Что такое доказательство в математике
Математическое доказательство
На протяжении всей истории математики представление о способах и допустимых методах доказательства существенно менялось, в основном, в сторону большей формализации и бо́льших ограничений. Ключевой вехой в вопросе формализации доказательства стало создание математической логики в XIX веке и формализация её средствами основных техник доказательства. В XX веке построена теория доказательств — теория, изучающая доказательство как математический объект. С появлением во второй половине XX века компьютеров особое значение получило применение методов математического доказательства для проверки и синтеза программ, и даже было установлено структурное соответствие между компьютерными программами и математическими доказательствами (соответствие Карри — Ховарда), на основе которого созданы средства автоматического доказательства.
Основные приёмы, используемые при построении доказательств: прямое доказательство, математическая индукция и её обобщения, доказательство от противного, контрапозиция, построение, перебор, установление биекции, двойной счёт; в приложениях в качестве математических доказательств привлекаются также методы, не дающие формального доказательства, но обеспечивающие практическую применимость результата — вероятностные, статистические, приближённые. В зависимости от раздела математики, используемого формализма или математической школы не все методы могут приниматься безоговорочно, в частности, конструктивное доказательство предполагает серьёзные ограничения.
Математическое доказательство
В математике доказа́тельством называется цепочка логических умозаключений, показывающая, что при каком-то наборе аксиом и правил вывода верно некоторое утверждение. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы (построенная по специальным правилам последовательность утверждений, записанная на формальном языке) или текст на естественном языке, по которому при желании можно восстановить формальное доказательство. Доказанные утверждения в математике называют теоремами (в математических текстах обычно подразумевается, что доказательство кем-либо найдено; исключения из этого обычая в основном составляют работы по логике, в которых исследуется само понятие доказательства); если ни утверждение, ни его отрицание ещё не доказаны, то такое утверждение называют гипотезой. Иногда в процессе доказательства теоремы выделяются доказательства менее сложных утверждений, называемых леммами.
Содержание
Формальными доказательствами занимается специальная ветвь математики — теория доказательств. Сами формальные доказательства математики почти никогда не используют, поскольку для человеческого восприятия они очень сложны и часто занимают очень много места. Обычно доказательство имеет вид текста, в котором автор, опираясь на аксиомы и доказанные ранее теоремы, с помощью логических средств показывает истинность некоторого утверждения. В отличие от других наук, в математике недопустимы эмпирические доказательства: все утверждения доказываются исключительно логическими способами. В математике важную роль играют математическая интуиция и аналогии между разными объектами и теоремами; тем не менее, все эти средства используются учёными только при поиске доказательств, сами доказательства не могут основываться на таких средствах. Доказательства, написанные на естественных языках, могут быть не очень подробными в расчёте на то, что подготовленный читатель сам сможет восстановить детали. Строгость доказательства гарантируется тем, что его можно представить в виде записи на формальном языке (это и происходит при компьютерной проверке доказательств).
Ошибочным доказательством называется текст, содержащий логические ошибки, то есть такой, по которому нельзя восстановить формальное доказательство. В истории математики были случаи, когда выдающиеся учёные публиковали неверные «доказательства», однако обычно их коллеги или они сами довольно быстро находили ошибки (одна из наиболее часто неправильно доказывавшихся теорем — Великая теорема Ферма. До сих пор встречаются люди, не знающие о том, что она доказана, и предлагающие новые неверные «доказательства» [1] [2] ). Ошибочным может быть только признание доказательством «доказательства» на естественном или формальном языке; формальное доказательство ошибочным не может быть по определению.
В математике существуют нерешённые проблемы, решение которых учёным очень хотелось бы найти. Некоторые из них можно найти в статье «Гипотеза». За доказательства особенно интересных и важных утверждений математические общества назначают премии. [источник не указан 1311 дней]
В информатике математические доказательства используются для верификации и анализа правильности алгоритмов и программ. см. логика в информатике> в рамках технологий доказательного программирования.
Формальное доказательство
Когда говорят о формальном доказательстве, прежде всего описывают формальную модель — множество аксиом, записанных с помощью формального языка, и правил вывода. Формальным выводом называется конечное упорядоченное множество строк, написанных на формальном языке, таких, что каждая из них либо является аксиомой, либо получена из предыдущих строк применением одного из правил вывода. Формальным доказательством утверждения называется формальный вывод, последней строкой которого является данное утверждение. Утверждение, имеющее формальное доказательство, называется теоремой, а множество всех теорем в данной формальной модели (рассматриваемое вместе с алфавитом формального языка, множествами аксиом и правил вывода) называется формальной теорией.
Теория называется полной, если для любого утверждения доказуемо оно или его отрицание, и непротиворечивой, если в ней не существует утверждений, которые можно доказать вместе с их отрицаниями (или, эквивалентно, если в ней существует хотя бы одно недоказуемое утверждение). Большинство «достаточно богатых» математических теорий, как показывает первая теорема Гёделя о неполноте, являются неполными либо противоречивыми. Самым распространённым набором аксиом в наше время является аксиоматика Цермело — Френкеля с аксиомой выбора (хотя некоторые математики выступают против использования последней). Теория на основе этой системы аксиом не полна (например, континуум-гипотеза не может быть ни доказана, ни опровергнута в ней — в предположении, что эта теория непротиворечива). Несмотря на повсеместное использование этой теории в математике, её непротиворечивость не может быть доказана методами её самой. Тем не менее, подавляющее большинство математиков верит в её непротиворечивость, считая, что в противном случае противоречия уже давно были бы обнаружены.
Исторический очерк
Что и требовалось доказать
Традиционно окончание доказательства обозначалось сокращением «Q.E.D.», от латинского выражения лат. Quod Erat Demonstrandum («Что и требовалось доказать»).
Математическое доказательство
Ошибочным доказательством называется текст, содержащий логические ошибки, то есть такой, по которому нельзя восстановить формальное доказательство. В истории математики были случаи, когда выдающиеся учёные публиковали неверные «доказательства», однако обычно их коллеги или они сами довольно быстро находили ошибки. (Одна из наиболее часто неправильно доказывавшихся теорем — Великая теорема Ферма. До сих пор встречаются люди, не знающие о том, что она доказана, и предлагающие новые неверные «доказательства».) Ошибочным может быть только признание «доказательства» на естественном или формальном языке доказательством; формальное доказательство ошибочным не может быть по определению.
В математике существуют нерешённые проблемы, решение которых учёным очень хотелось бы найти. Некоторые из них можно найти в статье « Гипотеза ». За доказательства особенно интересных и важных утверждений математические общества назначают премии.
Формальное доказательство
Теория называется полной, если для любого утверждения доказуемо либо оно, либо его отрицание, и непротиворечивой, если в ней не существует утверждений, которые можно доказать вместе с их отрицаниями. Большинство математических теорий, как показывает первая теорема Гёделя о неполноте, являются неполными, то есть в них существуют утверждения, об истинности которых ничего сказать нельзя. Самым распространённым набором аксиом в наше время является аксиоматика Цермело — Френкеля с аксиомой выбора (хотя некоторые математики выступают против использования последней). Теория на основе этой системы аксиом не полна (например, континуум-гипотеза не может быть ни доказана, ни опровергнута в ней). Несмотря на повсеместное использование этой теории в математике, её непротиворечивость не может быть доказана методами её самой. Тем не менее, подавляющее большинство математиков верит в её непротиворечивость, считая, что в противном случае противоречия уже давно были бы обнаружены.
См. также
ar:برهان رياضي ca:Demostració matemàtica cs:Matematický důkaz da:Bevis (matematik) fa:برهان he:הוכחה hu:Matematikai bizonyítás is:Stærðfræðileg sönnun ka:დამტკიცება mk:Математички доказ nds:Bewies (Mathematik) nl:Wiskundig bewijs no:Matematisk bevis pl:Dowód (matematyka) sl:Matematični dokaz th:การพิสูจน์ vi:Chứng minh định lý zh-classical:證明 zh-min-nan:Chèng-bêng
Математическое доказательство
Лекция 9. Математическое доказательство
1. Умозаключения и их виды
2. Схемы дедуктивных умозаключения
Большую часть знаний об окружающей нас действительности мы получаем с помощью рассуждений. Выводы в них будут истинными, если они являются результатами правильных рассуждений, а такими считают рассуждения, построенные по правилам логики. Рассуждения лежат в основе доказательства, без которого трудно представить математику. Но тех представлений о доказательстве, которые возникли у вас в процессе конкретных доказательств, конечно, недостаточно, чтобы обучать доказательству младших школьников. Учителю нужны более глубокие знания о тех правилах, в соответствии с которыми строятся правильные рассуждения, нужны знания о структуре и способах доказательства, о взаимосвязи индукции и дедукции.
В логике вместо термина «рассуждения» чаще используется (как его синоним) слово «умозаключение», им и будем пользоваться.
Умозаключение – это способ получения нового знания на основе некоторого имеющегося. При этом мы не обращаемся к исследованию предметов и явлений самой действительности, а открываем такие связи и отношения между ними, которые невозможно увидеть непосредственно.
Умозаключение состоит из посылок и заключения.
Посылки – это высказывание, содержащее исходное знание.
Заключение – это высказывание, содержащее новое знание, полученное из исходного. В умозаключении из посылок выводится заключение.
Рассмотрим примеры умозаключений, которые выполняют младшие школьники, изучая математику.
Пример 1. Ученику предлагается объяснить, почему число 23 можно представить в виде суммы 20 + 3. Он рассуждает: «Число 23 – двузначное. Любое двузначное число можно представить в виде суммы разрядных слагаемых. Следовательно, 23 = 20 + 3».
Пример 2. Один из приемов ознакомления младших школьников с переместительным свойством умножения заключается в следующем. Используя различные средства наглядности, школьники вместе с учителем устанавливают, что, например, 6•3 = 3•6, 5•2 = 2•5, 7•3 = 3•7. А затем на основе полученных равенств делают вывод: :для всех натуральных чисел а и b верно равенство а • b = b • а.
В данном умозаключении посылками являются первые три равенства, в них утверждается, что для конкретных натуральных чисел выполняется такое свойство. Заключением в данном примере является утверждение общего характера – переместительное свойство умножения натуральных чисел.
Пример 3. При обучении делению на однозначное число используется такой прием. Сначала выясняется: чтобы найти значение выражения 12:4, следует узнать, на какое число надо умножить делитель 4, чтобы получить делимое, т.е. 12. Известно, что 4 • 3= 12. Значит, 12 : 4 = 3.
Затем учащимся предлагается, рассуждая так же, найти, например, частное 8 : 4. И они сначала находят число, на которое надо умножить 4, чтобы получить 8. Получают число 2 и делают вывод – 8 : 4 = 2.
Далее, используя тот же способ рассуждений, находят частные 9 : 3, 20 : 5 и др.
Видим, что умозаключения бывают разные. В примере 1 заключение логически следует из посылок, и мы не сомневаемся в его истинности. Такие умозаключения называют в логике дедуктивными.
Определение. Дедуктивным называется умозаключение, в котором посылки и заключение находятся в отношении логического следования.
Если посылки дедуктивного умозаключения обозначить буквами А₁, А₂, …, Аn, а заключение – буквой В, то схематично само умозаключение можно представить так: А₁, А₂, …, Аn ⇒ В. Часто запись пишут в виде дроби.
Дедуктивным является умозаключение, которое рассмотрено в примере 1.
Умозаключения из примера 2 называют неполной индукцией.
Определение. Неполная индукция – это умозаключение, в котором на основании того, что некоторые объекты класса обладают определенным свойством, делается вывод о том, что этим свойством обладают все объекты данного класса.
Неполная индукция не является дедуктивным умозаключением, поскольку, рассуждая по такой схеме, можно прийти к ложному выводу. Они нуждаются в проверке.
Несмотря на то, что неполная индукция не всегда приводит к истинным выводам, роль таких умозаключений в процессе познания велика. Многие общие положения и, в частности, научные законы были открыты с помощью умозаключений, называемых неполной индукцией.
Третий пример – это пример рассуждения по аналогии.
Слово «аналогия» в переводе с греческого означает «соответствие, сходство».
Вообще под аналогией понимают умозаключение, в котором на основании сходства двух объектов в некоторых признаках и при наличии дополнительного признака у одного из них делается вывод о наличии такого же признака у другого признака.
Аналогия помогает открывать новые знания, способы деятельности или использовать усвоенные способы деятельности в измененных условиях.
Вывод по аналогии носит характер предположения, гипотезы и поэтому нуждается либо в доказательстве, либо в опровержении.
Широко используется аналогия в обучении математике младших школьников. Это происходит при изучении свойств объектов, отношений между ними и действий с ними.
Примеры. Аналогию можно использовать для «открытия» новых свойств изучаемых объектов. При изучении нумерации установлено, что в классе единиц три разряда – единицы, десятки, сотни, а в классе тысяч также три разряда – единицы тысяч, десятки тысяч, сотни тысяч – этот вывод можно сделать по аналогии.
Аналогия может быть использована и для выводов о способе действия на основе изучения другого способа. Так, после рассмотрения способа умножения двузначного числа на однозначное на примере умножения 27 на 3 ( 27•3 = (20+7) •3 = 20•3+7•3=81) детям предлагается умножить 721 на 3. Действуют по аналогии. Затем устанавливают, как умножить 6289 на 3. Следующим шагом может быть обобщение, т.е. получение правила умножения многозначного числа на однозначное, т.е. использование неполной индукции.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Лекция 10. Способы математического доказательства
1. Способы математического доказательства
2. Прямые и косвенные доказательства. Доказательство методом от противного.
Способы математического доказательства
В обыденной жизни часто, когда говорят о доказательстве, имеют в виду просто проверку высказанного утверждения. В математике проверка и доказательство – это разные вещи, хотя и связанные между собой. Пусть, например, требуется доказать, что если в четырехугольнике три угла прямые, то он – прямоугольник.
Если мы возьмем какой-либо четырехугольник, у которого три угла прямые, и, измерив четвертый, убедимся в том, что он действительно прямой, то эта проверка сделает данное утверждение более правдоподобным, но еще не доказанным.
Заметим, что сущность проведенного доказательства состоит в построении такой последовательности истинных утверждений (теорем, аксиом, определений), из которых логически следует утверждение, которое нужно доказать.
Вообще доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений.
В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и последние.
Таким образом, основой математического доказательства является дедуктивный вывод. А само доказательство – это цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.
Например, в приведенном выше доказательстве можно выделить следующие умозаключения:
1. В любом выпуклом четырехугольнике сумма углов равна 360⁰; данная фигура – выпуклый четырехугольник, следовательно, сумма углов в нем 360⁰.
3. Если в четырехугольнике все углы прямые, то этот четырехугольник – прямоугольник; в данном четырехугольнике все углы прямые, следовательно, он прямоугольник.
Все приведенные умозаключения выполнены по правилу заключения и, следовательно, являются дедуктивными.
Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 6
Задача 1. Доказать, что если а + 3 > 10, то а ≠ 7. Метод от противного.
Задача 3. Даны четыре последовательных натуральных числа. Верно ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.
Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.
Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.
Задача 5. Верно ли, что если натуральное число n не кратно 3, то значение выражения n² + 2 кратно 3? Метод полной индукции.
Основные выводы
В этом пункте познакомились с понятиями: умозаключение, посылка и заключение, дедуктивные (правильные) умозаключения, неполная индукция, аналогия, прямое доказательство, косвенное доказательство, полная индукция.
Мы выяснили, что неполная индукция и аналогия тесно связаны с дедукцией: выводы, полученные с помощью неполной индукции и аналогии, надо либо доказывать, либо опровергать. С другой стороны, дедукция не возникает на пустом месте, а является результатом предварительного индуктивного изучения материала.
Дедуктивные умозаключения позволяют из уже имеющегося знания получать новые истины, и притом с помощью рассуждения, без обращения к опыту, интуиции и т.д.
Мы выяснили, что математическое доказательство – это цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Познакомились с простейшими из них: правилом заключения, правилом отрицания, правилом силлогизма. Узнали, что проверять правильность умозаключений можно с помощью кругов Эйлера.
ТЕКСТОВАЯ ЗАДАЧА И ПРОЦЕСС ЕЕ РЕШЕНИЯ
Лекция 11. Текстовая задача и процесс ее решения
1. Структура текстовой задачи
2. Методы и способы решения текстовых задач
3. Этапы решения задачи и приемы их выполнения
Кроме различных понятий, предложений, доказательств в любом математическом курсе есть задачи. В обучении математике младших школьников преобладают такие, которые называют арифметическими, текстовыми, сюжетными. Эти задачи сформулированы на естественном языке (их называют текстовыми): в них обычно описывается количественная сторона каких-то явлений, событий (поэтому их часто называют арифметическими или сюжетными); они представляют собой задачи на разыскание искомого и сводятся к вычислению неизвестного значения некоторой величины (поэтому их иногда называют вычислительными).
В данном пособии мы будем применять термин «текстовые задачи», поскольку он чаще других используется в методике обучения математике младших школьников.
Существуют различные методические подходы к обучению детей решению текстовых задач. Но какую бы методику обучения ни вы брал учитель, ему надо знать, как устроены такие задачи, и уметь их решать различными методами и способами.
Структура текстовой задачи
Как было сказано выше, любая текстовая задача представляет собой описание какого-либо явления (ситуации, процесса). С этой точки зрения текстовая задача есть словесная модель явления (ситуации, процесса). И, как во всякой модели, в текстовой задаче описывается не все явление в целом, а лишь некоторые его стороны, главным образом, его количественные характеристики. Рассмотрим, например, такую задачу: «Автомобиль выехал из пункта А со скоростью 60 км/ч. Через 2 ч вслед за ним выехал второй автомобиль со скоростью 90 км/ч. На каком расстоянии от А второй автомобиль догонит первый?»
В задаче описывается движение двух автомобилей. Как известно, любое движение характеризуется тремя величинами: пройденным расстоянием, скоростью и временем движения. В данной задаче известны скорости первого и второго автомобилей (60 км/ч и 90 км/ч), известно, что они прошли одно и то же расстояние от пункта А до места встречи, количественную характеристику которого и надо найти. Кроме того, известно, что первый автомобиль был в пути на 2 ч больше, чем второй.
Обобщая, можно сказать, что текстовая задача есть описание на естественном языке некоторого явления (ситуации, процесса) с требованием дать количественную характеристику какого-либо компонента этого явления, установить наличие или отсутствие некоторого отношения между компонентами или определить вид этого отношения.
Рассмотрим еще одну задачу из начального курса математики: «Свитер, шапку и шарф связали из I кг 200 г шерсти. На шарф потребовалась на 100 г шерсти больше, чем на шапку, и на 400 г меньше, чем на свитер. Сколько шерсти израсходовали на каждую вещь?»
В задаче речь идет о расходовании шерсти на свитер, шапку и шарф. Относительно этих объектов имеются определенные утверждения и требования.
1. Свитер, шапка и шарф связаны из 1200 г шерсти.
2. На шарф израсходовали на 100 г больше, чем на шапку.
3. На шарф израсходовали на 400 г меньше, чем на свитер.
1. Сколько шерсти израсходовали на свитер?
2. Сколько шерсти израсходовали на шапку?
3. Сколько шерсти израсходовали на шарф?
Утверждения задачи называют условиями (или условием, как в начальной школе). В задаче обычно не одно условие, а несколько элементарных условий. Они представляют собой количественные или качественные характеристики объектов задачи и отношений между ними. Требований в задаче может быть несколько. Они могут быть сформулированы как в вопросительной, так и утвердительной форме. Условия и требования взаимосвязаны.
Систему взаимосвязанных условий и требований называют высказывательной моделью задачи.
Таким образом, чтобы понять, какова структура задачи, надо выявить ее условия и требования, отбросив все лишнее, второстепенное, не влияющее на ее структуру. Иными словами, надо построить высказывательную модель задачи.
Чтобы получить эту модель, надо текст задачи развернуть (сделать это можно письменно или устно), так как текст задачи, как правило, дается в сокращенном, свернутом виде. Для этого можно перефразировать задачу, построить ее графическую модель, ввести какие-либо обозначения и т.д.
Кроме того, вычленение условий задачи можно производить с разной глубиной. Глубина анализа условий и требований задачи зависит главным образом от того, знакомы ли мы с видом задач, к которому принадлежит заданная, и знаем ли мы способ решения таких задач.
Пример 1. Сформулируйте условия и требования задачи:
Две девочки одновременно побежали навстречу друг другу по спортивной дорожке, длина которой 420 м. Когда они встретились, первая пробежала на 60 м больше, чем вторая. С какой скоростью бежала каждая девочка, если они встретились через 30 с?
В задаче речь идет о движении двух девочек навстречу друг другу. Как известно, движение характеризуется тремя величинами: расстоянием, скоростью и временем.
1. Две девочки бегут навстречу друг другу.
2. Движение они начали одновременно.
4. Одна девочка пробежала на 60 м больше, чем другая.
5. Девочки встретились через 30 с.
6. Скорость движения одной девочки больше скорости движения
другой.
1. С какой скоростью бежала 1-я девочка?
2. С какой скоростью бежала 2-я девочка?
По отношению между условиями и требованиями различают:
Например, задача «Возле дома росло 5 яблонь, 2 вишни и 3 березы. Сколько фруктовых деревьев росло возле дома?» является переопределенной, так как содержит лишнее условие.
Уточним теперь смысл термина «решение задачи». Так сложилось, что этим термином обозначают разные понятия:
1) решением задачи называют результат, т.е. ответ на требование
задачи;
2) решением задачи называют процесс нахождения этого результата, причем этот процесс рассматривают двояко: и как метод нахождения результата (например, говорят о решении задачи арифметическим способом) и как последовательность тех действий, которые выполняет решающий, применяя тот или иной метод (т.е. в данном случае под
решением задачи понимается вся деятельность человека, решающего задачу).
Упражнения
1. В следующих задачах выделите условия и требования:
а) Два автобуса отправились одновременно из города в село, расстояние до которого 72 км. Первый автобус прибыл в село на 15 мин раньше второго. С какой скоростью шел каждый автобус, если скорость одного из них на 4 км/ч больше скорости другого?
б) Сумма двух чисел равна 199. Найдите эти числа, если одно из них больше другого на 61.
2. Задачи из упражнения 1 сформулируйте таким образом, чтобы предложение, содержащее требование, не содержало условий.
4. Решите задачи из упражнения I.
5. Даны условия задачи: «Собрали 42 кг огурцов и 5/7 всех огурцов засолили».
Из нижеследуемого списка выберите требования к данному условию и решите полученную задачу:
а) Сколько килограммов огурцов осталось незасоленными?
б) Сколько килограммов помидор осталось незасоленными?
6. Сформулируйте возможные требования к условию задачи:
а) Купили 12 м ткани и третью часть ткани израсходовали на платье.
б) Из деревни вышел пешеход, а через 2 ч вслед за ним выехал велосипедист. Скорость велосипедиста 10 км/ч, а скорость пешехода 5 км/ч.
7. Какие данные необходимы для ответа на следующее требование
задачи:
а) Какая часть урока использована на решение задачи?
б) Сколько платьев сшили из купленной ткани?
в) Найдите периметр прямоугольника.
8. Ученику была предложена задача: «Велосипедист ехал 2 часа с
некоторой скоростью. После того как он проедет 60 км с такой же
скоростью, его путь станет равным 48 км. С какой скоростью ехал
велосипедист?» Он решил ее так:
Согласны ли вы с таким решением данной задачи?
9. Можете ли вы дать ответ на требование следующей задачи:
а) За 3 м ткани заплатили 60000 р. Во второй раз купили 6 м ткани. Сколько денег заплатили за ткань, купленную во второй раз?
б) Два мотоциклиста едут навстречу друг другу. Скорость одного них 62 км/ч, а скорость другого 54 км/ч. Через сколько часов мотоциклисты встретятся?
В случае если нельзя ответить на требование задачи, дополните ее условие и решите задачу.
10. Есть ли среди нижеприведенных задачи с лишними данными:
а) Объем комнаты равен 72 м³. Высота комнаты 3 м. Найдите площадь пола комнаты, если ее длина 6 м.
5) Для посадки леса выделили участок, площадь которого 300 га. Ду6ы посадили на 7/10 участка, а сосны на 3/10 участка. Сколько гектаров занято дубами и соснами?
В случае если в задаче есть лишние данные, то исключите их и решнте задачу.