Что такое дендрит в анатомии
Что такое дендрит в анатомии
В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию.
Бесплатные занятия с логопедом
В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.
Что такое нейрон (нейронные связи)
Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.
Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.
Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.
К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.
Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.
Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.
Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.
Сколько нейронов в мозге
Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.
Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.
Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:
Строение нейрона
На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.
Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.
Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.
Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.
Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.
Виды нейронов и нейронных связей
Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.
Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.
Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?
Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.
Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.
Функции нейронов
Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.
Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.
Функция распространения информации
Данная функция:
Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.
По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.
Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.
До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.
Функция аккумуляции знаний (сохранения опыта)
Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.
Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.
Функция интеграции
Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.
Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.
Функция производства белков
Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.
Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:
Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.
Восстанавливаются ли нервные клетки
При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.
Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.
Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.
Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.
Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.
Гибель нейронов, действительно неизбежна, в год исчезает примерно 1 процент от их количества. Но есть и хорошие новости. Последние исследования показали, что в коре головного мозга есть особенный участок, именуемый гипокаммом. Именно в нем генерируются новые чистые нейроны. Подсчитано примерное количество генерируемых ежедневно нервных клеток – 1400.
В науке обозначилось новое понятие «нейропластичность», обозначающее возможность мозга регенерироваться и перестраиваться. Но есть одна тонкость: новые нейроны еще не имеют никакого опыта и наработанных связей. Поэтому с возрастом или после заболевания мозг нужно тренировать, как и все иные мышцы тела: получать новые знания, анализировать происходящие события и явления.
Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:
Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.
Определенные классы дендритов содержат небольшие выступы, называемые дендритными шипами, которые увеличивают рецептивные свойства дендритов, чтобы изолировать специфичность сигнала. Повышенная нервная активность и установление долгосрочной потенциации в дендритных шипах изменяют размеры, форму и проводимость. Считается, что эта способность к росту дендритов играет роль в обучении и формировании памяти. В каждой клетке может быть до 15000 шипов, каждый из которых служит постсинаптическим процессом для отдельных пресинаптических аксонов. Дендритное ветвление может быть обширным, и в некоторых случаях его достаточно, чтобы получить до 100 000 входных сигналов в один нейрон.
СОДЕРЖАНИЕ
История
Развитие дендритов
Во время развития дендритов на дифференциацию могут влиять несколько факторов. К ним относятся модуляция сенсорной информации, загрязняющих веществ в окружающей среде, температуры тела и употребления наркотиков. Например, у крыс, выращенных в темноте, было обнаружено уменьшенное количество шипов в пирамидных клетках, расположенных в первичной зрительной коре, и заметное изменение в распределении ветвлений дендритов в звездчатых клетках слоя 4. Эксперименты, проведенные in vitro и in vivo, показали, что присутствие афферентов и входная активность сами по себе могут модулировать паттерны, по которым дифференцируются дендриты.
Электрические свойства
Структура и разветвление дендритов нейрона, а также доступность и вариация потенциалзависимой ионной проводимости сильно влияют на то, как нейрон интегрирует входные данные от других нейронов. Эта интеграция является как временной, включающей суммирование стимулов, которые поступают в быстрой последовательности, так и пространственной, влекущей за собой агрегацию возбуждающих и тормозных входов от отдельных ветвей.
Электрохимические сигналы распространяются за счет потенциалов действия, которые используют межмембранные потенциалзависимые ионные каналы для транспортировки ионов натрия, кальция и калия. Каждому виду ионов соответствует свой собственный белковый канал, расположенный в липидном бислое клеточной мембраны. Клеточная мембрана нейронов покрывает аксоны, тело клетки, дендриты и т. Д. Белковые каналы могут различаться между химическими видами по величине необходимого напряжения активации и продолжительности активации.
Потенциалы действия в клетках животных генерируются ионными каналами, управляемыми натрием или кальцием, в плазматической мембране. Эти каналы закрываются, когда мембранный потенциал близок к потенциалу покоя клетки или равен ему. Каналы начнут открываться, если мембранный потенциал возрастет, позволяя ионам натрия или кальция проникать в клетку. По мере того, как все больше ионов попадает в клетку, мембранный потенциал продолжает расти. Процесс продолжается до тех пор, пока не откроются все ионные каналы, вызывая быстрое увеличение мембранного потенциала, которое затем вызывает снижение мембранного потенциала. Деполяризация вызвана закрытием ионных каналов, которые препятствуют проникновению ионов натрия в нейрон, и затем они активно выводятся из клетки. Затем активируются калиевые каналы, и происходит выходящий поток ионов калия, возвращающий электрохимический градиент к потенциалу покоя. После возникновения потенциала действия происходит переходный отрицательный сдвиг, называемый постгиперполяризацией или рефрактерным периодом, из-за дополнительных калиевых токов. Это механизм, который предотвращает возвращение потенциала действия в том виде, в каком он только что появился.
Пластичность
Сами дендриты, по-видимому, способны к пластическим изменениям в течение взрослой жизни животных, в том числе беспозвоночных. Дендриты нейронов имеют различные отделы, известные как функциональные единицы, которые способны вычислять поступающие стимулы. Эти функциональные единицы участвуют в обработке входных данных и состоят из субдоменов дендритов, таких как шипы, ветви или группы ветвей. Следовательно, пластичность, которая приводит к изменениям в структуре дендритов, будет влиять на коммуникацию и обработку в клетке. Во время развития морфология дендритов формируется внутренними программами в геноме клетки и внешними факторами, такими как сигналы от других клеток. Но во взрослой жизни внешние сигналы становятся более влиятельными и вызывают более значительные изменения в структуре дендритов по сравнению с внутренними сигналами во время развития. У женщин дендритная структура может изменяться в результате физиологических условий, вызванных гормонами во время таких периодов, как беременность, лактация и следование эстральному циклу. Это особенно заметно в пирамидных клетках области СА1 гиппокампа, где плотность дендритов может варьироваться до 30%.
ДЕНДРИТ
Смотреть что такое ДЕНДРИТ в других словарях:
ДЕНДРИТ
дендрит 1. м. Ветвящийся отросток нервной клетки, воспринимающий импульс от других нервных клеток (в анатомии). 2. м. см. дендриты.
ДЕНДРИТ
дендрит м. анат., мин.dendrite
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ, ветвящийся отросток нервной клетки, воспринимающий возбуждающие или тормозные влияния др. нейронов или рецепторных клеток. У некоторых типо. смотреть
ДЕНДРИТ
ДЕНДРИТ
[δένδρον (δендрон) — дерево] — древовидные агр., б. ч. фигуры роста, состоящие из отдельных сросшихся друг с другом в параллельном или двойниковом положении кристаллических индивидов (иногда из скопления скелетных образований). Д. образуется в результате быстрой кристаллизации или при кристаллизации по тонким трещинам или в вязкой среде. В виде Д.нередко кристаллизуются самородные Au, Ag, Cu, псиломелан, лед и др. Д. псиломелана иногда ошибочно принимают за отпечатки растений.
ДЕНДРИТ
ДЕНДРИТ
[dendrite] — выросший из расплава кристаллит с древовидным строением. Дендритный рост кристаллов реализуется в большинстве случаев, например, при литье слитков и отливок. Впервые дендритные кристаллы в стальных слитках были выявлены и подробно описаны в 1870 — 1880 г. Д. К. Черновым. При дендритной кристаллизации зародыши развиваются с разными скоростями в разных кристаллографических направлениях. Например, максимальный рост кристаллита металлов и сплавов с кубической решеткой происходит в трех взаимно перпендикулярных направлениях, соответствующих октаэдрическим осям.В результате образуются ветви — оси дендрита 1-го порядка, расходящиеся от центра кристаллизации под определенными углами. При дальнейшем развитии кристаллизации от осей 1-го порядка под определенным углом к ним начинают расти поперечные ветви — оси 2-го порядка, а от них — оси 3-го порядка и т. д. В металлическом расплаве формируется остов древовидной формы будущего кристаллита. Остающаяся часть расплава между дендритными ветвями кристаллизуется, постепенно наслаиваясь на ветви. Размеры дендритных ветвей зависят только от одного фактора — скорости охлаждения в интервале температур кристаллизации (Смотри Кристаллизация). Закристаллизовавшийся дендрит-литое зерно, выросшее из одного зародышевого центра, с той же кристаллографической ориентировкой. Соседние ветви дендритов могут быть разориентированы на несколько градусов из-за их изгибов и смещения при кристаллизации. Дендритное строение литых зерен металлов и в особенности сплавов хорошо выявляется при травлении микрошлифов и просмотре их с помощью светового микроскопа.
ДЕНДРИТ
ДЕНДРИТ
1) Орфографическая запись слова: дендрит2) Ударение в слове: дендр`ит3) Деление слова на слоги (перенос слова): дендрит4) Фонетическая транскрипция сло. смотреть
ДЕНДРИТ
• дендрит m english: dendrite deutsch: Dendrit m français: dendrite Синонимы: агрегат, кристалл, немолит, отросток
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ, dendritum, i, n (от гр. dendron дерево) — цитологический, сильно ветвящийся отросток нейрона, содержащий в проксимальных отделах те же органеллы, что и тело нервной клетки. Длина Д. не превышает 2 мм. В образовании нервного волокна д. не участвуют. Они выполняют синаптическую функцию на всем своем протяжении. Иное значение придается Д. физиологами, причисляющими к Д. все отростки нейрона с целлюлипетальным направлением нервного импульса.
ДЕНДРИТ
-а, м. 1. анат. Ветвящийся отросток нервной клетки. 2. минер., тех. Кристаллическое образование древовидной формы.[От греч. δένδρον — дерево]Синоним. смотреть
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ
ветвящийся отросток нервной клетки (нейрона), воспринимающий сигналы от др. нейронов, рецепторных клеток или непосредственно от внеш. раздражителей. Пр. смотреть
ДЕНДРИТ
m анат dendrite f; мин dendrite f; dendrito m brasСинонимы: агрегат, кристалл, немолит, отросток
ДЕНДРИТ
— локально связный континуум, не содержащий простых замкнутых кривых. Континуум, каждая точка к-рого имеет окрестность, являющуюся Д., наз. локальным. смотреть
ДЕНДРИТ
-а, ч. 1) анат. Чутливий відросток у розгалуженнях нервової клітини. 2) геол. Кристалічні деревоподібні утворення.
ДЕНДРИТ
Сильно разветвленный, древовидный отросток, присоединенный к телу клетки или соме (1) нейрона. Дендриты действуют как принимающие концы нейрона и стимулируются нейромедиаторами, которые проходят через синапс из терминальных бляшек других (пресинаптических) нейронов к дендритным отросткам. смотреть
ДЕНДРИТ
ДЕНДРИТ, короткий разветвленный отросток нервной клетки (НЕЙРОНА). Он переносит импульсы внутрь клетки и передает импульсы другим нервным клеткам через. смотреть
ДЕНДРИТ
Rzeczownik дендрит m Biologiczny dendryt m
ДЕНДРИТ
Dendrite — Дендрит. Кристалл, который имеет древовидную ветвящуюся модель, наиболее хорошо видимую в медленно охлажденных литых металлах. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО «Профессионал», НПО «Мир и семья»; Санкт-Петербург, 2003 г.). смотреть
ДЕНДРИТ
(2 м); мн. дендри/ты, Р. дендри/товСинонимы: агрегат, кристалл, немолит, отросток
ДЕНДРИТ
ДЕНДРИТ
м.; крист. dendrite- иглообразный дендрит- разветвлённый дендрит
ДЕНДРИТ
м., НФЗЛ (древовидно разветвляющийся отросток нервной клетки) dendrite
ДЕНДРИТ
Група дрібних кристалів, яка за формою нагадує розгалужене дерево, кущ або папороть; напр., льодяні візерунки на склі взимку, кристали литих металів.
ДЕНДРИТ
ДЕНДРИТ, ветвящийся отросток нервной клетки (нейрона), воспринимающий сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Проводит нервные импульсы к телу нейрона. Ср. Аксон.
ДЕНДРИТ
ДЕНДРИТ
м. анат.dendrita f (тж. мин.); neurodendrita f
ДЕНДРИТ
ДЕНДРИТ
ДЕНДРИТ, ветвящийся отросток нервной клетки (нейрона), воспринимающий сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Проводит нервные импульсы к телу нейрона. Ср. Аксон. смотреть
ДЕНДРИТ
[от греч. dendron дерево] анат. ветвящийся отросток двигательных и ассоциативных нервных клеток (нейронов), воспринимающий нервный импульс от других нервных клеток и проводящий его к телу своей клетки (ср. нейрит). смотреть
ДЕНДРИТ
— ветвящийся отросток нервной клетки (нейрона), воспринимающийсигналы от других нейронов, рецепторных клеток или непосредственно отвнешних раздражителей. Проводит нервные импульсы к телу нейрона. Ср. Аксон. смотреть
ДЕНДРИТ
(dendrite) один или несколько древовидно ветвящихся отростков, по которым нервный импульс приносится к телу нейрона, за счет которого осуществляются контакты с другими нейронами. Дендриты образуют синапсы. смотреть
ДЕНДРИТ
ДЕНДРИТ
(греч. dendron дерево) сильно разветвлённый древовидный отросток нейрона, принимающий импульсы из терминальных бляшек пресинаптических нервных клеток, проходящих через синапсы посредством нейромедиаторов. смотреть
ДЕНДРИТ
— один из способов графического изображения каких-либо отношений между особями, видами, ценозами и т. д. Синонимы: агрегат, кристалл, немолит, отросто. смотреть
Дендрит
Определенные классы дендритов содержат небольшие выступы, называемые дендритными шипами, которые увеличивают рецептивные свойства дендритов, чтобы изолировать специфичность сигнала. Повышенная нервная активность и установление долгосрочной потенциации в дендритных шипах изменяют размеры, форму и проводимость. Считается, что эта способность к росту дендритов играет роль в обучении и формировании памяти. В каждой клетке может быть до 15000 шипов, каждый из которых служит постсинаптическим процессом для отдельных пресинаптических аксонов. [3] Дендритное ветвление может быть обширным, и в некоторых случаях его достаточно для получения до 100 000 входных сигналов в один нейрон. [4]
СОДЕРЖАНИЕ
История [ править ]
Развитие дендритов [ править ]
Во время развития дендритов на дифференциацию могут влиять несколько факторов. К ним относятся модуляция сенсорной информации, загрязняющих веществ в окружающей среде, температуры тела и употребления наркотиков. [12] Например, у крыс, выращенных в темноте, было обнаружено уменьшенное количество шипов в пирамидных клетках, расположенных в первичной зрительной коре, и заметное изменение в распределении ветвлений дендритов в звездчатых клетках слоя 4. [13] Эксперименты, проведенные in vitro и in vivo, показали, что присутствие афферентов и входная активность сами по себе могут модулировать паттерны, по которым дифференцируются дендриты. [2]
Электрические свойства [ править ]
Структура и разветвление дендритов нейрона, а также наличие и изменение потенциал- зависимой ионной проводимости сильно влияют на то, как нейрон интегрирует входные данные от других нейронов. Эта интеграция является как временной, включающей суммирование стимулов, которые поступают в быстрой последовательности, так и пространственной, что влечет за собой агрегацию возбуждающих и тормозных сигналов от отдельных ветвей. [16]
Электрохимические сигналы распространяются за счет потенциалов действия, которые используют межмембранные потенциалзависимые ионные каналы для переноса ионов натрия, кальция и калия. Каждому виду ионов соответствует свой собственный белковый канал, расположенный в липидном бислое клеточной мембраны. Клеточная мембрана нейронов покрывает аксоны, тело клетки, дендриты и т. Д. Белковые каналы могут различаться между химическими видами по величине необходимого напряжения активации и продолжительности активации. [4]
Потенциалы действия в клетках животных генерируются ионными каналами, управляемыми натрием или кальцием, в плазматической мембране. Эти каналы закрываются, когда мембранный потенциал близок к потенциалу покоя клетки или равен ему. Каналы начнут открываться, если мембранный потенциал возрастет, позволяя ионам натрия или кальция проникать в клетку. По мере того, как все больше ионов попадает в клетку, мембранный потенциал продолжает расти. Процесс продолжается до тех пор, пока не откроются все ионные каналы, вызывая быстрое увеличение мембранного потенциала, которое затем вызывает снижение мембранного потенциала. Деполяризация вызвана закрытием ионных каналов, которые препятствуют проникновению ионов натрия в нейрон, и затем они активно выводятся из клетки. Затем активируются калиевые каналы, и происходит выход ионов калия,возвращение электрохимического градиента к потенциалу покоя. После возникновения потенциала действия происходит переходный отрицательный сдвиг, называемый постгиперполяризацией или рефрактерным периодом, из-за дополнительных калиевых токов. Это механизм, который предотвращает возвращение потенциала действия в том виде, в каком он только что появился. [4] [19]
Пластичность [ править ]
Сами дендриты, по-видимому, способны к пластическим изменениямво время взрослой жизни животных, в том числе беспозвоночных. Дендриты нейронов имеют различные отделы, известные как функциональные единицы, которые способны вычислять поступающие стимулы. Эти функциональные единицы участвуют в обработке входных данных и состоят из субдоменов дендритов, таких как шипы, ветви или группы ветвей. Следовательно, пластичность, которая приводит к изменениям в структуре дендритов, будет влиять на коммуникацию и обработку в клетке. Во время развития морфология дендритов формируется внутренними программами в геноме клетки и внешними факторами, такими как сигналы от других клеток. Но во взрослой жизни внешние сигналы становятся более влиятельными и вызывают более значительные изменения в структуре дендритов по сравнению с внутренними сигналами во время развития. У женщиндендритная структура может измениться в результате физиологических условий, вызванных гормонами во время таких периодов, как беременность, лактация и следование эстральному циклу. Это особенно заметно в пирамидных клетках области СА1 гиппокампа, где плотность дендритов может варьироваться до 30%. [2]