Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ, ΠΈΠ»ΠΈ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространённая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости ΠΈ Π² пространствС.

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости образуСтся двумя Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ X’X ΠΈ Y’Y. Оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ O, которая называСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ оси Π²Ρ‹Π±Ρ€Π°Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅.ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ осСй (Π² правостороннСй систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚) Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅ оси X’X ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки Π½Π° 90Β° Π΅Ρ‘ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ совпало с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси Y’Y. Π§Π΅Ρ‚Ρ‹Ρ€Π΅ ΡƒΠ³Π»Π° (I, II, III, IV), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ X’X ΠΈ Y’Y, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌΠΈ ΡƒΠ³Π»Π°ΠΌΠΈ (см. Рис. 1).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ A Π½Π° плоскости опрСдСляСтся двумя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ x ΠΈ y. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OB, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y β€” Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OC Π² Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… измСрСния. ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ OB ΠΈ OC ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ линиями, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹ΠΌΠΈ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ осям Y’Y ΠΈ X’X соотвСтствСнно. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x называСтся абсциссой Ρ‚ΠΎΡ‡ΠΊΠΈ A, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y β€” ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ A. Π—Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊ: A(x, y).

Если Ρ‚ΠΎΡ‡ΠΊΠ° A Π»Π΅ΠΆΠΈΡ‚ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ ΡƒΠ³Π»Π΅ I, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ абсциссу ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ. Если Ρ‚ΠΎΡ‡ΠΊΠ° A Π»Π΅ΠΆΠΈΡ‚ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ ΡƒΠ³Π»Π΅ II, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ абсциссу ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ. Если Ρ‚ΠΎΡ‡ΠΊΠ° A Π»Π΅ΠΆΠΈΡ‚ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ ΡƒΠ³Π»Π΅ III, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ абсциссу ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ. Если Ρ‚ΠΎΡ‡ΠΊΠ° A Π»Π΅ΠΆΠΈΡ‚ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ ΡƒΠ³Π»Π΅ IV, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ абсциссу ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС образуСтся трСмя Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ OX, OY ΠΈ OZ. Оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ O, которая называСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ оси Π²Ρ‹Π±Ρ€Π°Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ стрСлками, ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡ†Π° измСрСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² Π½Π° осях. Π•Π΄ΠΈΠ½ΠΈΡ†Ρ‹ измСрСния ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ для всСх осСй. OX β€” ось абсцисс, OY β€” ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, OZ β€” ось Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ осСй Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅ оси OX ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки Π½Π° 90Β° Π΅Ρ‘ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ совпало с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси OY, Ссли этот ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚ΡŒ со стороны ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ направлСния оси OZ. Вакая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ называСтся ΠΏΡ€Π°Π²ΠΎΠΉ. Если большой ΠΏΠ°Π»Π΅Ρ† ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ Π·Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ X, ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π·Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Y, Π° срСдний Π·Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Z, Ρ‚ΠΎ образуСтся правая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Аналогичными ΠΏΠ°Π»ΡŒΡ†Π°ΠΌΠΈ Π»Π΅Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ образуСтся лСвая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€Π°Π²ΡƒΡŽ ΠΈ Π»Π΅Π²ΡƒΡŽ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ совпали ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ оси (см. Рис. 2).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ A Π² пространствС опрСдСляСтся трСмя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ x, y ΠΈ z. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OB, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y β€” Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OC, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° z β€” Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OD Π² Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… измСрСния. ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ OB, OC ΠΈ OD ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ плоскостями, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹ΠΌΠΈ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ плоскостям YOZ, XOZ ΠΈ XOY соотвСтствСнно. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x называСтся абсциссой Ρ‚ΠΎΡ‡ΠΊΠΈ A, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y β€” ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ A, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° z β€” Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ A. Π—Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊ: A(a, b, c).

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (любой размСрности) Ρ‚Π°ΠΊΠΆΠ΅ описываСтся Π½Π°Π±ΠΎΡ€ΠΎΠΌ ΠΎΡ€Ρ‚ΠΎΠ², сонаправлСнных с осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΠΎΡ€Ρ‚ΠΎΠ² Ρ€Π°Π²Π½ΠΎ размСрности систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ всС ΠΎΠ½ΠΈ пСрпСндикулярны Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ.

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ

Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π²Π΅Π» Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚ Π² своСй Ρ€Π°Π±ΠΎΡ‚Π΅ «РассуТдСниС ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅Β» Π² 1637 Π³ΠΎΠ΄Ρƒ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ β€” Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ описания гСомСтричСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΏΠΎΠ»ΠΎΠΆΠΈΠ» Π½Π°Ρ‡Π°Π»ΠΎ аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π’ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° внСс Ρ‚Π°ΠΊΠΆΠ΅ ΠŸΡŒΠ΅Ρ€ Π€Π΅Ρ€ΠΌΠ°, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ ΡƒΠΆΠ΅ послС Π΅Π³ΠΎ смСрти. Π”Π΅ΠΊΠ°Ρ€Ρ‚ ΠΈ Π€Π΅Ρ€ΠΌΠ° примСняли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° плоскости.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ для Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ» Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ ΡƒΠΆΠ΅ Π² XVIII Π²Π΅ΠΊΠ΅.

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

Бсылки

ПолСзноС

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ «Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹» Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… словарях:

Π”Π•ΠšΠΠ Π’ΠžΠ’Π« ΠšΠžΠžΠ Π”Π˜ΠΠΠ’Π« β€” (Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚) систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости ΠΈΠ»ΠΈ Π² пространствС, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ с Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными осями ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°ΠΌΠΈ ΠΏΠΎ осям ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. Названы ΠΏΠΎ ΠΈΠΌΠ΅Π½ΠΈ Π . Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° … Π‘ΠΎΠ»ΡŒΡˆΠΎΠΉ ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” БистСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, состоящая ΠΈΠ· Π΄Π²ΡƒΡ… пСрпСндикулярных осСй. ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Ρ‚Π°ΠΊΠΎΠΉ систСмС формируСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π²ΡƒΡ… чисСл, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… расстояниС ΠΎΡ‚ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· осСй. [http://www.morepc.ru/dict/] Π’Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ информационныС… … Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ тСхничСского ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Ρ‡ΠΈΠΊΠ°

Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” (Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚), систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости ΠΈΠ»ΠΈ Π² пространствС, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ с Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными осями ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°ΠΌΠΈ ΠΏΠΎ осям ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. Названы ΠΏΠΎ ΠΈΠΌΠ΅Π½ΠΈ Π . Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° … ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” Dekarto koordinatΔ—s statusas T sritis Standartizacija ir metrologija apibrΔ—ΕΎtis TiesinΔ— plokΕ‘tumos arba erdvΔ—s koordinačiΕ³ sistema. Joje aΕ‘iΕ³ masteliai paprastai bΕ«na lygΕ«s. atitikmenys: angl. Cartesian coordinates vok. kartesische Koordinaten, f … Penkiakalbis aiΕ‘kinamasis metrologijos terminΕ³ ΕΎodynas

Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” Dekarto koordinatΔ—s statusas T sritis fizika atitikmenys: angl. Cartesian coordinates; grid coordinates vok. kartesische Koordinaten, f rus. Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, f pranc. coordonnΓ©es cartΓ©siennes, f … Fizikos terminΕ³ ΕΎodynas

Π”Π•ΠšΠΠ Π’ΠžΠ’Π« ΠšΠžΠžΠ Π”Π˜ΠΠΠ’Π« β€” способ опрСдСлСния полоТСния Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° плоскости ΠΈΡ… расстояниями Π΄ΠΎ Π΄Π²ΡƒΡ… фиксированных пСрпСндикулярных прямых осСй. Π­Ρ‚ΠΎ понятиС усматриваСтся ΡƒΠΆΠ΅ Ρƒ АрхимСда ΠΈ Аппология ΠŸΠ΅Ρ€Π³ΡΠΊΠΎΠ³ΠΎ Π±ΠΎΠ»Π΅Π΅ Π΄Π²ΡƒΡ… тысяч Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄ ΠΈ Π΄Π°ΠΆΠ΅ Ρƒ Π΄Ρ€Π΅Π²Π½ΠΈΡ… Сгиптян. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ эта… … ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энциклопСдия

Π”Π•ΠšΠΠ Π’ΠžΠ’Π« ΠšΠžΠžΠ Π”Π˜ΠΠΠ’Π« β€” Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ [ΠΏΠΎ ΠΈΠΌΠ΅Π½ΠΈ Ρ„Ρ€Π°Π½Ρ†. философа ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° Π . Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° (R. Descartes; 1596 1650)], систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости ΠΈΠ»ΠΈ Π² пространствС, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ с Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными осями ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°ΠΌΠΈ ΠΏΠΎ осям ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π” … Π‘ΠΎΠ»ΡŒΡˆΠΎΠΉ энциклопСдичСский политСхничСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π”Π•ΠšΠΠ Π’ΠžΠ’Π« ΠšΠžΠžΠ Π”Π˜ΠΠΠ’Π« β€” (Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚), систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости ΠΈΠ»ΠΈ Π² пространствС, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ с Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными осями ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°ΠΌΠΈ ΠΏΠΎ осям ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π”. ΠΊ. Названы ΠΏΠΎ ΠΈΠΌΠ΅Π½ΠΈ Π . Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° … ЕстСствознаниС. ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π”Π•ΠšΠΠ Π’ΠžΠ’Π« ΠšΠžΠžΠ Π”Π˜ΠΠΠ’Π« β€” БистСма располоТСния любой Ρ‚ΠΎΡ‡ΠΊΠΈ нашли кости ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Π²ΡƒΡ… осСй, ΠΏΠ΅Ρ€Π΅ΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ. Разработанная Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠΌ, эта систСма стала основой для стандартных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² графичСского прСдставлСния Π΄Π°Π½Π½Ρ‹Ρ…. Π“ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ линия… … Π’ΠΎΠ»ΠΊΠΎΠ²Ρ‹ΠΉ ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ ΠΏΠΎ психологии

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. На плоскости (слСва) ΠΈ Π² пространствС (справа). ΠšΠžΠžΠ Π”Π˜ΠΠΠ’Π« (ΠΎΡ‚ латинского co совмСстно ΠΈ ordinatus упорядочСнный), числа, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° прямой, плоскости, повСрхности, Π² пространствС. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΡΡƒΡ‚ΡŒ расстояния … Π˜Π»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ энциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚: основныС понятия ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Π‘ ΠΈΠΌΠ΅Π½Π΅ΠΌ французского ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° (1596-1662) ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Ρ‚Π°ΠΊΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π° всСх осях отсчитываСтся общая Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π΄Π»ΠΈΠ½Ρ‹ ΠΈ оси ΡΠ²Π»ΡΡŽΡ‚ΡΡ прямыми. Помимо ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ сущСствуСт общая Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (аффинная систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚). Она ΠΌΠΎΠΆΠ΅Ρ‚ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ ΠΈ Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ пСрпСндикулярныС оси. Если ΠΆΠ΅ оси пСрпСндикулярны, Ρ‚ΠΎ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ.

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ, ΠΊΠ°ΠΊ слСдуСт ΠΈΠ· опрСдСлСния, сущСствуСт Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π½Π° прямой, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° прямой прСдставляСт собой ΠΎΠ΄ΠΈΠ½ ΠΈΠ· способов, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ прямой ставится Π² соотвСтствиС Π²ΠΏΠΎΠ»Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠ΅ вСщСствСнноС число, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°.

ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, возникший Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚Π°, ΠΎΠ·Π½Π°ΠΌΠ΅Π½ΠΎΠ²Π°Π» собой Ρ€Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ пСрСстройку всСй ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Появилась Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΡΡ‚ΠΎΠ»ΠΊΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ алгСбраичСскиС уравнСния (ΠΈΠ»ΠΈ нСравСнства) Π² Π²ΠΈΠ΄Π΅ гСомСтричСских ΠΎΠ±Ρ€Π°Π·ΠΎΠ² (Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ²) ΠΈ, Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, ΠΈΡΠΊΠ°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ гСомСтричСских Π·Π°Π΄Π°Ρ‡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ аналитичСских Ρ„ΠΎΡ€ΠΌΡƒΠ», систСм ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Π’Π°ΠΊ, нСравСнство z гСомСтричСски ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ полупространство, Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ Π½ΠΈΠΆΠ΅ плоскости, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости xOy ΠΈ находящСйся Π²Ρ‹ΡˆΠ΅ этой плоскости Π½Π° 3 Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси Ρ€Π°Π·Π±ΠΈΠ²Π°ΡŽΡ‚ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Π½Ρ‚Π°, нумСрация ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° рисункС Π½ΠΈΠΆΠ΅. На Π½Ρ‘ΠΌ ΠΆΠ΅ ΡƒΠΊΠ°Π·Π°Π½Π° расстановка Π·Π½Π°ΠΊΠΎΠ² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ Π² зависимости ΠΎΡ‚ ΠΈΡ… располоТСния Π² Ρ‚ΠΎΠΌ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Π½Ρ‚Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² пространствС вводятся Π² ΠΏΠΎΠ»Π½ΠΎΠΉ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ с Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Π½Π° плоскости.

Π’Ρ€ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныС оси Π² пространствС (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси) с ΠΎΠ±Ρ‰ΠΈΠΌ Π½Π°Ρ‡Π°Π»ΠΎΠΌ O ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρƒ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

Π—Π°Π΄Π°Ρ‡ΠΈ ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

Найти ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ этих Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° ось абсцисс.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

Найти ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ этих Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρƒ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅ΠΌ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ вмСстС

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 6. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 7. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

Найти ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных этим Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

РСшСниС. ΠŸΠΎΠ²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π΅ΠΌ Π½Π° 180 градусов Π²ΠΎΠΊΡ€ΡƒΠ³ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΠΈΠ΄ΡƒΡ‰ΠΈΠΉ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅. На рисункС, Π³Π΄Π΅ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Π½Ρ‚Ρ‹ плоскости, Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°, симмСтричная Π΄Π°Π½Π½ΠΎΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ абсциссу ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ, Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ абсциссС ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ ΠΈΠΌ ΠΏΠΎ Π·Π½Π°ΠΊΡƒ. Π˜Ρ‚Π°ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных этим Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 8. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

Найти ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ этих Ρ‚ΠΎΡ‡Π΅ΠΊ:

1) Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Oxy ;

2) Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Oxz ;

3) Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Oyz ;

1) ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Oxy располоТСна Π½Π° самой этой плоскости, Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ абсциссу ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ, Ρ€Π°Π²Π½Ρ‹Π΅ абсциссС ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΈ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚Ρƒ, Ρ€Π°Π²Π½ΡƒΡŽ Π½ΡƒΠ»ΡŽ. Π˜Ρ‚Π°ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° Oxy :

2) ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Oxz располоТСна Π½Π° самой этой плоскости, Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ абсциссу ΠΈ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚Ρƒ, Ρ€Π°Π²Π½Ρ‹Π΅ абсциссС ΠΈ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚Π΅ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ, Ρ€Π°Π²Π½ΡƒΡŽ Π½ΡƒΠ»ΡŽ. Π˜Ρ‚Π°ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° Oxz :

3) ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Oyz располоТСна Π½Π° самой этой плоскости, Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ ΠΈ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚Ρƒ, Ρ€Π°Π²Π½Ρ‹Π΅ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅ ΠΈ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚Π΅ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΈ абсциссу, Ρ€Π°Π²Π½ΡƒΡŽ Π½ΡƒΠ»ΡŽ. Π˜Ρ‚Π°ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° Oyz :

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 9. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ

Найти ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных этим Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ:

7) Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

По Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ с симмСтричными Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π° плоскости ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ пространства, симмСтричными Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ плоскостСй, Π·Π°ΠΌΠ΅Ρ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² случаС симмСтрии ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ оси Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π½Π° оси, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π°Π΄Π°Π½Π° симмСтрия, сохранит свой Π·Π½Π°ΠΊ, Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π° Π΄Π²ΡƒΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… осях Π±ΡƒΠ΄ΡƒΡ‚ Ρ‚Π΅ΠΌΠΈ ΠΆΠ΅ ΠΏΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Ρ‡Ρ‚ΠΎ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌΠΈ ΠΏΠΎ Π·Π½Π°ΠΊΡƒ.

4) Π‘Π²ΠΎΠΉ Π·Π½Π°ΠΊ сохранит абсцисса, Π° ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΈ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚Π° ΠΏΠΎΠΌΠ΅Π½ΡΡŽΡ‚ Π·Π½Π°ΠΊΠΈ. Π˜Ρ‚Π°ΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси абсцисс:

5) Π‘Π²ΠΎΠΉ Π·Π½Π°ΠΊ сохранит ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°, Π° абсцисса ΠΈ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚Π° ΠΏΠΎΠΌΠ΅Π½ΡΡŽΡ‚ Π·Π½Π°ΠΊΠΈ. Π˜Ρ‚Π°ΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

6) Π‘Π²ΠΎΠΉ Π·Π½Π°ΠΊ сохранит Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚Π°, Π° абсцисса ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎΠΌΠ΅Π½ΡΡŽΡ‚ Π·Π½Π°ΠΊΠΈ. Π˜Ρ‚Π°ΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚:

7) По Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ с симмСтрии Π² случаС с Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π° плоскости, Π² случаС симмСтрии ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ всС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ, симмСтричной Π΄Π°Π½Π½ΠΎΠΉ, Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ ΠΏΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌΠΈ ΠΈΠΌ ΠΏΠΎ Π·Π½Π°ΠΊΡƒ. Π˜Ρ‚Π°ΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Ось абсцисс ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Ѐранцузский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ» вмСсто гСомСтричСских построСний ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ матСматичСскиС расчСты. Π’Π°ΠΊ появился ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΌΡ‹ сСйчас расскаТСм.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” это ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ чисСл, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π½Π° прямой, плоскости, повСрхности ΠΈΠ»ΠΈ Π² пространствС. НапримСр, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΡˆΠΊΠΎΠ»Ρ‹ Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ числами β€” ΠΎΠ½ΠΈ ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠ½ΡΡ‚ΡŒ, Π³Π΄Π΅ ΠΈΠΌΠ΅Π½Π½ΠΎ находится наша школа. Π‘ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π° плоскости Ρ‚Π° ΠΆΠ΅ история.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π½ΠΎΠΌΠ΅Ρ€ столика Π² ΠΊΠ°Ρ„Π΅, ΡˆΠΈΡ€ΠΎΡ‚Ρƒ ΠΈ Π΄ΠΎΠ»Π³ΠΎΡ‚Ρƒ Π½Π° гСографичСской ΠΊΠ°Ρ€Ρ‚Π΅, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° числовой оси ΠΈ Π΄Π°ΠΆΠ΅ Π½ΠΎΠΌΠ΅Ρ€ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½Π° Π΄Ρ€ΡƒΠ³Π°. ΠŸΡ€ΠΎΡ‰Π΅ говоря, ΠΊΠΎΠ³Π΄Π° ΠΌΡ‹ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅ΠΌ ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ Π½Π°Π±ΠΎΡ€ΠΎΠΌ Π±ΡƒΠΊΠ², чисСл ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… символов, Ρ‚Π΅ΠΌ самым ΠΌΡ‹ Π·Π°Π΄Π°Π΅ΠΌ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” это систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΈΠ·ΠΎΠ±Ρ€Π΅Π» ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚, Π΅Π΅ Π΅Ρ‰Π΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Β«Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Β». Она прСдставляСт собой Π΄Π²Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярных Π»ΡƒΡ‡Π° с Π½Π°Ρ‡Π°Π»ΠΎΠΌ отсчСта Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΡ… пСрСсСчСния.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Π½ΡƒΠΆΠ½Ρ‹ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€Ρ‹, ΠΎΡ‚ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠ΄Ρ‚ΠΈ отсчСт. На плоскости Π² этой Ρ€ΠΎΠ»ΠΈ выступят Π΄Π²Π΅ числовыС оси.

Π§Π΅Ρ€Ρ‚Π΅ΠΆ начинаСтся с Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ оси, которая называСтся осью абсцисс ΠΈ обозначаСтся латинской Π±ΡƒΠΊΠ²ΠΎΠΉ x (икс). Π—Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ ось Ρ‚Π°ΠΊ: Ox. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ оси абсцисс обозначаСтся стрСлкой слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ.

Π—Π°Ρ‚Π΅ΠΌ проводят Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ ось, которая называСтся осью ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ обозначаСтся y (ΠΈΠ³Ρ€Π΅ΠΊ). Π—Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ ось Oy. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ стрСлкой снизу Π²Π²Π΅Ρ€Ρ….

Оси Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Ρ€Π°Π²Π΅Π½ 90Β°. Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния являСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ отсчСта для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· осСй ΠΈ обозначаСтся Ρ‚Π°ΠΊ: O. Начало ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄Π΅Π»ΠΈΡ‚ оси Π½Π° Π΄Π²Π΅ части: ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ.

Π•Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ΡΡ справа ΠΈ слСва ΠΎΡ‚ оси Oy, Π²Π²Π΅Ρ€Ρ… ΠΈ Π²Π½ΠΈΠ· ΠΎΡ‚ оси Oy. ЧисловыС значСния Π½Π° оси Oy Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ΡΡ слСва ΠΈΠ»ΠΈ справа, Π½Π° оси Ox β€” Π²Π½ΠΈΠ·Ρƒ ΠΏΠΎΠ΄ Π½Π΅ΠΉ. Π§Π°Ρ‰Π΅ всСго Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π΄Π²ΡƒΡ… осСй ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ, Π½ΠΎ Π±Ρ‹Π²Π°ΡŽΡ‚ Π·Π°Π΄Π°Ρ‡ΠΈ, Π³Π΄Π΅ ΠΎΠ½ΠΈ Π½Π΅ Ρ€Π°Π²Π½Ρ‹.

Оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ дСлят ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΡƒΠ³Π»Π° β€” Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ.

Π£ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚Π΅ΠΉ Π΅ΡΡ‚ΡŒ свой Π½ΠΎΠΌΠ΅Ρ€ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅ римской Ρ†ΠΈΡ„Ρ€Ρ‹. ΠžΡ‚ΡΡ‡Π΅Ρ‚ ΠΈΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки:

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрпСндикуляр Π½Π° ΠΊΠ°ΠΆΠ΄ΡƒΡŽ ось ΠΈ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ количСство Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² ΠΎΡ‚ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΊΠΈ Π΄ΠΎ ΠΎΠΏΡƒΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ пСрпСндикуляра. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Π² скобках, пСрвая ΠΏΠΎ оси ΠžΡ…, вторая ΠΏΠΎ оси ΠžΡƒ.

ΠšΡƒΡ€ΡΡ‹ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΊ ΠžΠ“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΎΡ‚ Skysmart ΠΏΡ€ΠΈΠ΄Π°Π΄ΡƒΡ‚ увСрСнности Π² сСбС ΠΈ ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ ΠΎΡΠ²Π΅ΠΆΠΈΡ‚ΡŒ знания ΠΏΠ΅Ρ€Π΅Π΄ экзамСном.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Для Π½Π°Ρ‡Π°Π»Π° ΠΎΡ‚Π»ΠΎΠΆΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ М Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси ΠžΡ…. Π›ΡŽΠ±ΠΎΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число xM Ρ€Π°Π²Π½ΠΎ СдинствСнной Ρ‚ΠΎΡ‡ΠΊΠ΅ М, которая располагаСтся Π½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой. ΠŸΡ€ΠΈ этом Π½Π°Ρ‡Π°Π»ΠΎ отсчСта ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… прямых всСгда ноль.

КаТдая Ρ‚ΠΎΡ‡ΠΊΠ° М, которая располоТСна Π½Π° ΠžΡ…, Ρ€Π°Π²Π½Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ числу xM. Π­Ρ‚ΠΈΠΌ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ числом ΠΈ являСтся ноль, Ссли Ρ‚ΠΎΡ‡ΠΊΠ° М располоТСна Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π° пСрСсСчСнии Оx ΠΈ ΠžΡƒ. Если Ρ‚ΠΎΡ‡ΠΊΠ° ΡƒΠ΄Π°Π»Π΅Π½Π° Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚ΠΎ число Π΄Π»ΠΈΠ½Ρ‹ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈ Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚.

Число xM β€” это ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ М Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ прямой.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ΠŸΡƒΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠ° Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Mx Π½Π° ΠžΡ…, Π° My Π½Π° ΠžΡƒ. Π—Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ М ΠΌΠΎΠΆΠ½ΠΎ провСсти пСрпСндикулярныС осям Оx ΠΈ ΠžΡƒ прямыС, послС Ρ‡Π΅Π³ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ соотвСтствСнныС Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Mx ΠΈ My.Π’ΠΎΠ³Π΄Π° Ρƒ Ρ‚ΠΎΡ‡ΠΊΠΈ Mx Π½Π° оси Оx Π΅ΡΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ число xM, Π° My Π½Π° ΠžΡƒ β€” yM. Как это выглядит Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осях:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

КаТдой Ρ‚ΠΎΡ‡ΠΊΠ΅ М Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ плоскости Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ соотвСтствуСт ΠΏΠ°Ρ€Π° чисСл (xM, yM), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π΅Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ. Абсцисса М β€” это xM, ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° М β€” это yM.

ΠžΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠΆΠ΅ Π²Π΅Ρ€Π½ΠΎ: каТдая ΠΏΠ°Ρ€Π° (xM, yM) ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° плоскости.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

3 класс, 4 класс, 9 класс, 11 класс, Π•Π“Π­/ΠžΠ“Π­

Π‘Ρ‚Π°Ρ‚ΡŒΡ находится Π½Π° ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ΅ Ρƒ мСтодистов Skysmart.
Если Π²Ρ‹ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ ΠΎΡˆΠΈΠ±ΠΊΡƒ, сообщитС ΠΎΠ± этом Π² ΠΎΠ½Π»Π°ΠΉΠ½-Ρ‡Π°Ρ‚ (Π² ΠΏΡ€Π°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡƒΠ³Π»Ρƒ экрана).

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” это ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ чисСл, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π½Π° прямой, плоскости, повСрхности ΠΈΠ»ΠΈ Π² пространствС. НапримСр, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ вашСй ΠΊΠ²Π°Ρ€Ρ‚ΠΈΡ€Ρ‹ Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ числами β€” ΠΎΠ½ΠΈ ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠ½ΡΡ‚ΡŒ, Π³Π΄Π΅ ΠΈΠΌΠ΅Π½Π½ΠΎ находится Ρ‚ΠΎΡ‚ Π΄ΠΎΠΌ, Π³Π΄Π΅ Π²Ρ‹ ΠΆΠΈΠ²Π΅Ρ‚Π΅. Π‘ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π° плоскости Ρ‚Π° ΠΆΠ΅ история.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” это систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΈΠ·ΠΎΠ±Ρ€Π΅Π» ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚, Π΅Π΅ Π΅Ρ‰Π΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Β«Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Β». Она прСдставляСт собой Π΄Π²Π° Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярных Π»ΡƒΡ‡Π° с Π½Π°Ρ‡Π°Π»ΠΎΠΌ отсчСта Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΡ… пСрСсСчСния.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Π½ΡƒΠΆΠ½Ρ‹ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€Ρ‹, ΠΎΡ‚ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠ΄Ρ‚ΠΈ отсчСт. На плоскости Π² этой Ρ€ΠΎΠ»ΠΈ выступят Π΄Π²Π΅ числовыС оси.

Для Ρ‚Π΅Ρ…, ΠΊΡ‚ΠΎ Ρ…ΠΎΡ‡Π΅Ρ‚ ΡΠ²ΡΠ·Π°Ρ‚ΡŒ свою Тизнь с Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ Π½Π°ΡƒΠΊΠ°ΠΌΠΈ, Skysmart ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ курсы ΠΏΠΎ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

Π§Π΅Ρ€Ρ‚Π΅ΠΆ начинаСтся с Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ оси, которая называСтся осью абсцисс ΠΈ обозначаСтся латинской Π±ΡƒΠΊΠ²ΠΎΠΉ x (икс). Π—Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ ось Ρ‚Π°ΠΊ: Ox. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ оси абсцисс обозначаСтся стрСлкой слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ.

Π—Π°Ρ‚Π΅ΠΌ проводят Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ ось, которая называСтся осью ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ обозначаСтся y (ΠΈΠ³Ρ€Π΅ΠΊ). Π—Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ ось Oy. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ стрСлкой снизу Π²Π²Π΅Ρ€Ρ….

Оси Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Ρ€Π°Π²Π΅Π½ 90Β°. Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния являСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ отсчСта для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· осСй ΠΈ обозначаСтся Ρ‚Π°ΠΊ: O. Начало ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΄Π΅Π»ΠΈΡ‚ оси Π½Π° Π΄Π²Π΅ части: ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ.

Оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ дСлят ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΡƒΠ³Π»Π° β€” Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ.

Π£ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚Π΅ΠΉ Π΅ΡΡ‚ΡŒ свой Π½ΠΎΠΌΠ΅Ρ€ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅ римской Ρ†ΠΈΡ„Ρ€Ρ‹. ΠžΡ‚ΡΡ‡Π΅Ρ‚ ΠΈΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ

КаТдой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹.

Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния с осью ΠžΡ… называСтся абсциссой Ρ‚ΠΎΡ‡ΠΊΠΈ А, Π° с осью ΠžΡƒ называСтся ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ А.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° плоскости, Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрпСндикуляр Π½Π° ΠΊΠ°ΠΆΠ΄ΡƒΡŽ ось ΠΈ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ количСство Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² ΠΎΡ‚ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΊΠΈ Π΄ΠΎ ΠΎΠΏΡƒΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ пСрпСндикуляра.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° плоскости Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Π² скобках, пСрвая ΠΏΠΎ оси ΠžΡ…, вторая ΠΏΠΎ оси ΠžΡƒ.

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΠΌ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈ фиксируСм: A (1; 2) ΠΈ B (2; 3).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ΠžΡΠΎΠ±Ρ‹Π΅ случаи располоТСния Ρ‚ΠΎΡ‡Π΅ΠΊ

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π΅ΡΡ‚ΡŒ нСсколько особых случаСв располоТСния Ρ‚ΠΎΡ‡Π΅ΠΊ. Π›ΡƒΡ‡ΡˆΠ΅ ΠΈΡ… Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π±Π΅Π· Π·Π°ΠΏΠΈΠ½ΠΊΠΈ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΊΠΈ. Π’ΠΎΡ‚ ΠΎΠ½ΠΈ:

Бпособы нахоТдСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Π΅Ρ‘ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π΄Π²ΡƒΡ… способов.

Бпособ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ. Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ D ΠΏΠΎ Π΅Ρ‘ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ (-4, 2):

Бпособ Π²Ρ‚ΠΎΡ€ΠΎΠΉ. Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ D (-4, 2):

Π§Ρ‚ΠΎΠ±Ρ‹ Π»Π΅Π³ΠΊΠΎ ΠΈ быстро Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈΠ»ΠΈ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ, скачайтС Π³ΠΎΡ‚ΠΎΠ²ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Ρ…Ρ€Π°Π½ΠΈΡ‚Π΅ Π΅Π΅ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π‘Π΅ΠΊΡ€Π΅Ρ‚Ρ‹ ΠΌΠΈΡ€Π°

ВсС открытия Π²ΠΏΠ΅Ρ€Π΅Π΄ΠΈ!

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ΠšΡ‚ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π΅Π» оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ΠšΡ‚ΠΎ ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π» систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚?

БистСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ – гСниальноС изобрСтСния чСловСчСского ΡƒΠΌΠ°. Начало Π±Ρ‹Π»ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΎ ΡƒΡ‡Π΅Π½Ρ‹ΠΌ Π“ΠΈΠΏΠΏΠ°Ρ€Ρ…ΠΎΠΌ, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ²ΡˆΠΈΠΌ ввСсти гСографичСскоС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹.

Намного ΠΏΠΎΠ·Π΄Π½Π΅Π΅ Π²17 Π²Π΅ΠΊΠ΅ французский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚ систСматизировал Π½Π°ΡƒΡ‡Π½Ρ‹Π΅ знания ΠΈ Ρ‚Π΅ΠΌ самым стал основополоТником Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ самой извСстной ΠΈ примСняСмой систСмой ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ – ΠΎΡ€Ρ‚ΠΎΠ½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚ ΠΈ Π΅Π³ΠΎ систСма

Π€ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ΄Π΅ΠΈ Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° Π±Ρ‹Π»ΠΈ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Ρ‹ Π² ΠΊΠ½ΠΈΠ³Π΅ «ГСомСтрия». Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ» Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ алгСбраичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИмСнно Π² этой ΠΊΠ½ΠΈΠ³Π΅ ΠΎΠ½ Π²Π²Π΅Π» понятиС ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… систСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Π΄Π²Π΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныС оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²Ρ‹Π±Ρ€Π°Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π° плоскости ΠΈΠ»ΠΈ Π² пространствС ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΎΠ½ΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅ΠΌΠΎΠΉ ΠΊΠ°ΠΊ Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ возникновСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ возникновСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ возникновСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ начинаСтся ΠΎΡ‡Π΅Π½ΡŒ Π΄Π°Π²Π½ΠΎ, ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ идСя ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° Π΅Ρ‰Ρ‘ Π² Π΄Ρ€Π΅Π²Π½Π΅ΠΌ ΠΌΠΈΡ€Π΅ Π² связи с потрСбностями астрономии, Π³Π΅ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, Тивописи. ДрСвнСгрСчСского ΡƒΡ‡Π΅Π½ΠΎΠ³ΠΎ Анаксимандра ΠœΠΈΠ»Π΅Ρ‚ΡΠΊΠΎΠ³ΠΎ (ΠΎΠΊ. 610-546 Π΄ΠΎ Π½. э.) ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ составитСлСм ΠΏΠ΅Ρ€Π²ΠΎΠΉ гСографичСской ΠΊΠ°Ρ€Ρ‚Ρ‹. Он Ρ‡Π΅Ρ‚ΠΊΠΎ описывал ΡˆΠΈΡ€ΠΎΡ‚Ρƒ ΠΈ Π΄ΠΎΠ»Π³ΠΎΡ‚Ρƒ мСста, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ.

Π‘ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π·Π° 100 Π»Π΅Ρ‚ Π΄ΠΎ Π½.э грСчСский ΡƒΡ‡Π΅Π½Ρ‹ΠΉ Π“ΠΈΠΏΠΏΠ°Ρ€Ρ… ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ» ΠΎΠΏΠΎΡΡΠ°Ρ‚ΡŒ Π½Π° ΠΊΠ°Ρ€Ρ‚Π΅ Π·Π΅ΠΌΠ½ΠΎΠΉ ΡˆΠ°Ρ€ параллСлями ΠΈ ΠΌΠ΅Ρ€ΠΈΠ΄ΠΈΠ°Π½Π°ΠΌΠΈ ΠΈ ввСсти Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстныС гСографичСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹: ΡˆΠΈΡ€ΠΎΡ‚Ρƒ ΠΈ Π΄ΠΎΠ»Π³ΠΎΡ‚Ρƒ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ ΠΈΡ… числами.

ИдСя ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ‚ΡŒ числа Π² Π²ΠΈΠ΄Π΅ Ρ‚ΠΎΡ‡Π΅ΠΊ, Π° Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ Π΄Π°Π²Π°Ρ‚ΡŒ числовыС обозначСния Π·Π°Ρ€ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π² Π΄Π°Π»Π΅ΠΊΠΎΠΉ дрСвности. ΠŸΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ связано с астрономиСй ΠΈ Π³Π΅ΠΎΠ³Ρ€Π°Ρ„ΠΈΠ΅ΠΉ, с ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ свСтил Π½Π° Π½Π΅Π±Π΅ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ² Π½Π° повСрхности Π—Π΅ΠΌΠ»ΠΈ, ΠΏΡ€ΠΈ составлСнии калСндаря, Π·Π²Π΅Π·Π΄Π½Ρ‹Ρ… ΠΈ гСографичСских ΠΊΠ°Ρ€Ρ‚. Π‘Π»Π΅Π΄Ρ‹ примСнСния ΠΈΠ΄Π΅ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΉ сСтки (ΠΏΠ°Π»Π΅Ρ‚ΠΊΠΈ) ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π½Π° стСнС ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΠΎΠ³Ρ€Π΅Π±Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ°ΠΌΠ΅Ρ€ Π”Ρ€Π΅Π²Π½Π΅Π³ΠΎ Π•Π³ΠΈΠΏΡ‚Π°.

Основная заслуга Π² создании соврСмСнного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ французскому ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚Ρƒ. Π”ΠΎ Π½Π°ΡˆΠΈΡ… Π²Ρ€Π΅ΠΌΡ‘Π½ дошла такая история, которая ΠΏΠΎΠ΄Ρ‚ΠΎΠ»ΠΊΠ½ΡƒΠ»Π° Π΅Π³ΠΎ ΠΊ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΡŽ. Занимая Π² Ρ‚Π΅Π°Ρ‚Ρ€Π΅ мСста, согласно ΠΊΡƒΠΏΠ»Π΅Π½Π½Ρ‹ΠΌ Π±ΠΈΠ»Π΅Ρ‚Π°ΠΌ, ΠΌΡ‹ Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΠΎΠ΄ΠΎΠ·Ρ€Π΅Π²Π°Π΅ΠΌ, ΠΊΡ‚ΠΎ ΠΈ ΠΊΠΎΠ³Π΄Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ» ΡΡ‚Π°Π²ΡˆΠΈΠΉ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌ Π² нашСй ΠΆΠΈΠ·Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½ΡƒΠΌΠ΅Ρ€Π°Ρ†ΠΈΠΈ крСсСл ΠΏΠΎ рядам ΠΈ мСстам. ΠžΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ΡΡ эта идСя осСнила Π·Π½Π°ΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ³ΠΎ философа, ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΈ СстСствоиспытатСля Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° (1596-1650)– Ρ‚ΠΎΠ³ΠΎ самого, Ρ‡ΡŒΠΈΠΌ ΠΈΠΌΠ΅Π½Π΅ΠΌ Π½Π°Π·Π²Π°Π½Ρ‹ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. ΠŸΠΎΡΠ΅Ρ‰Π°Ρ париТскиС Ρ‚Π΅Π°Ρ‚Ρ€Ρ‹, ΠΎΠ½ Π½Π΅ уставал ΡƒΠ΄ΠΈΠ²Π»ΡΡ‚ΡŒΡΡ ΠΏΡƒΡ‚Π°Π½ΠΈΡ†Π΅, ΠΏΠ΅Ρ€Π΅Π±Ρ€Π°Π½ΠΊΠ°ΠΌ, Π° подчас ΠΈ Π²Ρ‹Π·ΠΎΠ²Π°ΠΌ Π½Π° Π΄ΡƒΡΠ»ΡŒ, Π²Ρ‹Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌΠΈ отсутствиСм элСмСнтарного порядка распрСдСлСния ΠΏΡƒΠ±Π»ΠΈΠΊΠΈ Π² Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π·Π°Π»Π΅. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ ΠΈΠΌ систСма Π½ΡƒΠΌΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ мСсто ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΎ Π½ΠΎΠΌΠ΅Ρ€ ряда ΠΈ порядковый Π½ΠΎΠΌΠ΅Ρ€ ΠΎΡ‚ края, сразу сняла всС ΠΏΠΎΠ²ΠΎΠ΄Ρ‹ для Ρ€Π°Π·Π΄ΠΎΡ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π»Π° настоящий Ρ„ΡƒΡ€ΠΎΡ€ Π² париТском Π²Ρ‹ΡΡˆΠ΅ΠΌ общСствС.

НаучноС описаниС ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ сдСлал Π² своСй Ρ€Π°Π±ΠΎΡ‚Π΅ «РассуТдСниС ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅Β» Π² 1637 Π³ΠΎΠ΄Ρƒ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ β€” Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² своСй Ρ€Π°Π±ΠΎΡ‚Π΅ «ГСомСтрия» (1637), ΠΎΡ‚ΠΊΡ€Ρ‹Π²ΡˆΠ΅ΠΉ Π²Π·Π°ΠΈΠΌΠΎΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ Π°Π»Π³Π΅Π±Ρ€Ρ‹ ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, Π”Π΅ΠΊΠ°Ρ€Ρ‚ Π²Π²Π΅Π» Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ понятия ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. «ГСомСтрия» ΠΎΠΊΠ°Π·Π°Π»Π° ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ΅ влияниС Π½Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Π’ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ΅ истолкованиС ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа.

ΠšΡ€ΠΎΠΌΠ΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ интСрСсы Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΠ»ΠΈΡΡŒ Π½Π° Ρ„ΠΈΠ·ΠΈΠΊΡƒ, Π³Π΄Π΅ ΠΎΠ½ Π΄Π°Π» Ρ‡Π΅Ρ‚ΠΊΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΡƒ Π·Π°ΠΊΠΎΠ½Π° ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ, ΠΎΡ‚ΠΊΡ€Ρ‹Π» Π·Π°ΠΊΠΎΠ½ прСломлСния свСтовых Π»ΡƒΡ‡Π΅ΠΉ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… срСд (Β«Π”ΠΈΠΎΠΏΡ‚Ρ€ΠΈΠΊΠ°Β», 1637).

Π’ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° внСс Ρ‚Π°ΠΊΠΆΠ΅ ΠŸΡŒΠ΅Ρ€ Π€Π΅Ρ€ΠΌΠ°, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ ΡƒΠΆΠ΅ послС Π΅Π³ΠΎ смСрти. Π”Π΅ΠΊΠ°Ρ€Ρ‚ ΠΈ Π€Π΅Ρ€ΠΌΠ° примСняли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° плоскости. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ для Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ» Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ ΡƒΠΆΠ΅ Π² XVIII Π²Π΅ΠΊΠ΅.

БистСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” комплСкс ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ способ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠ»ΠΈ Ρ‚Π΅Π»Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ чисСл ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… символов. Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ чисСл, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, называСтся ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ этой Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ чисСл, сопоставлСнных Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ многообразия Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°Ρ€Ρ‚Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠ³ΠΎ атласа.

Π’ элСмСнтарной Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° плоскости ΠΈ Π² пространствС. На плоскости ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‡Π°Ρ‰Π΅ всСго опрСдСляСтся расстояниями ΠΎΡ‚ Π΄Π²ΡƒΡ… прямых (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осСй), ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΡ…ΡΡ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ (Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚) ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ; ΠΎΠ΄Π½Π° ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ называСтся ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ, Π° другая β€” абсциссой. Π’ пространствС ΠΏΠΎ систСмС Π”Π΅ΠΊΠ°Ρ€Ρ‚Π° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ опрСдСляСтся расстояниями ΠΎΡ‚ Ρ‚Ρ€Ρ‘Ρ… плоскостСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΡ…ΡΡ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΏΠΎΠ΄ прямыми ΡƒΠ³Π»Π°ΠΌΠΈ Π΄Ρ€ΡƒΠ³ ΠΊ Π΄Ρ€ΡƒΠ³Ρƒ, ΠΈΠ»ΠΈ сфСричСскими ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ, Π³Π΄Π΅ Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ находится Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ сфСры.

Π’ Π³Π΅ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” ΡˆΠΈΡ€ΠΎΡ‚Π°, Π΄ΠΎΠ»Π³ΠΎΡ‚Π° ΠΈ высота Π½Π°Π΄ извСстным ΠΎΠ±Ρ‰ΠΈΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΠΊΠ΅Π°Π½Π°). Π‘ΠΌ. гСографичСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹.

Π’ астрономии ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… опрСдСляСтся ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π·Π²Π΅Π·Π΄Ρ‹, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, прямоС восхоТдСниС ΠΈ склонСниС.

НСбСсныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” числа, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ свСтил ΠΈ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° нСбСсной сфСрС. Π’ астрономии ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π»ΡΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ систСмы нСбСсных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. КаТдая ΠΈΠ· Π½ΠΈΡ… ΠΏΠΎ сущСству прСдставляСт собой систСму полярных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° сфСрС с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹ΠΌ полюсом. БистСму нСбСсных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π·Π°Π΄Π°ΡŽΡ‚ большим ΠΊΡ€ΡƒΠ³ΠΎΠΌ нСбСсной сфСры (ΠΈΠ»ΠΈ Π΅Π³ΠΎ полюсом, отстоящим Π½Π° 90Β° ΠΎΡ‚ любой Ρ‚ΠΎΡ‡ΠΊΠΈ этого ΠΊΡ€ΡƒΠ³Π°) с ΡƒΠΊΠ°Π·Π°Π½ΠΈΠ΅ΠΌ Π½Π° Π½Ρ‘ΠΌ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ отсчёта ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π’ зависимости ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° этого ΠΊΡ€ΡƒΠ³Π° систСмы нСбСсных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π°Π·Ρ‹Π²Π°Π»Π°ΡΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ, ΡΠΊΠ²Π°Ρ‚ΠΎΡ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ, эклиптичСской ΠΈ галактичСской.

НаиболСС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠ°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (Ρ‚Π°ΠΊΠΆΠ΅ извСстная ΠΊΠ°ΠΊ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚).

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π° плоскости ΠΈ Π² пространствС ΠΌΠΎΠΆΠ½ΠΎ Π²Π²ΠΎΠ΄ΠΈΡ‚ΡŒ бСсконСчным числом Ρ€Π°Π·Π½Ρ‹Ρ… способов. РСшая Ρ‚Ρƒ ΠΈΠ»ΠΈ ΠΈΠ½ΡƒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈΠ»ΠΈ Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ систСмы, выбирая Ρ‚Ρƒ ΠΈΠ· Π½ΠΈΡ…, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΎΡ‰Π΅ ΠΈΠ»ΠΈ ΡƒΠ΄ΠΎΠ±Π½Π΅Π΅ Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ случаС. Π˜Π·Π²Π΅ΡΡ‚Π½Ρ‹ΠΌ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ΠΌ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡΠ²Π»ΡΡŽΡ‚ΡΡ систСмы отсчёта ΠΈ систСмы Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ.

Бписок Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространённых систСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ систСмы

Π’ этом Ρ€Π°Π·Π΄Π΅Π»Π΅ Π΄Π°ΡŽΡ‚ΡΡ Ρ€Π°Π·ΡŠΡΡΠ½Π΅Π½ΠΈΡ ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ употрСбляСмым систСмам ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² элСмСнтарной ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹

Основная ΡΡ‚Π°Ρ‚ΡŒΡ: ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

РасполоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ P Π½Π° плоскости опрСдСляСтся Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠ°Ρ€Ρ‹ чисСл :

Π’ пространствС ΠΆΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΠΆΠ΅ 3 ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ :

ΠŸΠΎΠ»ΡΡ€Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹

Основная ΡΡ‚Π°Ρ‚ΡŒΡ: ΠŸΠΎΠ»ΡΡ€Π½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Π’ полярной систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ опрСдСляСтся расстояниС Π΄ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ ΡƒΠ³Π»ΠΎΠΌ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° с осью Ox.

Π’Π΅Ρ€ΠΌΠΈΠ½ «полярныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹Β» ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° плоскости, Π² пространствС ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ цилиндричСскиС ΠΈ сфСричСскиС систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ЦилиндричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹

Основная ΡΡ‚Π°Ρ‚ΡŒΡ: ЦилиндричСская систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ΠŸΠΎΠ»ΡΡ€Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½ нСдостаток: Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΞΈ тСряСт смысл, Ссли r = 0.

БфСричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹

Основная ΡΡ‚Π°Ρ‚ΡŒΡ: БфСричСская систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

БфСричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΎΠ³ полярных

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΡ, принятыС Π² АмСрикС

БфСричСская систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ нСдостаток: Ο† тСряСт смысл Ссли ρ = 0, Ρ‚Π°ΠΊΠΆΠ΅ ΠΈ ΞΈ тСряСт смысл, Ссли ρ = 0 ΠΈΠ»ΠΈ Ο† = 0 ΠΈΠ»ΠΈ Ο† = 180Β°.

Для построСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Π΅Ρ‘ сфСричСскими ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ, Π½ΡƒΠΆΠ½ΠΎ: ΠΎΡ‚ полюса ΠΎΡ‚Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, Ρ€Π°Π²Π½Ρ‹ΠΉ ρ вдоль ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ z-оси, Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ Π΅Π³ΠΎ Π½Π° ΡƒΠ³ΠΎΠ» Ο† Π²ΠΎΠΊΡ€ΡƒΠ³ оси y Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ x-оси, ΠΈ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ Π½Π° ΡƒΠ³ΠΎΠ» ΞΈ Π²ΠΎΠΊΡ€ΡƒΠ³ z-оси Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ y-оси.

ЕвропСйскиС обозначСния

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² Π΄Ρ€ΡƒΠ³ΡƒΡŽ

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΈ полярныС

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΈ цилиндричСскиС

Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΈ сфСричСскиС

УравнСния для амСриканских ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ

ЦилиндричСскиС ΠΈ сфСричСскиС

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π°

Бсылки

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ, ΠΈΠ»ΠΈ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространённая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости ΠΈ Π² пространствС.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости образуСтся двумя Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ X’X ΠΈ Y’Y. Оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ O, которая называСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ оси Π²Ρ‹Π±Ρ€Π°Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅.ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ осСй (Π² правостороннСй систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚) Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅ оси X’X ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки Π½Π° 90Β° Π΅Ρ‘ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ совпало с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси Y’Y. Π§Π΅Ρ‚Ρ‹Ρ€Π΅ ΡƒΠ³Π»Π° (I, II, III, IV), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ X’X ΠΈ Y’Y, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌΠΈ ΡƒΠ³Π»Π°ΠΌΠΈ (см. Рис. 1).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ A Π½Π° плоскости опрСдСляСтся двумя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ x ΠΈ y. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OB, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y β€” Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OC Π² Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… измСрСния. ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ OB ΠΈ OC ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ линиями, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹ΠΌΠΈ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ осям Y’Y ΠΈ X’X соотвСтствСнно. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x называСтся абсциссой Ρ‚ΠΎΡ‡ΠΊΠΈ A, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y β€” ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ A. Π—Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊ: A(x, y).

Если Ρ‚ΠΎΡ‡ΠΊΠ° A Π»Π΅ΠΆΠΈΡ‚ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ ΡƒΠ³Π»Π΅ I, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ абсциссу ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ. Если Ρ‚ΠΎΡ‡ΠΊΠ° A Π»Π΅ΠΆΠΈΡ‚ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ ΡƒΠ³Π»Π΅ II, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ абсциссу ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ. Если Ρ‚ΠΎΡ‡ΠΊΠ° A Π»Π΅ΠΆΠΈΡ‚ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ ΡƒΠ³Π»Π΅ III, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ абсциссу ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ. Если Ρ‚ΠΎΡ‡ΠΊΠ° A Π»Π΅ΠΆΠΈΡ‚ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ ΡƒΠ³Π»Π΅ IV, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ абсциссу ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС образуСтся трСмя Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярными осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ OX, OY ΠΈ OZ. Оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ O, которая называСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ оси Π²Ρ‹Π±Ρ€Π°Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ стрСлками, ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡ†Π° измСрСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² Π½Π° осях. Π•Π΄ΠΈΠ½ΠΈΡ†Ρ‹ измСрСния ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ для всСх осСй. OX β€” ось абсцисс, OY β€” ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, OZ β€” ось Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ осСй Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅ оси OX ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки Π½Π° 90Β° Π΅Ρ‘ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ совпало с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси OY, Ссли этот ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚ΡŒ со стороны ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ направлСния оси OZ. Вакая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ называСтся ΠΏΡ€Π°Π²ΠΎΠΉ. Если большой ΠΏΠ°Π»Π΅Ρ† ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ Π·Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ X, ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π·Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Y, Π° срСдний Π·Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Z, Ρ‚ΠΎ образуСтся правая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Аналогичными ΠΏΠ°Π»ΡŒΡ†Π°ΠΌΠΈ Π»Π΅Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ образуСтся лСвая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€Π°Π²ΡƒΡŽ ΠΈ Π»Π΅Π²ΡƒΡŽ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ совпали ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ оси (см. Рис. 2).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² окруТности

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ A Π² пространствС опрСдСляСтся трСмя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ x, y ΠΈ z. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OB, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y β€” Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OC, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° z β€” Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° OD Π² Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… измСрСния. ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ OB, OC ΠΈ OD ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ плоскостями, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹ΠΌΠΈ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ плоскостям YOZ, XOZ ΠΈ XOY соотвСтствСнно. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° x называСтся абсциссой Ρ‚ΠΎΡ‡ΠΊΠΈ A, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y β€” ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ A, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° z β€” Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ A. Π—Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊ: A(a, b, c).

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (любой размСрности) Ρ‚Π°ΠΊΠΆΠ΅ описываСтся Π½Π°Π±ΠΎΡ€ΠΎΠΌ ΠΎΡ€Ρ‚ΠΎΠ², сонаправлСнных с осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΠΎΡ€Ρ‚ΠΎΠ² Ρ€Π°Π²Π½ΠΎ размСрности систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ всС ΠΎΠ½ΠΈ пСрпСндикулярны Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ.

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ

Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π²Π΅Π» Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚ Π² своСй Ρ€Π°Π±ΠΎΡ‚Π΅ «РассуТдСниС ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅Β» Π² 1637 Π³ΠΎΠ΄Ρƒ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ β€” Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ описания гСомСтричСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΏΠΎΠ»ΠΎΠΆΠΈΠ» Π½Π°Ρ‡Π°Π»ΠΎ аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π’ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° внСс Ρ‚Π°ΠΊΠΆΠ΅ ΠŸΡŒΠ΅Ρ€ Π€Π΅Ρ€ΠΌΠ°, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ ΡƒΠΆΠ΅ послС Π΅Π³ΠΎ смСрти. Π”Π΅ΠΊΠ°Ρ€Ρ‚ ΠΈ Π€Π΅Ρ€ΠΌΠ° примСняли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° плоскости.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ для Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ» Π›Π΅ΠΎΠ½Π°Ρ€Π΄ Π­ΠΉΠ»Π΅Ρ€ ΡƒΠΆΠ΅ Π² XVIII Π²Π΅ΠΊΠ΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *