Что такое динамическая устойчивость
Динамическая устойчивость. Основные допущения и критерии.
Динамическая устойчивость – это способность системы восстанавливать после большого возмущения исходное состояние или состояние, практически близкое к исходному (допустимому по условиям эксплуатации системы). Большие возмущения режима чаще всего вызываются отключением мощных нагрузок или несущих нагрузку генераторов, трансформаторов, ЛЭП, короткими замыканиями. При анализе устойчивости важны конкретные знания условий возмущений (время, место, вид, длительность).
При упрощенном анализе принимаются следующие допущения:
1. Механическая мощность или момент постоянны в течение всего переходного процесса;
2. Электрическая мощность изменяется мгновенно при изменении режима;
3. Не учитываются демпферные моменты, уравнение движения имеет вид: .
5. Вне зависимости от системы регулирования генератор вводится своими
(переходными) параметрами в большинстве случаев действие регуляторов
скорости может не учитываться, а действие регуляторов возбуждения
учитывается только введением условной неизменной эдс, приложенной за
переходным сопротивлением . Угловая характеристика
мощности ;.
Критерием динамической устойчивости синхронных машин является правило площадей, а асинхронных двигателей – преобладание электромагнитного вращающего момента над механическим моментом сопротивления.
Дата добавления: 2015-01-18 ; просмотров: 46 ; Нарушение авторских прав
Понятие о статической и динамической устойчивости
Состояние системы в любой момент времени или на некотором интервале времени, называется режимом системы. Режим характеризуется показателями, количественно определяющими условия работы системы. Эти показатели называются параметрами режима. К ним относятся значения мощности, напряжения, частоты, углов сдвига векторов ЭДС, напряжений, токов.
Режим электрической системы может быть установившимся или переходным.
В любых переходных процессах происходят закономерные последовательные изменения параметров режима, вызванные какими-либо причинами. Эти причины называются возмущающими воздействиями. Они создают начальные отклонения параметров режима – возмущения режима.
В нормальных условиях эксплуатации всегда имеют место малые изменения нагрузки. Поэтому строго неизменного режима в системе не существует и, говоря об установившемся режиме, всегда имеют в виду режим малых возмущений.
Малые возмущения не должны вызывать нарушения устойчивости системы, то есть не должны приводить к прогрессивно возрастающему изменению параметров исходного режима системы.
Статическая устойчивость – это способность системы восстанавливать исходный (или близкий к исходному) режим после малого его возмущения.
В определенных условиях установившийся режим может быть неустойчивым. Это происходит при работе системы в предельных режимах (слишком большая или малая передаваемая мощность, снижение напряжения в узлах нагрузки и т.д.). В этих случаях малые возмущения приводят к прогрессивно возрастающему изменению параметров режима, которые вначале происходят очень медленно, проявляясь в виде самопроизвольного изменения, называемого иногда сползанием (текучестью) параметров нормального режима системы.
При исследовании статической устойчивости заранее предполагается, что установить абсолютные значения изменений параметров режима при их отклонениях от установившихся значений невозможно. Причина и место их возникновения не фиксированы. Это некие свободные возмущения, имеющие вероятностный характер.
Задача исследования статической устойчивости сводится, следовательно, только к определению характера изменения параметров режима без определения величины возмущений. При этом анализ ограничивается малой областью e, заданной в области установившегося значения параметров.
Статическую устойчивость электрической системы можно оценивать разными способами:
1. С помощью практических критериев, основанных на упрощающих допущениях. При этом ответ получается только в форме «да – нет», «уйдет – не уйдет» режим из начального его состояния при малом возмущении системы.
2. С помощью метода малых колебаний, основанного на исследовании уравнений движения. В этом случае физическая природа происходящих явлений выясняется более полно: устанавливается не только устойчивость режима, но и характер движения (апериодическое или колебательное, нарастающее или затухающее).
Аварийные режимы в электрической системе возникают при КЗ, аварийных отключениях нагруженных агрегатов или линий и т.п. Под действием больших возмущений возникают резкие изменения режима.
Большие возмущения могут возникать и в нормальных режимах: отключении и включении генераторов, линий, пуске мощных двигателей и т.д.
По отношению к большим возмущениям вводится понятие динамической устойчивости.
Динамическая устойчивость – это способность системы восстанавливать исходное состояние после большого возмущения.
Введенные выше понятия “ малых ” и “ больших ” возмущений условны. Малое возмущение в данном случае понимается как возмущение, влияние которого на характер поведения системы проявляется практически независимо от места появления возмущающего воздействия и его величины. В связи с этим в диапазоне режимов, близких к исходному, система рассматривается как линейная.
Большое возмущение – это возмущение, влияние которого на характер поведения системы зависит от времени существования, величины и места появления возмущающего воздействия.
В связи с этим при исследовании динамической устойчивости система во всем диапазоне исследования должна рассматриваться как нелинейная.
Основным методом исследования динамической устойчивости электрических систем на современном этапе является численное интегрирование дифференциальных уравнений, описывающих поведение системы.
Эти расчеты проводятся на ЭВМ, которые работают по программам, контролирующим точность вычислений путём уменьшения шага интегрирования до тех пор, пока модуль разности между вычисленными значениями функции не окажется меньше некоторого заданного положительного числа e.
В зависимости от цели расчетов на практике часто пользуются упрощенными методами, не претендующими на высокую точность. Эти методы применяются, когда можно ограничиться общей характеристикой процесса. Среди упрощенных методов наибольшее распространение получил метод последовательных интервалов, суть которого заключается в приближенном вычислении интеграла.
Но существует более простой и наглядный метод, основанный на энергетическом подходе к анализу динамической устойчивости, который называется методом площадей. При этом методе кинетическая энергия системы определяется по площади графика переходного процесса. Задача исследования заключается в сравнении площадей ускорения и торможения, то есть сравнения кинетической энергии, полученной в процессе ускорения ротора генератора с той энергией, которая расходуется в процессе торможения ротора.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Что такое динамическая устойчивость
Под динамической устойчивостью понимается способность энергосистемы сохранять синхронную параллельную работу генераторов при значительных внезапных возмущениях, возникающих в энергосистеме (КЗ, аварийное отключение генераторов, линийу трансформаторов).
Для оценки динамической устойчивости применяется метод площадей. В качестве примера рассмотрим режим работы двухцепной электропередачи, связывающей электростанцию с энергосистемой, при КЗ на одной из линий с отключением поврежденной линии и ее успешным АПВ (рис. 10.3,а).
Исходный режим электропередачи характеризуется точкой 1, расположенной на угловой характеристике I, которая соответствует исходной схеме электропередачи (рис. 10.3,б).
При К3 в точке К1 на линии W2 угловая характеристика электропередачи занимает положение II. Снижение амплитуды характеристики II вызвано значительным увеличением результирующего сопротивления между точками приложения
. В момент К3 происходит сброс электрической мощности на величину
за счет снижения напряжения на шинах станции (точка 2 на рис. 10.3,б). Сброс электрической мощности зависит от вида К3 и его места. В предельном случае при трехфазном К3 на шинах станции происходит сброс мощности до нуля. Под действием избытка механической мощности турбин над электрической мощностью роторы генераторов станции начинают ускоряться, а угол
увеличивается. Процесс изменения мощности идет по характеристике II. Точка 3 соответствует моменту отключения поврежденной линии с двух сторон устройствами релейной защиты РЗ. После отключения линии режим электропередачи характеризуется точкой 4, расположенной на характеристике
, которая соответствует схеме электропередачи с одной отключенной линией. За время изменения угла от
до
роторы генераторов станции приобретают дополнительную кинетическую энергию. Эта энергия пропорциональна площади, ограниченной линией
, характеристикой II и ординатами в точках 1 и 3. Эта площадь получила название площадки ускорения
. В точке 4 начинается процесс торможения роторов, так как электрическая мощность больше мощности турбин. Но процесс торможения происходит с увеличением угла
. Увеличение угла
будет продолжаться до тех пор, пока вся запасенная кинетическая энергия не перейдет в потенциальную.
Потенциальная энергия пропорциональна площади, ограниченной линией и угловыми характеристиками послеаварийного режима. Эта площадь получила название площадки торможения
. В точке 5 по истечении некоторой паузы после отключения линии W2 срабатывает устройство АПВ (предполагается использование трехфазного быстродействующего АПВ с малой паузой). При успешном АПВ процесс увеличения угла будет продолжаться по характеристике
(точка 6), соответствующей исходной схеме электропередачи. Увеличение угла прекратится в точке 7, которая характеризуется равенством площадок
. В точке 7 переходный процесс не останавливается: вследствие того что электрическая мощность превышает мощность турбин, будет продолжаться процесс торможения по характеристике
, но только с уменьшением, угла. Процесс установится в точке 1 после нескольких колебаний около этой точки. Характер изменения угла 5 во времени показан на рис. 10.3,в.
С целью упрощения анализа мощность турбин во время переходного процесса принята неизменной. В действительности она несколько меняется вследствие действия регуляторов частоты вращения турбин.
Таким образом, анализ показал, что в условиях данного примера сохраняется устойчивость параллельной работы. Необходимым условием динамической устойчивости является выполнение условий статической устойчивости в послеаварийном режиме. В рассмотренном примере это условие выполняется, так как мощность турбин не превышает предела статической устойчивости.
Устойчивость параллельной работы была бы нарушена, если бы в переходном процессе угол перешел значение, соответствующее точке 8. Точка 8 ограничивает справа максимальную площадку торможения. Угол, соответствующий точке 8, получил название критического
. При переходе этой границы наблюдается лавинное увеличение угла
, т.е. выпадение генераторов из синхронизма.
Запас динамической устойчивости оценивается коэффициентом, равным отношению максимально возможной площадки торможения к площадке ускорения:
При режим устойчив, при
происходит нарушение устойчивости.
В случае неуспешного АПВ (включения линии на неустранившееся К3) процесс из точки 5 перейдет на характеристику II. Нетрудно убедиться, что в условиях данного примера устойчивость после повторного К3 и последующего отключения линии не сохраняется.
Динамическая устойчивость в электроэнергетической системе
Динамическая устойчивость в электроэнергетической системе
В любой момент времени в электроэнергетической системе может возникнуть резкое нарушение квазиустановившегося режима работы, из-за короткого замыкания, включения или отключения линий электропередачи, генерирующего оборудования или электроустановок потребителя и т.п. Следствием возникшего возмущения является отклонение скоростей вращения роторов генераторов от синхронной, в результате в энергосистеме возникают качания роторов генераторов станций, что ведет к возникновению качаний перетоков активной и реактивной мощности, а также напряжений и токов. Если возникающие колебания затухают, то считается, что динамическая устойчивость сохраняется, в противном случае – динамическая устойчивость нарушается.
Под понятием динамической устойчивости понимают способность энергосистемы переходить от исходного устойчивого режима к другому, также устойчивому режиму либо вернуться к установившемуся режиму, близкому к исходному, после больших изменений ее параметров.
Основным методом исследования динамической устойчивости электрических систем на современном этапе является численное интегрирование дифференциальных уравнений, описывающих поведение системы. Но существует более простой и наглядный метод, основанный на энергетическом подходе к анализу динамической устойчивости, который называется методом площадей. В данном методе кинетическая энергия системы определяется по площади графика переходного процесса. Задача исследования заключается в сравнении площадей ускорения и торможения, то есть сравнения кинетической энергии, полученной в процессе ускорения ротора генератора с той энергией, которая расходуется в процессе торможения ротора.
В качестве примера рассмотрим короткое замыкание с отключением параллельной линии электропередачи в простейшей схеме сети, которая состоит из генератора, работающего через силовой трансформатор и двухцепную линию электропередачи на шины бесконечной мощности (см. рис.1).
Рис.1. Расчетная схема сети
Если сделать допущение о том, что на генераторе установлено АРВ СД, которое контролирует напряжение на стороне генераторного напряжения, а также пренебречь активными сопротивлениями в расчетной схеме сети, то электромагнитная мощность, которая передается от генератора, определяется следующим выражением:
В записанном выражении переменная представляет собой модуль линейного напряжения на шинах станции, приведенный к стороне ВН, а переменная
— модуль линейного напряжения в точке шин бесконечной мощности.
Рис.2. Векторная диаграмма напряжений
В доаварийном режиме работы генератор работает в режиме, который соответствует точке «а», расположенной на угловой характеристике для нормального режима работы (Н.Р.). В рассматриваемом примере мощность турбины принимается неизменной за всё время переходного процесса , так как регулятор скорости не успевает за это время изменить мощность, развиваемую турбин.
В некоторый момент времени возникает короткое замыкание, которое вызывает снижение напряжение в сети. Короткое замыкание в расчетной сети, моделируется шунтом короткого замыкания на землю. В зависимости от вида короткого замыкания (однофазное, двухфазное, двухфазное с землей или трехфазное) величина шунта меняется.
Рис.3. Угловая характеристика в нормальном (I), аварийном (II) и послеаварийном (III) режимах
В результате короткого замыкания отдаваемая мощность в сеть уменьшается: происходит переход электромагнитной мощности из точки «а» характеристики нормального режима в точку «b» характеристики аварийного режима (А.Р.). Такое скачкообразное изменение активной мощности между двумя характеристиками происходит из-за того, что угол δ мгновенно измениться не может вследствие инерции ротора. В результате на валу системы турбина-генератор возникает избыточный ускоряющий момент, обусловленный разностью моментов (мощностей) турбины и электромагнитной мощности генератора. Под влиянием ускоряющего момента ротор генератора начнет ускоряться относительно энергосистемы (вектор напряжения будет перемещаться относительно вектора напряжения
). В результате взаимный угол
будет увеличиваться и величина электромагнитной мощности перейдет из точки «b» в точку «c».
В точке «с» происходит отключение поврежденной линии электропередачи действием устройств РЗА. После отключения КЗ электромагнитная мощность переходит на характеристику послеаварийного режима (П.А.Р.): происходит переход электромагнитной мощности из точки «c» характеристики аварийного режима (А.Р.) в точку «d» характеристики послеаварийного режима (П.А.Р.). В рассматриваемом примере в точке «d» электромагнитная мощность меньше мощности турбины, поэтому на ротор будет продолжать действовать ускоряющий момент (частота вращения ротора будет расти).
В точке «e» выдаваемая мощность в сеть становится равной мощности турбины, однако в связи с тем, что ротор приобрел некоторую избыточную кинетическую энергию, он продолжит увеличивать скорость вращения. В случае, когда выдаваемая мощность генератора в сеть становится больше мощности турбины, на валу системы турбина-генератор возникает избыточный тормозящий момент, который снижает скорость вращения ротора. В некоторой точке «i» генератор израсходует запасенную кинетическую энергию и ротор начнет перемещаться в обратном направлении. После нескольких колебаний с постепенно затухающей амплитудой относительное движение ротора прекратится и генератор перейдёт в новый установившийся режим работы. Если же ротор пройдёт за точку, соответствующую углу , то избыточный момент вновь станет ускоряющим и генератор выйдет из синхронизма.
Работа сил на пути ускорения выражается интегралом:
Заштрихованная площадь криволинейной фигуры «abcde», называется площадью ускорения, и соответствует (эквивалентна) энергии, запасаемой ротором в процессе ускорения.
Работа сил на пути торможения выражается интегралом, аналогично:
Заштрихованная площадь криволинейной фигуры «efghij», называется площадью торможения, и соответствует (эквивалентна) энергии, теряемой ротором в процессе торможения.
Таким образом, система будет сохранять устойчивость тогда, когда возможная площадь торможения будет больше площади ускорения
. Если площадка ускорения будет превышать площадь торможения, то генератор выпадет из синхронизма с приемной системой. Приведенный метод оценки динамической устойчивости электроэнергетической системы получил название метода площадей.
Мероприятия по повышению динамической устойчивости
1.Снижения длительности короткого замыкания, которая обеспечивается с помощью применения современных устройств РЗА и выключателей. Время отключения короткого замыкания (работа устройств РЗА и время отключения выключателя) может достигать 40-50 мсек.
2.Форсировка возбуждения на генераторах, также способствует повышению устойчивости. Форсировка возбуждения вводится в работу при глубоком снижении напряжения генератора вследствие короткого замыкания. Форсировка повышает ЭДС генераторов и напряжение на шинах электростанции, что приводит к уменьшению сброса электрической мощности.
Рис.4. Изменение напряжения возбуждения при форсировке возбуждения
Важными технические характеристики системы возбуждения генераторов являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке, и кратность форсировки, которая определяется отношением потолочного напряжения к номинальному напряжению возбуждения.
3.Эффективным средством повышения устойчивости являются все виды автоматического повторного включения (АПВ). Успешное АПВ увеличивает площадку торможения. Отключение части генерирующего оборудования в передающей части энергосистемы. Данное мероприятие приводит к снижению мощности турбины от исходной мощности, что приводит к увеличению максимальной площадки торможения. Одновременно происходит увеличение критического угла δ. Чтобы исключить нежелательное снижение частоты в энергосистеме, ограничение мощности генераторов в передающей части энергосистемы выполняется совместно с отключением части потребителей в приемной ее части.
4.Применение кратковременной импульсной разгрузки тепловых турбин (ИРТ) через систему регулирования является эффективным средством повышения устойчивости.Импульсная разгрузка турбины применяется с целью компенсации избыточной кинетической энергии, приобретенной за время короткого замыкания и бестоковой паузы БАПВ (ОАПВ).
Рис.5. Импульсная разгрузка турбины через электрогидравлический преобразователь
Для выполнения импульсной разгрузки тепловые турбины оборудуются специальными электрогидравлическими преобразователями (ЭГП), которые преобразуют электрические сигналы в гидравлические воздействия на систему регулирования частоты вращения. Электрогидравлический преобразователь обеспечивает быстрый ввод в систему регулирования сигнала разгрузки. После снятия сигнала разгрузки система регулирования восстанавливает мощность турбины до первичного значения. Глубина и скорость разгрузки зависят от параметров регулирующего импульса: амплитуды и длительности. Характеристики 1 и 2 соответствуют импульсам различной амплитуды и длительности. Снижение мощности турбины начинается с запаздывания 0,15 – 0,2 сек., обусловленным инерционностью элементов гидравлической системы регулирования. Минимальное значение мощности достигается через 0,5 – 0,7 сек. после подачи импульса регулирования.
Для снижения мощности турбины в послеаварийном режиме воздействие через ЭГП дополняется воздействием на ограничение мощности турбины (ДРТ) через механизм управления турбиной (МУТ). Характеристика 3 соответствует разгрузки турбины через ЭГП и МУТ, которая позволяет снизить мощность турбины в послеаварийном режиме до величины . Данное действие применяется для устранения перегрузки оборудования в послеаварийном режиме в передающей части энергосистемы.