Что такое диф уравнение второго порядка
Линейные дифференциальные уравнения второго порядка
Данная статья раскрывает смысл нахождения и алгоритм для общего решения линейных однородных и неоднородных дифференциальных уравнений второго порядка с подробным просмотром их решений.
Нахождение общего решения линейных дифференциальных уравнений
считается одним из общих решений ЛНДУ.
Отсюда следует, что
принимает одно из любых частных решений, y 0 соответствует общему решению ЛОДУ.
Если функции простые, то применяется метод подбора.
Линейно независимые функции y 1 и y 2 находятся из
Решение
По правилу дифференцирования произведения и свойству неопределенного интеграла получаем выражение вида
y ‘ = x · ∫ u ( x ) d x ‘ = x ‘ · ∫ u ( x ) d x + x · ∫ u ( x ) d x ‘ = = ∫ u ( x ) d x + x · u ( x ) = y x + x · u ( x ) y » = ∫ u ( x ) d x + x · u ( x ) ‘ = ∫ u ( x ) d x ‘ + x ‘ · u ( x ) + x · u ‘ ( x ) = = 2 u ( x ) + x · u ‘ ( x )
Производим подстановку в исходное выражение. Запишем равенство вида:
Для решения неоднородного дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) нужно подбирать y
Решение
Необходимо составить систему линейных уравнений и решить
Чтобы разрешить ее, следует применить метод Крамера. Тогда
Ответ: общим решением для заданного уравнения получим уравнение вида
Итоги
. Если необходимо, то в начале производится подбор y 1 и y 2 для определения общего решения ЛНДУ с помощью применения метода вариации произвольных постоянных.
10.1. Дифференциальные уравнения второго порядка. Основные понятия теории
Определение 1. Дифференциальным уравнением Второго порядка называется уравнение вида
Где Х — независимая переменная, У — искомая функция, У’ и У» — соответственно ее первая и вторая производные.
Примеры дифференциальных уравнений второго порядка:
Будем рассматривать уравнения, которые можно записать в виде, разрешенном относительно второй производной:
Как и в случае уравнения первого порядка, решением уравнения (10.1) называется функция У = φ(X), определенная на некотором интервале (А, B), которая обращает это уравнение в тождество. График решения называется Интегральной кривой. Имеет место теорема существования и единственности решения уравнения второго порядка.
ТЕОРЕМА 1 (теорема Коши). Пусть функция f(x, у, у’) и ее частные производные 

Геометрический смысл этой теоремы (ее доказательство мы не приводим) заключается в том, что через заданную точку (X0, Y0) на координатной плоскости Оху проходит Единственная интегральная кривая с заданным угловым коэффициентом Y0‘ касательной (рис. 10.1).
Условия (10.3) называются Начальными условиями, а задачу отыскания решения уравнения (10.2) по заданным начальным условиям называют Задачей Коши.
Общим решением уравнения (10.2) в некоторой области D Называется функция У = φ(х, С1, С2), если она является решением этого уравнения при любых постоянных величинах С1 и C2, которые могут быть определены единственным образом при заданных начальных условиях (10.3). Частным решением Уравнения (10.2) называется общее решение этого уравнения при фиксированных значениях постоянных С1 и C2: У = φ(х, С10, С20).
Рассмотрим для пояснения уравнение У» = 0. Его общее решение получается при двухкратном интегрировании этого уравнения:
Где С1 и C2 — произвольные постоянные. Это решение пред ставляет собой семейство прямых, проходящих в произвольных направлениях, причем через каждую точку плоскости Охy Проходит бесконечное число таких прямых. Поэтому для выделения частного решения, проходящего через заданную точку (х0, y0), следует задать еще и угловой коэффициент прямой, совпадающей в данном случае со своей касательной. Например, найдем частное решение, удовлетворяющее начальным условиям
Т. е. нужно найти прямую, проходящую через точку M (l, 2), с угловым коэффициентом, равным единице. Подстановка начальных условий в общее решение уравнения приводит к системе двух линейных уравнений относительно постоянных С1 и C2
Откуда С1 = 1, C2 = 1. Таким образом, искомое частное решение — это прямая У = х + 1.
Линейные дифференциальные уравнения второго порядка.
Линейное однородное дифференциальное уравнение (ЛОДУ) второго порядка записывают как:

а линейное неоднородное дифференциальное уравнение (ЛНДУ) второго порядка записывают как:

где функции f(x), p(x) и q(x) являются непрерывными на интервале интегрирования X.
Для понимания того, в каком виде необходимо искать общее решение линейных однородных дифференциальных уравнений и линейных неоднородных дифференциальных уравнений второго порядка необходимо сформулировать 2 теоремы:
Теперь рассмотрим методы определения y1, y2 и 
В самых элементарных примерах эти функции вычисляются методом подбора. Линейно независимые функции y1 и y2 чаще всего определяют из наборов:
Проверить линейную независимость функций y1 и y2 можно при помощи определителя Вронского:

Если функции линейно независимы на интервале X, значит, определитель Вронского не равен нулю для всех x из промежутка X.
Например, функции y1 = 1 и y2 = x являются линейно независимыми для всех действительных значений x, потому что

Функции y1 = sinx и y2 = cosx тоже являются линейно независимыми на R, потому что
В общем случае определение функций y1, y2 и 
Если удастся подобрать нетривиальное (не равное нулю) частное решение y1 линейного однородного дифференциального уравнения 2-го порядка 

Разберем метод на примере.
Необходимо вычислить общее решение ЛОДУ 2-го порядка 
Хорошо видно, что y1 = x оказывается частным решением исходного уравнения 
откуда 
Вспоминая правило дифференцирования произведения и свойства неопределенного интеграла, получаем

Интегрируем обе части равенства:
произведя потенцирование, записываем общее решение исходного уравнения

где С – является произвольной постоянной.
Т.к. мы принимали 

где F(x) является одной из первообразных функции 
В элементарных функциях первообразная F(x) не выражается.
Решая ЛНДУ второго порядка 

Тогда общее решение линейного однородного дифференциального уравнения будет выглядеть так:
Варьируя произвольные постоянные, общим решением линейного неоднородного дифференциального уравнения принимаем
Производные неизвестных функции C1(x) и C2(x) вычисляются из системы уравнений

а функции C1(x) и C2(x) вычисляются при дальнейшем интегрировании.
Виды дифференциальных уравнений
Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.
В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.
Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.
Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.
Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».
Дифференциальные уравнения первого порядка
Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )
Начнем с примеров таких уравнений.
Приведем примеры подобных дифференциальных уравнений:
Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )
Решить уравнения с разделенными переменными можно путем интегрирования обеих его частей: ∫ f ( y ) d y = ∫ f ( x ) d x
К числу дифференциальных уравнений с разделенными переменными можно отнести следующие из них:
В ряде случаев прежде, чем производить замену, необходимо произвести преобразования исходного уравнения.
Подробный разбор теории и алгоритмов решения задач мы привели в разделе «Дифференциальные уравнения с разделяющимися переменными».
Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )
Приведем примеры таких уравнений.
Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a
Приведем примеры подобных уравнений.
К числу дифференциальных уравнений Бернулли можно отнести:
Алгоритм применения обоих методов приведен в разделе «Дифференциальное уравнение Бернулли». Там же можно найти подробный разбор решения примеров по теме.
Для более подробного ознакомления с теорией и алгоритмами решения примеров можно обратиться к разделу «Уравнения в полных дифференциалах».
Дифференциальные уравнения второго порядка
Значения корней характеристического уравнения определяет, как будет записано общее решение дифференциального уравнения. Возможные варианты:
исходного уравнения. Получаем: y = y 0 + y
Способ нахождения y 0 мы рассмотрели в предыдущем пункте. Найти частное решение y
Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )
Линейные однородные и неоднородные дифференциальные уравнения и постоянными коэффициентами являются частными случаями дифференциальных уравнений этого вида.
Частные решения мы можем выбрать из систем независимых функций:
Однако существуют примеру уравнений, для которых частные решения не могут быть представлены в таком виде.
Общее решение линейного неоднородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x ) мы можем найти в виде суммы y = y 0 + y
частное решение исходного дифференциального уравнения. Найти y 0 можно описанным выше способом. Определить y
нам поможет метод вариации произвольных постоянных.
Более подробно этот раздел освещен на странице «Линейные дифференциальные уравнения второго порядка».
Дифференциальные уравнения высших порядков
Дифференциальные уравнения, допускающие понижение порядка
d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y )
Полученный результаты подставляем в исходное выражение. При этом мы получим дифференциальное уравнение, порядок которого на единицу меньше, чем у исходного.
Более подробно решения задач по теме рассмотрены в разделе «Дифференциальные уравнения, допускающие понижение порядка».
Решение уравнений данного вида предполагает выполнение следующих простых шагов:
— частное решение неоднородного дифференциального уравнения.
Нахождение корней характеристического уравнения подробно описано в разделе «Решение уравнений высших степеней». Для нахождения y
целесообразно использовать метод вариации произвольных постоянных.
Более детальный разбор теории и примеров по теме вы можете найти на странице « Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами».
Найти решение ЛНДУ высших порядков можно благодаря сумме y = y 0 + y
— частное решение неоднородного дифференциального уравнения.
После того, как мы найдем общее решение ЛОДУ, найти частное решение соответствующего ЛНДУ можно благодаря методу вариации произвольных постоянных. Итак, y = y 0 + y
Получить более подробную информацию по теме можно в разделе «Дифференциальные уравнения высших порядков».
Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2
Данная тема подробно разобрана на странице «Системы дифференциальных уравнений». Там же приведены примеры задач с подробных разбором.
Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
Основные понятия о линейных дифференциальных уравнениях второго порядка и их решениях
Линейным дифференциальным уравнением второго порядка называется уравнение вида
Если правая часть уравнения равна нулю ( f(x) = 0 ), то уравнение называется линейным однородным уравнением. Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю ( f(x) ≠ 0 ), то уравнение называется линейным неоднородным уравнением (смотрите отдельный урок).
В задачах от нас требуется разрешить уравнение относительно y» :
Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши.
Линейное однородное дифференциальное уравнение второго порядка и его решение
Рассмотрим линейное однородное дифференциальное уравнение второго порядка:
Из этих двух высказываний следует, что функция
также является решением этого уравнения.
Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка, то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?
И это условие называется условием линейной независимости частных решений.
Теорема. Функция C 1 y 1 (x) + C 2 y 2 (x) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x) и y 2 (x) линейно независимы.
Определение. Функции y 1 (x) и y 2 (x) называются линейно независимыми, если их отношение является константой, отличной от нуля:
Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W(x) :

Пример 1. Найти общее решение линейного однородного дифференциального уравнения 
Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются 

Так как определитель Вронского
не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика
Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида
Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами, нужно сначала решить так называемое характеристическое уравнение вида
которое, как видно, является обычным квадратным уравнением.
В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами, которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.
Иными словами, 

Пример 2. Решить линейное однородное дифференциальное уравнение

Решение. Характеристическое уравнение имеет вид 





Пример 3. Решить линейное однородное дифференциальное уравнение

Решение. Характеристическое уравнение имеет вид 





То есть, 

Пример 4. Решить линейное однородное дифференциальное уравнение

Решение. Характеристическое уравнение 



Пример 5. Решить линейное однородное дифференциальное уравнение

Решение. Характеристическое уравнение 




То есть, 



Пример 6. Решить линейное однородное дифференциальное уравнение

Решение. Характеристическое уравнение 





Пример 7. Решить линейное однородное дифференциальное уравнение

Решение. Характеристическое уравнение 





Решить линейное однородное дифференциальное уравнение с постоянными коэффициентами самостоятельно, а затем посмотреть решение
Пример 8. Решить линейное однородное дифференциальное уравнение

Пример 9. Решить линейное однородное дифференциальное уравнение
















