Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования: Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, Π½ΡƒΠΆΠ½ΠΎ ΡƒΠΌΠ΅Ρ‚ΡŒ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…. Данная ΡΡ‚Π°Ρ‚ΡŒΡ посвящСна основным ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ диффСрСнцирования, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ постоянно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ самого опрСдСлСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΡ‹ сформулируСм Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° всСх этих ΠΏΡ€Π°Π²ΠΈΠ» ΠΈ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрим нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡.

Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ основныС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ диффСрСнцирования:

Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ всС эти случаи ΠΏΠΎ порядку.

Как вынСсти постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ

Для Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, запишСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

Π­Ρ‚ΠΈΠΌ ΠΌΡ‹ Π΄ΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования. Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ Π·Π°Π΄Π°Ρ‡Ρƒ Π½Π° Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅.

РСшСниС

ВынСсСм ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π­Ρ‚ΠΎ самый простой ΠΏΡ€ΠΈΠΌΠ΅Ρ€. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Ρ‡Π°Ρ‰Π΅ всСго приходится ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ Π½ΡƒΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ.

РСшСниС

РСшСниС

Π‘Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π”Π°Π»Π΅Π΅ примСняСм ΠΈΠ·ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Π²Ρ‹ΡˆΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΈ Π±Π΅Ρ€Π΅ΠΌ ΠΈΠ· Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅:

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ суммы ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ разности

Π’Π°ΠΊ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ равСнство ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ суммы ΠΈΠ»ΠΈ разности n-Π½ΠΎΠ³ΠΎ количСства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ суммС ΠΈΠ»ΠΈ разности ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…:

РСшСниС

ΠŸΠ΅Ρ€Π²Ρ‹ΠΌ Π΄Π΅Π»ΠΎΠΌ ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅ΠΌ Π΄Π°Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

ПослС этого примСняСм Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ – ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ суммы/разности:

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ Π½Π°ΠΌ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ вынСсти постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚:

Нам остаСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π°Π³Π»ΡΠ½ΡƒΡ‚ΡŒ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Π²Π·ΡΡ‚ΡŒ ΠΎΡ‚Ρ‚ΡƒΠ΄Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅:

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ произвСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования произвСдСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: f x Β· g ( x ) ‘ = f ‘ ( x ) Β· g ( x ) ‘ + f ( x ) Β· g ‘ ( x )

ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠ΅ΠΌ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Π΅Π³ΠΎ.

Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

РСшСниС

y ‘ = ( t g x Β· a r c sin x ) ‘ = ( t g x ) ‘ Β· a r c sin x + t g x Β· ( a r c sin x ) ‘

Π‘Π΅Ρ€Π΅ΠΌ Π½ΡƒΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ· Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… основных элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ записываСм ΠΎΡ‚Π²Π΅Ρ‚:

РСшСниС

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ Π² случаС, ΠΊΠΎΠ³Π΄Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ для произвСдСния Ρ‚Ρ€Π΅Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. По Ρ‚ΠΎΠΉ ΠΆΠ΅ схСмС Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ Π·Π°Π΄Π°Ρ‡ΠΈ с произвСдСниями Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…, пяти ΠΈ большСго количСства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

РСшСниС

Π£ нас получится ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

y ‘ = ( ( 1 + x ) Β· sin x Β· ln x ) ‘ = 1 + x Β· sin x ‘ Β· ln x + 1 + x Β· sin x Β· ln x ‘

1 + x Β· sin x ‘ = ( 1 + x ) ‘ Β· sin x + 1 + x Β· ( sin x ) ‘

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этого ΠΏΡ€Π°Π²ΠΈΠ»Π° ΠΈ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ подставим Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρƒ нас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ:

y ‘ = 1 + x Β· sin x Β· ln x ‘ = 1 + x Β· sin x ‘ Β· ln x + ( 1 + x ) Β· sin x Β· ( ln x ) ‘ = = sin x + cos x + x Β· cos x Β· ln x + ( 1 + x ) Β· sin x x

ΠžΡ‚Π²Π΅Ρ‚: y ‘ = sin x + cos x + x Β· cos x Β· ln x + ( 1 + x ) Β· sin x x

Из этого ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠ½ΠΎΠ³Π΄Π° приходится ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ нСсколько ΠΏΡ€Π°Π²ΠΈΠ» диффСрСнцирования подряд для вычислСния Π½ΡƒΠΆΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°. Π­Ρ‚ΠΎ Π½Π΅ Ρ‚Π°ΠΊ слоТно, ΠΊΠ°ΠΊ каТСтся, Π³Π»Π°Π²Π½ΠΎΠ΅ – ΡΠΎΠ±Π»ΡŽΠ΄Π°Ρ‚ΡŒ Π½ΡƒΠΆΠ½ΡƒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ дСйствий.

РСшСниС

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (Π΄Ρ€ΠΎΠ±Π½ΠΎΠ³ΠΎ выраТСния с функциями)

Π‘Ρ€Π°Π·Ρƒ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ g ( x ) Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ±Ρ€Π°Ρ‰Π°Ρ‚ΡŒΡΡ Π² 0 Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… значСниях x ΠΈΠ· ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°. Богласно ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

РСшСниС

ПослС этого Π½Π°ΠΌ потрСбуСтся ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ для суммы, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ вынСсСния постоянного мноТитСля Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ Π·Π°Π΄Π°Ρ‡Ρƒ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ всСх ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€Π°Π²ΠΈΠ».

РСшСниС

Поясним, ΠΊΠ°ΠΊ это ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ.

ВычисляСм Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ слагаСмоС:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ собираСм всС, Ρ‡Ρ‚ΠΎ Ρƒ нас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ:

Π’ Π·Π°Π΄Π°Ρ‡Π°Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈ Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅, использовались Ρ‚ΠΎΠ»ΡŒΠΊΠΎ основныС элСмСнтарныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ связаны ΠΌΠ΅ΠΆΠ΄Ρƒ собой Π·Π½Π°ΠΊΠ°ΠΌΠΈ простых арифмСтичСских дСйствий. Они нагляднСС всСго ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования. Однако Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΊ Π±ΠΎΠ»Π΅Π΅ слоТным функциям.

ПослС Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΠΌΡ‹ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ производная слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΌΡ‹ смоТСтС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ любой слоТности.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

РСшСниС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ²: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ЕТСднСвная рассылка с ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ для студСнтов всСх Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ – Π½Π° нашСм Ρ‚Π΅Π»Π΅Π³Ρ€Π°ΠΌ-ΠΊΠ°Π½Π°Π»Π΅.

ГСомСтричСский ΠΈ физичСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ

ΠŸΡƒΡΡ‚ΡŒ Π΅ΡΡ‚ΡŒ функция f(x), заданная Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (a, b). Π’ΠΎΡ‡ΠΊΠΈ Ρ… ΠΈ Ρ…0 ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ этому ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ. ΠŸΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ… мСняСтся ΠΈ сама функция. ИзмСнСниС Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° – Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ…-Ρ…0. Π­Ρ‚Π° Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ записываСтся ΠΊΠ°ΠΊ Π΄Π΅Π»ΡŒΡ‚Π° икс ΠΈ называСтся ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. ИзмСнСниСм ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ называСтся Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ – ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΊΠΎΠ³Π΄Π° послСднСС стрСмится ΠΊ Π½ΡƒΠ»ΡŽ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜Π½Π°Ρ‡Π΅ это ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Какой смысл Π² Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°? А Π²ΠΎΡ‚ ΠΊΠ°ΠΊΠΎΠΉ:

ГСомСтричСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: производная ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ€Π°Π²Π½Π° тангСнсу ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ осью OX ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ЀизичСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: производная ΠΏΡƒΡ‚ΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ€Π°Π²Π½Π° скорости прямолинСйного двиТСния.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π΅Ρ‰Π΅ со ΡˆΠΊΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Ρ€Π΅ΠΌΠ΅Π½ всСм извСстно, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это частноС ΠΏΡƒΡ‚ΠΈ x=f(t) ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t. БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π·Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t0 Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π»:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠšΡΡ‚Π°Ρ‚ΠΈ, ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ ΠΈ ΠΊΠ°ΠΊ ΠΈΡ… Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ, Ρ‡ΠΈΡ‚Π°ΠΉΡ‚Π΅ Π² нашСй ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ практичСскоС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠŸΡƒΡΡ‚ΡŒ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ‚ΠΎ Π·Π°ΠΊΠΎΠ½Ρƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Нам Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=2c. Вычислим ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»Π° нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…

Π‘Π°ΠΌ процСсс нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ называСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. Ѐункция, которая ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, называСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ.

Как Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ? Богласно ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, Π½ΡƒΠΆΠ½ΠΎ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, Π° Π·Π°Ρ‚Π΅ΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π» ΠΏΡ€ΠΈ стрСмящСмся ΠΊ Π½ΡƒΠ»ΡŽ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ всС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ‚Π°ΠΊ, Π½ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ это слишком Π΄ΠΎΠ»Π³ΠΈΠΉ ΠΏΡƒΡ‚ΡŒ. ВсС ΡƒΠΆΠ΅ Π΄Π°Π²Π½ΠΎ посчитано Π΄ΠΎ нас. НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π° Π·Π°Ρ‚Π΅ΠΌ рассмотрим ΠΏΡ€Π°Π²ΠΈΠ»Π° вычислСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π² Ρ‚ΠΎΠΌ числС ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ с ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠšΡΡ‚Π°Ρ‚ΠΈ! Для Π½Π°ΡˆΠΈΡ… Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»Π΅ΠΉ сСйчас дСйствуСт скидка 10% Π½Π° любой Π²ΠΈΠ΄ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΠ΅Ρ€Π²ΠΎΠ΅: выносим константу

ΠŸΡ€ΠΈΠΌΠ΅Ρ€. Вычислим ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅: производная суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π’ΠΎ ΠΆΠ΅ самоС справСдливо ΠΈ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ разности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НС Π±ΡƒΠ΄Π΅ΠΌ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ этой Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, Π° Π»ΡƒΡ‡ΡˆΠ΅ рассмотрим практичСский ΠΏΡ€ΠΈΠΌΠ΅Ρ€.

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅: производная произвСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π΄Π΅ΡΡŒ Π²Π°ΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ вычислСнии ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΠΎ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

Π’ Π²Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΡ‹ встрСчаСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ – 8Ρ… Π² пятой стСпСни. Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ‚Π°ΠΊΠΎΠ³ΠΎ выраТСния сначала считаСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ внСшнСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ нСпосрСдствСнно самого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΠΎ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ΅: производная частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π€ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΡ‹ ΠΏΠΎΡΡ‚Π°Ρ€Π°Π»ΠΈΡΡŒ Ρ€Π°ΡΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ² с нуля. Π­Ρ‚Π° Ρ‚Π΅ΠΌΠ° Π½Π΅ Ρ‚Π°ΠΊ проста, ΠΊΠ°ΠΊ каТСтся, поэтому ΠΏΡ€Π΅Π΄ΡƒΠΏΡ€Π΅ΠΆΠ΄Π°Π΅ΠΌ: Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π»ΠΎΠ²ΡƒΡˆΠΊΠΈ, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ Π±ΡƒΠ΄ΡŒΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ вычислСнии ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….

Π‘ Π»ΡŽΠ±Ρ‹ΠΌ вопросом ΠΏΠΎ этой ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ‚Π΅ΠΌΠ°ΠΌ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒΡΡ Π² студСнчСский сСрвис. Π—Π° ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ срок ΠΌΡ‹ ΠΏΠΎΠΌΠΎΠΆΠ΅ΠΌ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡΠ°ΠΌΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΈ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ с заданиями, Π΄Π°ΠΆΠ΅ Ссли Π²Ρ‹ Π½ΠΈΠΊΠΎΠ³Π΄Π° Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ занимались вычислСниСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Иван Колобков, извСстный Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ Π”ΠΆΠΎΠ½ΠΈ. ΠœΠ°Ρ€ΠΊΠ΅Ρ‚ΠΎΠ»ΠΎΠ³, Π°Π½Π°Π»ΠΈΡ‚ΠΈΠΊ ΠΈ ΠΊΠΎΠΏΠΈΡ€Π°ΠΉΡ‚Π΅Ρ€ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ Zaochnik. ΠŸΠΎΠ΄Π°ΡŽΡ‰ΠΈΠΉ Π½Π°Π΄Π΅ΠΆΠ΄Ρ‹ ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠΉ ΠΏΠΈΡΠ°Ρ‚Π΅Π»ΡŒ. ΠŸΠΈΡ‚Π°Π΅Ρ‚ любовь ΠΊ Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Ρ€Π°Ρ€ΠΈΡ‚Π΅Ρ‚Π½Ρ‹ΠΌ Π²Π΅Ρ‰Π°ΠΌ ΠΈ творчСству Π§. Буковски.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ДиффСрСнцируСмая функция

Из Π’ΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΠΈ β€” свободной энциклопСдии

ДиффСрСнци́руСмая (Π² Ρ‚ΠΎΡ‡ΠΊΠ΅) фу́нкция β€” это функция, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ сущСствуСт Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» (Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅). ДиффСрСнцируСмая Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ мноТСствС функция β€” это функция, диффСрСнцируСмая Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ мноТСства. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… понятий Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΊΠ°ΠΊ Π² самой ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Ρ‚Π°ΠΊ ΠΈ Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… СстСствСнных Π½Π°ΡƒΠΊΠ°Ρ….

ΠŸΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ приращСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π±ΠΎΠ»Π΅Π΅ высокого порядка малости. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для достаточно ΠΌΠ°Π»Ρ‹Ρ… окрСстностСй Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ (ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ). ЛинСйная Ρ‡Π°ΡΡ‚ΡŒ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ называСтся Π΅Ρ‘ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ (Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅).

НСобходимым, Π½ΠΎ Π½Π΅ достаточным условиСм диффСрСнцируСмости являСтся Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’ случаС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠΉ вСщСствСнной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. Π’ случаС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… вСщСствСнных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ (Π½ΠΎ Π½Π΅ достаточным) условиСм диффСрСнцируСмости являСтся сущСствованиС частных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎ всСм ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ. Для диффСрСнцируСмости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ частныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ сущСствовали Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности рассматриваСмой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Π±Ρ‹Π»ΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅. [1]

Π’ случаС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ часто называСтся ΠΌΠΎΠ½ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ сущСствСнно отличаСтся ΠΎΡ‚ понятия диффСрСнцируСмости Π² вСщСствСнном случаС. ΠšΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² этом ΠΈΠ³Ρ€Π°Π΅Ρ‚ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ΅ условиС Коши β€” Π ΠΈΠΌΠ°Π½Π°. Ѐункция, моногСнная Π² окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ, называСтся Π³ΠΎΠ»ΠΎΠΌΠΎΡ€Ρ„Π½ΠΎΠΉ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅. [2] [3]

Π’ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π΅ сущСствуСт ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ понятия диффСрСнцирования Π½Π° случай ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ бСсконСчномСрных пространств β€” ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π“Π°Ρ‚ΠΎ ΠΈ Π€Ρ€Π΅ΡˆΠ΅.

ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ΠΌ понятия Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ понятия субдиффСрСнцируСмых, супСрдиффСрСнцируСмых ΠΈ ΠΊΠ²Π°Π·ΠΈΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования

ΠΏ.1. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ диффСрСнцирования

Π’ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 2 Β§42 Π΄Π°Π½Π½ΠΎΠ³ΠΎ справочника ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… для ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠžΠ±ΠΎΠ±Ρ‰ΠΈΠΌ ΠΈΡ… Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π΅ Π½ΡƒΠΆΠ½ΠΎ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Ρ€Π°Π· ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ для поиска Π΅Ρ‘ уравнСния ΠΈΠ»ΠΈ значСния Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅. Достаточно ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….

НапримСр:
НайдСм \(f'(1)\), Ссли \(f(x)=x^2\)
По Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… \(f'(x)=(x^2)\ ‘=2x\). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ \(f'(1)=2\cdot 1=2\)

ΠΏ.2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠΏ.3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с постоянным ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΌ

ΠΏ.4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠΏ.5. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠΏ.6. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ стСпСнной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НапримСр:
\begin (x^<11>)’=11x^ <10>\end Π’ Β§46 Π΄Π°Π½Π½ΠΎΠ³ΠΎ справочника Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ вывСдСнная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° справСдлива Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ, Π½ΠΎ ΠΈ для любой Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни числа x.

ΠΏ.7. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. НайдитС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:
a) \( f(x)=3x^3-11 \) \begin f'(x)=(3x^3-11)’=3(x^3)’-(11)’=3\cdot 3x^2-0=9x^2 \end

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. НайдитС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ \(x_0\), Ссли:
a) \( f(x)=\frac2x,\ x_0=4 \) \begin f'(x)=2\cdot\left(\frac1x\right)’=2\cdot\left(-\frac<1>\right)=-\frac<2>\\ f'(4)=-\frac<2><4^2>=-\frac18 \end

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Π Π΅ΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ \(f'(x)=0\), Ссли:
a) \( f(x)=x-12x^3 \) \begin f'(x)=x’-12(x^3)’=1-12\cdot 3x^2=1-36x^2 \end Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅: \begin 1-36x^2=0\Rightarrow x^2=\frac<1><36>\Rightarrow x=\pm\sqrt<\frac<1><36>>=\pm\frac16 \end ΠžΡ‚Π²Π΅Ρ‚: \(\left\<\pm\frac16\right\>\)

Π±) \( f(x)=-\frac25x^5+\frac13x^3+12 \) \begin f'(x)=-\frac25\cdot 5x^4+\frac13\cdot 3x^2+0=-2x^4+x^2=x^2(1-2x^2) \end Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅: \begin x^2(1-2x^2)=0\Rightarrow \left[ \begin x=0\\ 1-2x^2=0 \end \right. \Rightarrow \left[ \begin x=0\\ x^2=\frac12 \end \right. \Rightarrow \left[ \begin x=0\\ x=\pm\frac<1><\sqrt<2>> \end \right. \end ΠžΡ‚Π²Π΅Ρ‚: \(\left\<0;\pm\frac<1><\sqrt<2>>\right\>\)

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ, Ρ„ΠΈΠ·ΠΈΠΊΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… отраслСй знания Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ аналитичСского процСсса ΠΈΠ· Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Π½ΠΎΠ²ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ (ΠΈΠ»ΠΈ просто ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ) Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ символом

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ y ‘ =f ‘ (x) Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) ΠΏΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΌ x называСтся ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° стрСмится ΠΊ Π½ΡƒΠ»ΡŽ, Ссли, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, этот ΠΏΡ€Π΅Π΄Π΅Π» сущСствуСт, Ρ‚.Π΅. ΠΊΠΎΠ½Π΅Ρ‡Π΅Π½.

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ссли ΠΏΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ x, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΡ€ΠΈ x=a, ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅

1. Если ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f ΠΈ g Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ… β‚€ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‚ΠΎ сущСствуСт ΠΈ производная суммы f + g Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ

(производная суммы Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…)

2. Если ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f ΠΈ g Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ… β‚€ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‚ΠΎ сущСствуСт ΠΈ производная произвСдСния fg Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ

3. Если ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f ΠΈ g Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ… β‚€ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ g (Ρ… β‚€ ) Π½Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ 0, Ρ‚ΠΎ сущСствуСт ΠΈ производная частного f / g Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

(постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ ΠΌΠΎΠΆΠ½ΠΎ вынСсти Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *