Что такое динамика в физике кратко
Что такое динамика в физике кратко
Первый закон Ньютона утверждает, что существуют инерциальные системы отсчёта, относительно которых тела сохраняют скорость постоянной, если на них не действуют другие тела.
Второй закон Ньютона утверждает, что ускорение, приобретаемое телом под действием силы, прямо пропорционально модулю силы и обратно пропорционально массе тела.
Третий закон Ньютона утверждает, что взаимодействующие тела действуют друг на друга с силами, векторы которых равны по модулю и противоположны по направлению.
Закон всемирного тяготения гласит: сила гравитационного притяжения двух материальных точек прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Коэффициентом пропорциональности служит гравитационная постоянная.
Закон Гука устанавливает пропорциональность модуля силы упругости модулю удлинения тела, если его деформация является упругой. Коэффициентом пропорциональности служит коэффициент жёсткости тела.
Закон Амонтона-Кулона устанавливает пропорциональность силы трения скольжения или максимальной силы трения покоя силе нормальной реакции опоры. Коэффициентом пропорциональности служит коэффициент трения.
Закон сохранения импульса гласит: сумма импульсов тел до их взаимодействия равна сумме импульсов этих же тел после взаимодействия, если система замкнута.
Динамика (физика)
Из Википедии — свободной энциклопедии
Также динамикой нередко называют, применительно к другим областям физики (например, к теории поля), ту часть рассматриваемой теории, которая более или менее прямо аналогична динамике в механике, противопоставляясь обычно кинематике (к кинематике в таких теориях обычно относят, например, соотношения, получающиеся из преобразований величин при смене системы отсчёта).
Иногда слово динамика применяется в физике и не в описанном смысле, а в более общелитературном: для обозначения просто процессов, развивающихся во времени, зависимости от времени каких-то величин, не обязательно имея в виду конкретный механизм или причину этой зависимости.
Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.
Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (см. квантовая механика) и при движениях со скоростями, близкими к скорости света (см. релятивистская механика). Такие движения подчиняются другим законам.
С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.
В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.
Первый закон Ньютона. Масса. Сила
При движении тела по траектории его скорость 

Динамика рассматривает действие одних тел на другие как причину, определяющую характер движения тел. Взаимодействием тел принято называть взаимное влияние тел на движение каждого из них.
Раздел механики, изучающий законы взаимодействия тел, называется динамикой. Законы динамики были открыты великим ученым И. Ньютоном (1687 г.). Три закона динамики, сформулированные Ньютоном, лежат в основе так называемой классической механики. Законы Ньютона следует рассматривать как обобщение опытных фактов. Выводы классической механики справедливы только при движении тел с малыми скоростями, значительно меньшими скорости света c. Самой простой механической системой является изолированное тело, на которое не действуют никакие тела. Так как движение и покой относительны, в различных системах отсчета движение изолированного тела будет разным. В одной системе отсчета тело может находиться в покое или двигаться с постоянной скоростью, в другой системе это же тело может двигаться с ускорением.
Первый закон Ньютона (или закон инерции) из всего многообразия систем отсчета выделяет класс так называемых инерциальных систем. Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению. Свойство тел сохранять свою скорость при отсутствии действия на него других тел называется инерцией. Поэтому первый закон Ньютона называютзаконом инерции. Впервые закон инерции был сформулирован Г. Галилеем (1632 г.). Ньютон обобщил выводы Галилея и включил их в число основных законов движения. В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета. При описании движения тел вблизи поверхности Земли системы отсчета, связанные с Землей, приближенно можно считать инерциальными. Однако, при повышении точности экспериментов, обнаруживаются отклонения от закона инерции, обусловленные вращением Земли вокруг своей оси. Примером тонкого механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко.
Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко оставалась бы неизменной относительно Земли. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1.7.1).
1 |
| Рисунок 1.7.1. Поворот плоскости качаний маятника Фуко. |
С высокой степенью точности инерциальной является гелиоцентрическая система отсчета (или система Коперника), начало которой помещено в центр Солнца, а оси направлены на далекие звезды. Эту систему использовал Ньютон при открытии закона всемирного тяготения (1682 г.). Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы. Итак, причиной изменения скорости движения тела в инерциальной системе отсчета всегда является его взаимодействие с другими телами. Для количественного описания движения тела под воздействием других тел необходимо ввести две новые физические величины – инертную массу тела и силу.
Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой. Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, то есть в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям:
|
В этом соотношении величины 



![]() |
Масса тела – скалярная величина. Опыт показывает, что если два тела с массами m1 и m2 соединить в одно, то масса m составного тела оказывается равной сумме масс m1 и m2 этих тел:
Это свойство масс называют аддитивностью.
2 |
Рисунок 1.7.2. Сравнение масс двух тел. ![]() |
Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую причину: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной. Векторная сумма всех сил, действующих на тело, называется равнодействующей силой. Для измерения сил необходимо установить эталон силы испособ сравнения других тел с этим эталоном. В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F0, с которой эта пружина при фиксированном растяжении действует на прикрепленное к ее концу тело, называют эталоном силы. Способ сравнения других тел с эталоном состоит в следующем: если тело под действием измеряемой силы 

3 |
Рисунок 1.7.3. Сравнение силы с эталоном. . |
Если измеряемая сила F больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно (рис. 1.7.4). В этом случае измеряемая сила равна 2F0. Аналогично могут быть измерены силы 3F0, 4F0 и т. д.
4 |
Рисунок 1.7.4. Сравнение силы с эталоном. . |
Измерение сил, меньших 2F0, может быть выполнено по схеме, показанной на рис. 1.7.5.
5 |
Рисунок 1.7.5. Сравнение силы с эталоном. . |
Эталонная сила в Международной системе единиц называется ньютон (Н). На практике нет необходимости все измеряемые силы сравнивать с эталоном силы. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами. Сила измеряется по растяжению динамометра (рис. 1.7.6).



1

2
3
с эталоном.
.
4
с эталоном.
.
5
с эталоном.
.
6
а также способы их измерения. Первая из этих величин – масса m – является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие. Вторая – сила
– является количественной мерой действия одного тела на другое. Второй закон Ньютона – это фундаментальный закон природы; он является обобщением опытных фактов, которые можно разделить на две категории:

:

и
то под силой
в формуле, выражающей второй закон Ньютона, нужно понимать равнодействующую всех сил:
1
– равнодействующая силы тяжести
и силы нормального давления
действующих на лыжника на гладкой горе. Сила
вызывает ускорение лыжника.
то тело будет оставаться в состоянии покоя или равномерного прямолинейного движения. Таким образом, формально второй закон Ньютона включает как частный случай первый закон Ньютона, однако первый закон Ньютона имеет более глубокое физическое содержание – он постулирует существование инерциальных систем отсчета.

и
возникающими при взаимодействии тел. Отсюда следует:
1
как единое целое под действием внешней силы
Между телами действуют внутренние силы, подчиняющиеся третьему закону Ньютона:
Движение каждого тела зависит от сил взаимодействия между ними. Второй закон Ньютона, примененный к каждому телу в отдельности, дает:
и
получим: