Что такое диагональная матрица
Диагональные матрицы: определение и свойства
Обновлено: 20 Июля 2021
Матрица — это прямоугольная таблица чисел, состоящая из определенного количества строк и столбцов. Существует множество матричных видов, и один из них — диагональный. Разберемся, что он из себя представляет.
Что такое диагональная матрица
У диагональной матрицы элементы, расположенные вне главной диагонали, равны нулю.
Напомним, что матрица считается квадратной, если количество строк равно количеству столбцов (m = n).
Особенности и свойства
Для начала нужно понять, что такое матричный определитель.
Определитель (детерминант) — это некоторая величина, с которой можно сопоставить любую квадратную матрицу.
Определитель А = (2×2), к примеру, вычисляется по формуле:
Из этого следует свойство №1: определитель диагональной матрицы равен произведению ее диагональных элементов.
Свойство №2: обратная матрица для диагональной равна:
Свойство №3: ранг равен количеству ненулевых диагональных элементов.
Главная и побочная диагонали
Побочной диагональю называют диагональ элементов от правого верхнего угла до нижнего левого. Эти диагонали параллельны друг другу.
Частные случаи диагональных матриц
Существуют три основных подвида: единичная, нулевая, скалярная.
Единичная матрица
У единичной матрицы все диагональные элементы равны единице.
В формулах ее обозначают буквой Е.
Нулевая матрица
В нулевой матрице все элементы, в том числе диагональные, равны нулю.
В формулах ее обозначают цифрой 0.
Скалярная матрица
В скалярной матрице все элементы на главной диагонали равны друг другу.
В некоторых случаях говорят, что скалярная матрица — это произведение скаляра на единичную матрицу Е. В ней диагональные элементы могут быть как положительными, так и отрицательными.
Примеры решения диагональных матриц
Иногда недиагональная матрица может быть приведена к диагональному виду.
Условие: дана матрица А
Задача: привести к диагональному виду.
Решение: характеристическое уравнение равно
Таким образом, диагональная матрица имеет вид:
Изучение данных математических объектов имеет свои подводные камни. Если у вас нет времени на учебу, Феникс.Хелп может помочь вам с решением контрольных, самостоятельных и иных проверочных работ.
Матрицы. Виды матриц
Матрицей называется прямоугольная таблица из чисел с некоторым количеством m строк и с некоторым количеством n столбцов. Числа m и n называются порядками или размерами матрицы.
Матрица порядка m × n записывается в форме:
или (i=1,2. m; j=1,2. n).
Числа aij входящие в состав данной матрицы называются ее элементами. В записи aij первый индекс i означает номер строки, а второй индекс j— номер столбца.
Матрица строка
Матрица размером 1×n, т.е. состоящая из одной строки, называется матрицей-строкой. Например:
Матрица столбец
Матрица размером m×1, т.е. состоящая из одного столбца, называется матрицей-столбцом. Например
Нулевая матрица
Квадратная матрица
Матрица A порядка m×n называется квадратной матрицей, если количество строк и столбцов совпадают: m=n. Число m=n называется порядком квадратной матрицы. Например:
Главная диагональ матрицы
Побочная диагональ матрицы
Диагональная матрица
Квадратная матрица называется диагональной, если элементы, расположенные вне главной диагонали равны нулю. Пример диагональной матрицы:
Единичная матрица
След матрицы
Сумма главных диагональных элементов матрицы A называется следом матрицы и обозначается Sp A или Tr A. Например:
Верхняя треугольная матрица
Нижняя треугольная матрица
Квадратная матрица порядка n×n называется нижней треугольной матрицей, если равны нулю все элементы матрицы, расположенные над главной диагональю, т.е. aij=0, при всех i T ).
Cтолбцы матрицы A образуют пространство столбцов матрицы и обозначаются через R(A).
Ядро или нуль пространство матрицы
Противоположная матрица
Для любой матрицы A сущеcтвует противоположная матрица -A такая, что A+(-A)=0. Очевидно, что в качестве матрицы -A следует взять матрицу (-1)A, элементы которой отличаются от элементов A знаком.
Кососимметричная (Кососимметрическая) матрица
Кососимметричной называется квадратная матрица, которая отличается от своей транспонированной матрицы множителем −1:
В кососимметричной матрице любые два элемента, расположенные симметрично относительно главной диагонали отличаются друг от друга множителем −1, а диагональные элементы равны нулю.
Пример кососимметрической матрицы:
Разность матриц
Разностью C двух матриц A и B одинакового размера определяется равенством
Для обозначения разности двух матриц используется запись:
Степень матрицы
Пусть квадратная матрица размера n×n. Тогда степень матрицы определяется следующим образом:
где E-единичная матрица.
Из сочетательного свойства умножения следует:
где p,q— произвольные целые неотрицательные числа.
Симметричная (Симметрическая) матрица
Матрица, удовлетворяющая условию A=A T называется симметричной матрицей.
Для симметричных матриц имеет место равенство: