянство концентрации водородных ионов во внутренних средах организма, обеспечивающее полноценность… … Медицинская энциклопедия

Кровь — I (sanguis) жидкая ткань, осуществляющая в организме транспорт химических веществ (в т.ч. кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую систему … Медицинская энциклопедия

Гомеостаз — (др. греч. ὁμοιοστάσις от ὁμοιος одинаковый, подобный и στάσις стояние, неподвижность) саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций,… … Википедия

Электрофорез белков в полиакриламидном геле — Фотография полиакриламидного геля, иллюстрирующая разделение белков по молекулярной массе. Маркеры на левой дорожке У этого термина существуют и другие значения, см. Электрофорез в полиакриламидном геле. Электрофорез белков в полиакриламидном… … Википедия

Бу́ферные раство́ры — (синоним: буферные смеси, буферные системы, буферы) растворы с определенной концентрацией водородных ионов, содержащие сопряженную кислотно основную пару, обеспечивающую устойчивость величины их водородного показателя при незначительных… … Медицинская энциклопедия

Источник

Введение в метрологию. Единство измерений. Контроль качества измерений. Аналитические технологии.в КЛД

Растворы

1. Концентрации раствора

Концентрацию растворов можно выражать следующими способами:

1. Процентная концентрация по массе (ω, %) число единиц массы (например, число граммов) растворенного вещества (mр.в.), содержащихся в 100 единицах массы (например, в 100 граммах) раствора (mр-ра):

ω= (mр.в.·100%)/mр-ра.

Например, 15% раствор хлорида натрия – это такой раствор, в 100 г которого содержится 15 г NaCl и 85 г воды.

2. Молярность(См) число моль (n) растворенного вещества, содержащихся в 1 л раствора:

С м = n/V.

3. Молярная концентрация эквивалента (нормальность)(СН): число моль эквивалентов (nэкв) растворенного вещества, содержащихся в одном литре раствора: Так, 2н. H2SO4 означает раствор серной кислоты, в каждом литре которого содержится два эквивалента, т. е. 98 г H2SO4.

4. Моляльность(Сm) число молей растворенного вещества, приходящихся на 1000 г растворителя. Так, 2m H2SO4 означает раствор серной кислоты, в котором на 1000 г воды приходится два моля H2SO4. Мольно-массовая концентрация раствора – моляльность, в отличие от его молярности, не изменяется при изменении температуры.

5. Мольная доля(Ni) отношение числа молей данного вещества (n1) к общему числу молей всех веществ (n1, n2), имеющихся в растворе:

N1=n1/(n1+n2).

Пользуясь растворами, концентрация которых выражена нормальностью, легко заранее рассчитать, в каких объемных отношениях они должны быть смешаны, чтобы растворенные вещества прореагировали без остатка:

СН1V1= СН2V2,

где СН1, СН2 – молярные концентрации эквивалента (моль) растворенного вещества 1 и 2 соответственно; V1, V2 – объемы растворов (л) 1 и 2 соответственно. Таким образом, объемы растворов реагирующих веществ обратно пропорциональны их нормальностям.

m растворенного компонента

Для еще более разбавленных растворов или более низких содержаний компонента результаты чаще представляют числом частей на мллиард:

m растворенного компонента

При еще меньших содержаниях компонента, оперируют триллионными долями:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *