Что такое деревянная доска с точки зрения физики
Физические свойства древесины
Испытания, которые не приводят к изменению химического состава древесины, выявляют ее физические свойства. К физическим относят следующие свойства древесины. Физические свойства древесины:
Рассмотрим каждое из физических свойств древесины более подробно.
Внешний вид древесины
К внешнему виду, в разрезе физических свойств древесины относят следующие:
Влажность древесины
Отношение массы воды, содержащейся в древесине к массе сухой древесины является физическим показателем влажности древесины. Влажность древесины вычисляют прямым и косвенным методами.
К косвенному методу относится измерение кондуктометрическим электровлагомером, который определяет электропроводность древесины. Использование косвенного метода экономит время, но его показания могут иметь погрешность до 30%.
Прямые методы занимают значительно больше времени для измерения влажности. Суть прямых методов заключается на выделении тем или иным образом воды из древесины, при высушивании, например.
Вода, содержащаяся в древесине различают по двум типам — связанную, находящуюся в клеточных стенках и свободную, находящуюся в полостях клеток и межклеточных пространствах. Свободная вода удаляется легче, чем связанная.

Показатель нормализованной влажности составляет 12%, если нет примечаний.
Физические свойства древесины. По степени влажности различают
Усушка древесины
При удалении связанной воды происходит уменьшение объема древесины и линейных размеров. Это свойство и называют усушка. Усушки не вызывает удаление свободной воды. Большее количество клеточных стенок на единицу объема древесины, способствует более сильной усушке.
Без участия внешних нагрузок, в древесине возникает внутреннее напряжение, которое образуется при неодинаковых изменениях объема древесины.
В поверхностных зонах доски влажность ниже, чем в центре. Поэтому из-за того что свободная сушка стеснена, возникают напряжения «растягивающие». При этом внутри доски возникают сжимающие напряжения.
Если будет достигнут предел прочности на растяжение поперек волокон, растягивающего напряжения, на древесине появятся трещины. Внутренние и поверхностные.
Коробление древесины
Коробление древесины различают поперечную и продольную. Под термином «коробление» понимают изменение формы пиломатериалов.
Коробление может происходить при выпиловке, неправильном хранении, при несимметричном строгании,ребровом делении из-за нарушения равновесия остаточных направлений. Чаще всего при сушке. Из-за усушки по разным структурным направлениям.
Покоробленность делят на два вида: продольная (по кромке, по пласти и крыловатость) и поперечная

Влагопоглощение древесины
Влагопоглощение из окружающего воздуха древесиной не зависит от породы. Способность к влагопоглощению это отрицательная характеристика древесины. Поэтому изделия и постройки из дерева покрывают различными пленочными и лакокрасочными материалами.
Увлажненная древесина становится хуже, ухудшаются ее механические характеристики и биостойкость.
Разбухание древесины
При повышении в древесине связанной воды происходит изменение объема и линейных размеров, которое происходит при нахождении древесины в воде или на влажном воздухе.
Поперек волокон древесина разбухает больше, чем вдоль волокон. Разбухание, в целом, отрицательное свойство, но полезно для обеспечения плотности соединений элементов, например в бочках, судах.
Водопоглощение древесины
Древесина способна увеличивать свою естественную влажность при непосредственном контакте с водой. Количество свободной воды зависит от объема полостей. Чем больше плотность древесины, тем меньше ее влажность и тем больше у нее водопоглощение.
Для получения целлюлозы и при пропитке древесины растворами антисептиков и протрав, способность поглощать влагу является важным и весьма полезным.

Плотность древесины
Плотность древесины выражается в кг/м3 или г/см, характеризуется массой единицы объема материала.
Для оценки качества сырья в деревообработке, основным показателем плотности является базисная плотность. Базисная плотность выражается отношением массы абсолютно сухого образца к его объему при влажности, равной или выше предела насыщения стенок клеток древесины.
По плотности древесину разделяют на три группы (при 12 процентной влажности):
Проницаемость древесины
Степень проницаемости определяют, выявляя способность древесины пропускать газы или жидкости под давлением
Тепловые свойства древесины
Тепловые свойства древесины складываются из трех показателей:
Звукопроводность древесины
Скорость распространения звука в древесине определяет ее звукопроводность. Самая низкая звукопроводность в тангентальном направлении волокон. Самая высокая звукопроводность у древесины наблюдается вдоль волокон, средняя – в радиальном направлении.
В 16 раз звукопроводность древесины в продольном направлении превышает звукопроводность воздуха. В поперечном в 4 раза. Это свойство называют резонированием звука. Используется при изготовлении музыкальных инструментов
Электропроводность древесины
Способность древесины проводить электрический ток. Эта способность древесины находится в обратной зависимости от электрического сопротивления.
Сухую древесину относят к диэлектрикам. Сопротивление уменьшается с повышением влажности древесины.
В десятки миллионов раз снижается сопротивление при увеличении связанной воды в древесине.
Диэлектрические свойства древесины
Диэлектрические свойства характеризуют поведение древесины в переменном электрическом поле.
Диэлектрическая проницаемость равна отношению емкости конденсатора с прокладкой из древесины к емкости конденсатора с воздушным зазором между электродами
Под действием механических усилий на поверхности древесины возникают электрические заряды проявляются пьезоэлектрические свойства древесины.
Почему дерево влияет на звук электрогитары
Гитарные мастера и, как теперь принято говорить, древесные слухачи из года в год не устают повторять одно и то же: дерево влияет на звучание электрогитары. Так ли это на самом деле?
Споры о дереве, из которого делают электрогитары, многих сводят с ума. Существуют гитарные эксперты, утверждающие, что махагон, ясень и ольха совершенно по-разному влияют на сустейн и характер инструмента.
Электрогитара с точки зрения физики
Пару лет назад на популярном гитарном сайте Ultimate-Guitar.com (UG) вышла статья о влиянии древесины на звучание электрогитары. Написать этот материал помог докторант Калифорнийского университета в Беркли Кенни Веттер (Kenny Vetter), специализирующийся на акустике, фоновых шумах и устройствах для обнаружения и измерения параметров частиц энергии. Кенни помог понять, как корпус гитары влияет на ее тон с точки зрения физики звуковых волн.
Напомню, речь идет только об электрогитарах. Акустические гитары не трогаем, так как там, согласно Кенни (и здравому смыслу), дерево играет гораздо большую роль.
Итак, если главным элементом электрогитары является звукосниматель, то есть ли смысл заморачиваться с древесиной? В упомянутой статье Веттер пришел к однозначному выводу: дерево влияет на звук, и производители не просто так используют разную древесину. Чем это объясняется?
Многие знатоки убеждены, что акустическая древесина — это основа любой электрогитары. Согласиться с тем, что от породы дерева зависит вес, внешний вид и качество инструмента, безусловно можно, но что заставит согласиться с тем, что вид дерева сказывается на звучании?
Чтобы объяснить свою точку зрения, Кенни Веттер обратился к физике, а точнее — к понятию инвариантности. Оказывается, выявление инвариантов (неизменностей) может помочь решить не только сложные проблемы квантовой механики и теории относительности, но и разгадать загадки электрогитары. Начать нужно с энергии — физической величины, инвариантность которой выражается в ее неизменности при изменении физических условий.
И важно, как именно и из чего выполнен каждый элемент этой системы. Вибрация струны вызывает резонанс всего инструмента. Под резонансом здесь понимается нота, являющаяся гармоникой по отношению к основной частоте гитары.
Короче говоря, так можно понять, как именно энергия одной струны передается и распространяется по всей гитаре. Кроме того, такой подход позволяет изучить изгибные колебания инструмента. Анализ с применением метода конечных элементов показывает, что разная древесина влияет на звук по-разному.
Однако изучить природу гитарного звука можно и без МКЭ. Много интересных вещей поможет узнать закон сохранения энергии.
На определенных частотах система будет реагировать на гармоническую силу (удар по струне) сильнее, на других — слабее. Чем выше уровень демпфирования системы, тем слабее ее ответная реакция и, соответственно, выше механический импеданс. Вы наверняка замечали, что сустейна на некоторых нотах больше.
Так происходит по той причине, что гитара (в первую очередь речь о корпусе, который поглощает много вибрационной энергии) «глушит» некоторые звуки, а другие, наоборот, усиливает. Грубо говоря, дерево корпуса выполняет роль частотного фильтра, который гасит самые высокие и самые низкие частоты. По этой же причине производители используют разное дерево для акустических систем.
Если верить Кенни, то на высоких частотах длинные волокнистые молекулы древесины начинают рассеивать энергию, превращая ее в тепло. Спад высоких частот и обеспечивает уникальный «звук дерева» (в контексте электрогитары так говорить не совсем правильно, но зато понятнее). Твердость древесины и расстояние между молекулами влияют на звуковые частоты.
Выводы
Подводя итог, Веттер сравнил разную древесину для гитар с разными типами транзисторов, используемых для гитарных примочек. Германиевые или кремниевые? Спорить можно вечно, но факт остается фактом: разница в звуке есть. Существует мнение, что более «винтажное» звучание дают педали на германиевых транзисторах.
Суть в том, что дерево действительно влияет на звук. От древесины зависит тембр и сустейн. Однако не стоит преувеличивать роль дерева, утверждая, что оно играет главную роль.
Области применения древесины.
Строительство. Древесина применяется в строительстве в таких формах, как пиломатериалы прямоугольного сечения (брус, доски), шпон, фанера, железнодорожные шпалы, столбы, сваи, стойки, гонт и древесноволокнистые плиты. Больше всего потребляется пиломатериалов прямоугольного сечения. Деревянные дома – основной вид домов на протяжении многих веков истории России, становятся в настоящее время всё более популярными. Из дерева изготовляют столярные изделия, полы, паркет, облицовку для стен.
Производство мебели. Используют продукты переработки древесины древесноволокнистые и древесностружечные плиты. Высоко ценится мебель из цельной древесины.
Топливо и древесная масса. Применение древесины как топлива в масштабах всего мира имеет все еще очень важное значение. Древесина является альтернативным топливом по отношению к углю, газу, нефти, электричеству. Для многих малых населённых пунктов древесина наиболее доступный, дешёвый вид топлива, требующий минимальной транспортировки. Дрова используют, также отдавая дань традиции или из эстетических целей, например для топки каминов. Применение древесины в виде древесной массы в последнее время, непрерывно увеличивалось и, по прогнозам, будет продолжать увеличиваться в обозримом будущем.
В целлюлозно-бумажной промышленности древесина является сырьём для производства бумаги и кордона.
Производство музыкальных инструментов. Только древесные породы способны создать оригинальный звук абсолютного большинства струнных музыкальных инструментов.
Художественная резьба. Художественные и сувенирные изделия.
Написание икон. Проводится на деревянных досках, которые готовятся по специальной технологии.
Детские игрушки. Древесина экологически безопасный материал, и по всем своим свойствам пригодна для изготовления детских игрушек.


















Рис. 1. Волна как возмущение в веревке
Рис. 2. Поперечная волна и продольная волна
Рис. 3. Синусоидальная волна
Рис. 4. Характеристики волн
Рис. 5. Отражение, преломление и дифракция волн