Что такое дизъюнкция конъюнкция
Конъюнкция и дизъюнкция
Конъюнкция, дизъюнкция эквивалентность, инверсия, импликация — сложные для запоминания и понимания термины логики, науки, которая и сама по себе сложная для освоения. Но при ближайшем рассмотрении все слова оказываются более простыми, но обозначают совершенно не простые понятия. Используются термины не только в логике, но и в информатике. Объясняется это тем, что архитектура компьютера построена на понятиях математической логики.
Логика применима для решения задач по геометрии, физике, теории вероятности, понимания некоторых противоречивых речевых оборотов и сложных для непрофессионала научных текстов. Для понимания терминов и сферы их применимости изучим несколько вспомогательных понятий:
Если вы еще не запутались в этих терминах, перейдем к сути вопроса. Первое в нашем списке слово «конъюнкция». Это одно из сложных логических выражений, в котором обе составные части должны быть истинными, чтобы сказанное являлось истиной. Если одна из частей ложна, то ложно все выражение. Для иллюстрации используют таблицу:
| A | B | F |
| 1 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 0 |
В тексте конъюнкция обозначается простой формулой F = A & B. Часто конъюнкцию называют логическим умножением, по аналогии с математическим действием. Если один из множителей ноль, то результат всегда нулевой. В таблице показаны все возможные комбинации исходных данных для выбранной операции. На базе таблицы истинности можно проанализировать любое сложное высказывание. В предложении конъюнкция выражается союзом «и», который соединяет два высказывания. Вместо «и» можно использовать запятую.
Пример — «Рубильник на подстанции включен, и в комнате выключатель включен — люстра светит».
Если одно из выражений ложное, то света в комнате не будет.
Дизъюнкция, логическое сложение, которое подчиняется правилам математического сложения. Если одно из слагаемых истина (то есть 1) то результат получается 1 (в математике также возможен результат 2, но в логике обозначаем 1, как истинное выражение). Если оба исходных понятия ложные (0), то и результат не может быть истиной (1). Таблица для дизъюнкции выглядит так:
| A | B | F |
| 1 | 1 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 0 | 0 | 0 |
А формула принимает вид: F = A + B.
Итак, сложные и непонятные слова конъюнкция и дизъюнкция приняли образ вполне понятных действий умножения и сложения, знакомых даже ученикам младших классов. В письменной речи используют союз «или». Но в логике он несколько отличается от филологического значения. В филологии «или» показывает, что правильна одна из частей предложения, а в логике — что правильны или ложны одна из частей, и обе части одновременно (все предложение).
«Если температуры нет, или анализы покажут, что воспаления нет, то пациент здоров».
Попутно рассмотрим другие понятия логики. Одно из сложных для понимания — инверсия, или логическое отрицание. Если начальное утверждение правильное, то результат отрицания будет ложным, и, наоборот, при ложном исходном выражении, отрицание будет настоящим. В письменной речи инверсия выражается словами «НЕ», «НЕВЕРНО, ЧТО». Таблица инверсии:
«Вы утверждаете, что все ученики 9 класса отличники, НЕВЕРНО, ЧТО все ученики 9 класса отличники». (Не все ученики 9 класса отличники).
Импликация — сложное выражение, в результате которого всегда получается единица (истина). В письменной речи аналогом импликации является связка если…, то. Пример «Если твердое тело тереть о жесткую поверхность, то оно нагревается». «Если замечены изменения в экономической ситуации, то изменится и политика». Таблица импликации:
| А | В | F |
| 1 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 1 |
| 0 | 0 | 1 |
Можно заметить, что в одной строке результат «0». Это исключение, когда из истинного утверждения не может получиться ложный результат.
Эквивалентность — операция в логике, при которой истина получается только в том случае, если обе части выражения истинны:
| A | B | F |
| 1 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |
В сложном логическом выражении существует определенный порядок выполнения операций:
Если нужно изменить этот порядок, то используют скобки.
Что такое дизъюнкция конъюнкция
2) Логическое сложение или дизъюнкция:
Таблица истинности для дизъюнкции
| A | B | F |
| 1 | 1 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 0 | 0 | 0 |
3) Логическое отрицание или инверсия:
Таблица истинности для инверсии
| A | ¬ А |
| 1 | 0 |
| 0 | 1 |
4) Логическое следование или импликация:
«A → B» истинно, если из А может следовать B.
Обозначение: F = A → B.
Таблица истинности для импликации
| A | B | F |
| 1 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 1 |
| 0 | 0 | 1 |
5) Логическая равнозначность или эквивалентность:
Логические операции. Дизъюнкция, конъюнкция и отрицание
Логические основы ЭВМ
Алгебра логики и логические основы компьютера
Алгебра логики (булева алгебра) – это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.
Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, булева алгебра делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1, либо 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.
Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.
Логические операции. Дизъюнкция, конъюнкция и отрицание
Так как же связываются между собой простые логические высказывания, образуя сложные? В естественном языке мы используем различные союзы и другие части речи. Например, «и», «или», «либо», «не», «если», «то», «тогда». Пример сложных высказываний: «у него есть знания и навыки», «она приедет во вторник, либо в среду», «я буду играть тогда, когда сделаю уроки», «5 не равно 6».
Как мы решаем, что нам сказали правду или нет? Как-то логически, даже где-то неосознанно, исходя из предыдущего жизненного опыта, мы понимает, что правда при союзе «и» наступает в случае правдивости обоих простых высказываний. Стоит одному стать ложью и все сложное высказывание будет лживо. А вот, при связке «либо» должно быть правдой только одно простое высказывание, и тогда все выражение станет истинным.
Булева алгебра переложила этот жизненный опыт на аппарат математики, формализовала его, ввела жесткие правила получения однозначного результата. Союзы стали называться здесь логическими операторами.
При конъюнкции@/a> истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.
При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.
Отрицание – это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.
Для логических величин обычно используются три операции:
Конъюнкция – логическое умножение (И) – and, &, ∧.
Дизъюнкция – логическое сложение (ИЛИ) – or, |, v.
Логическое отрицание (НЕ) – not,.
Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).
Логические основы компьютера
В ЭВМ используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, триггеры, сумматоры.
Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в ЭВМ системе счисления. Как известно она двоичная. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.
Переключательные схемы
В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае – ток проходит, во втором – нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.
Вентили, триггеры и сумматоры
Вентиль представляет собой логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации. Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.
Триггеры и сумматоры – это относительно сложные устройства, состоящие из более простых элементов – вентилей.
Триггер способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях. В основном триггеры используется в регистрах процессора.
Сумматоры широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов.
Информация и информационные процессы. Виды информации, её двоичное кодирование. Количество информации, подходы к определению понятия «количество информации», единицы измерения информации. Двоичное кодирование числовой, текстовой, графической, звуковой информации
Информация (от лат. informatio — «разъяснение, изложение, осведомлённость») — сведения о чём-либо, независимо от формы их представления.
В настоящее время не существует единого определения информации как научного термина. С точки зрения различных областей знания данное понятие описывается своим специфическим набором признаков. Понятие «информация» является базовым в курсе информатики, где невозможно дать его определение через другие, более «простые» понятия.

Свойства информации:
— Объективность (информация объективна, если она не зависит от чьего-либо мнения, суждения);
— Достоверность (информация достоверна, если она отражает истинное положение дел);
— Полнота (информация полна, если ее достаточно для понимания и принятия решения);
— Актуальность (информация актуальна, своевременна, если она важна, существенна для настоящего времени);
— Полезность (оценивается по тем задачам, которые мы можем решить с ее помощью);
— Понятность (информация понятна, если она выражена на языке, доступном для получателя);
— Доступность (информация доступна, если мы можем её получить).
Информация проявляется именно в информационных процессах. Информационные процессы всегда протекают в каких-либо системах (социальных, социотехнических, биологических и пр.).
Наиболее обобщенными информационными процессами являются сбор, преобразование, использование информации.
К основным информационным процессам, изучаемым в курсе информатики, относятся: поиск, отбор, хранение, передача, кодирование, обработка, защита информации.
Информационные процессы, осуществляемые по определенным информационным технологиям, составляет основу информационной деятельности человека.
Компьютер является универсальным устройством для автоматизированного выполнения информационных процессов.
Люди имеют дело со многими видами информации. Общение людей друг с другом дома и в школе, на работе и на улице – это передача информации. Учительский рассказ или рассказ товарища, телевизионная передача, телеграмма, письмо, устное сообщение и т.д. – все это примеры передачи информации.
И мы уже говорили о том, что одну и ту же информацию можно передать и получить различными путями. Так, чтобы найти дорогу в музей в незнакомом городе, можно спросить прохожего, получить справку в справочном бюро, попытаться разобраться самому с помощью плана города или обратиться к путеводителю. Когда мы слушаем объяснение учителя, читаем книги или газеты, смотрим новости ТВ, посещаем музеи и выставки – в это время мы получаем информацию.
Человек хранит полученную информацию в голове. Мозг человека – огромное хранилище информации. Блокнот или записная книжка, ваш дневник, школьные тетрадки, библиотека, музей, кассета с записями любимых мелодий, видеокассеты – все это примеры хранения информации.
Информацию можно обрабатывать: перевод текста с английского языка на русский и наоборот, вычисление суммы по заданным слагаемым, решение задачи, раскрашивание картинок или контурных карт – все это примеры обработки информации. Все вы любили в свое время раскрашивать книжки-раскраски. Оказывается, в это время вы занимались важным процессом – обработкой информации, черно-белый рисунок превращали в цветной.
Информацию можно даже терять. Допустим, Иванов Дима забыл дневник дома и поэтому записал домашнее задание на листочке. Но, играя на перемене, он сделал из него самолетик и запустил его. Придя домой, Дима не смог сделать домашнюю работу, он потерял информацию. Теперь ему нужно или попытаться вспомнить, что же ему задали, или позвонить однокласснику, чтобы получить нужную информацию, или идти в школу с невыполненным домашним заданием.
Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.
Двоичный алфавит состоит из двух цифр 0 и 1.
Цифровые ЭВМ (персональные компьютеры относятся к классу цифровых) используют двоичное кодирование любой информации. В основном это объясняется тем, что построить техническое устройство, безошибочно различающее 2 разных состояния сигнала, технически оказалось проще, чем то, которое бы безошибочно различало 5 или 10 различных состояний.
К недостаткам двоичного кодирования относят очень длинные записи двоичных кодов, что затрудняет работу с ними.
Логические операции. ➞ Что такое конъюнкция, дизъюнкция, импликация
Тот, кто хочет подробно разбираться в цифровых технологиях должен понимать основы такой темы, как алгебра логики. В этой статье будут разобраны основные определения, а также показаны самые важные логические операции, такие как конъюнкция, дизъюнкция, импликация и т.д.
Основные положения
Для начала следует разобраться, для чего нужна алгебра логики – главным образом, этот раздел математики и информатики, нужен для работы с логическими выражениями и высказываниями.
Логическим высказыванием называется утверждение (или запись), которое мы можем однозначно классифицировать, как истинное или ложное (1 или 0 в информатике).
Примером таким высказываний будут являться:
Логические высказывания делятся на два типа — простые и сложные.
В алгебре логики, как простые, так и сложные высказываниями описываются булевыми выражениями.
Булево выражение – это символическое (знаковое) описание высказывания.
Операции
Ниже рассмотрим основные операции, которые применяются в булевой алгебре. Их хватит, чтобы упростить львиную долю всех выражений, которые Вам встретятся.
Конъюнкция
Конъюнкция (булево умножение) — функция, по своему смыслу приближенная к союзу «И». При выполнении конъюнкции результат истинен (равен 1) тогда и только тогда, когда истинны ВСЕ переменные. Если хотя бы одно из высказываний ложно, то ложно и всё выражение (равно 0).
Функция может работать как с двумя операндами (высказываниями), так и с тремя, четырьмя и т.д. В математике обозначается с помощью знаков \( \wedge \) и &. Обозначение в языках программирования AND, &&. Таблица истинности для двух операндов:
Дизъюнкция
Дизъюнкцией называется функция булева сложения. По смыслу дизъюнкция приближена к союзу «ИЛИ». В результате выполнения данной функции результирующие выражение является истинным, когда хотя бы одно из высказываний в этом выражении тоже истинно.
Булево сложение, также как и умножение, может работать с произвольным количеством операндов. В математике обозначается как V, а в программировании с помощью OR или I.
Инверсия
Логическое отрицание – функция, работающая с одним высказыванием, и заменяющая истину на ложь, а ложь на истину. В математике обозначается с помощью черты над значением, а в программирование и информатике с помощью слова NOT.
Импликация
Также называется булевым следованием. В русском языке данной функции соответствует оборот «Если …, то …». Например, если на улице гремит гром, то стоит пасмурная погода.
Эквивалентность
Булева тождественность или равенство. На простом языке будет обозначено как «… эквивалентно (равно) …». Результат будет истинным тогда, когда все значения в выражении будут иметь одинаковую истинность.
Обозначается с помощью трех черточек или ⟺.
Порядок выполнения операций
Логические операции выполняются в следующем порядке:
Если в формуле указаны скобки, то порядок выполнения действий в скобках точно такой же, как написано выше.
Пример
Дано два отрезка B = [2,10], C = [6,14]. Из предложенных вариантов ответа выберите такой отрезок A, что формула \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) истинна при любом значении z. Варианты ответа:
Решение: Подставим в уравнение \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) =1 значения B и C и составим таблицу истинности:
Получившаяся формула \( ((z \in A) \Longrightarrow (z \in [2,10])) \vee (z \in [6,14])=1 \). По условию \( z \in A \)=1.
Таблица истинности для всех отрезков:
Ответ: A = [3,11].
Видео
Заключение
Вот Вы и познакомились с основными логическими операциями и понятиями и знаете, что такое булево сложение и умножение. Если вас заинтересовала данная тема, то можете изучить булевы законы. Эти законы не проходятся в рамках школьной программы и служат для упрощения сложных выражений.
Общие сведения
Булева алгебра — раздел математического анализа, изучающий истинность логических утверждений. Ее открыл Д. Буль в ХIХ веке. Алгебра логики получила практическое применение только в ХХ веке при проектировании различных элементов персонального компьютера. Дисциплина доказывает истинность или ложность тождеств логического типа математическим путем с применением специальных таблиц.
Следует отметить, что логическое тождество является определенной функцией, принимающей значения 0 или 1 в зависимости от ее элементов. В алгебре логики значения имеют следующие названия: 0 — ЛОЖЬ (FALSE) и 1 — ИСТИНА (TRUE).
Операторы сравнения
Например, если необходимо указывать несколько тождеств логического вида, то при помощи отрицания можно использовать только одно. Для примера необходимо написать, что число не равно 0: (t 0). При использовании логического отрицания условие выглядит короче: t=!0.
Приоритеты вычислений
При решении выражений булевского типа, как и в алгебре, существуют определенные приоритеты. Каждая операция обладает определенным из них. Наибольшей степенью пользуется конъюнкция, средней — дизъюнкция. Наименьшим приоритетом обладает логическое отрицание. Однако эту особенность можно поменять при помощи группировки элементов в выражениях, которая производится скобками. С учетом этих особенностей алгоритм решения тождества имеет следующий вид:
Иногда бывают задачи, в которых следует упрощать выражение. Для этой цели следует знать некоторые особенности:
Этих правил достаточно для упрощения булевского выражения. Следует отметить, что перед построением булевской таблицы требуется с самого начала упростить исходное тождество.
Примеры решений
В первом простом примере требуется составить таблицу булевского типа для выражения S&(S|T)|T&S|¬(T&S).
Решать задание нужно по такому алгоритму:
Следующий пример будет сложнее, поскольку выражение ¬ < ¬[ ¬((S|0)&¬(T|S)& ¬(S&(T&S)) ]& ¬(S&S) >следует упростить, а затем составить таблицу. Задача решается по такой методике:
Следует отметить, что исходное логическое выражение необходимо на начальном этапе решения упростить, а затем строить таблицу. В этом возможно убедиться на основании приведенного примера, в котором сокращается одна переменная.
Таким образом, для решения выражения, содержащего логические операции конъюнкции, дизъюнкции и инверсии, необходимо его упростить, а затем разбить на простые элементы.










