Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΈ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Для ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° простых ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ достаточно Ρ…ΠΎΡ€ΠΎΡˆΠΎ выполняСтся Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π·Π°ΠΊΠΎΠ½ случайных ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ (Π·Π°ΠΊΠΎΠ½ Гаусса), Π²Ρ‹Π²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… эмпиричСских ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ.

1) ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΉ ряд Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ;

2) ΠΏΡ€ΠΈ большом числС ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Π½ΠΎ Ρ€Π°Π·Π½ΠΎΠ³ΠΎ Π·Π½Π°ΠΊΠ° Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ часто,

3) Ρ‡Π΅ΠΌ большС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° случайной ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ, Ρ‚Π΅ΠΌ мСньшС Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ Π΅Π΅ появлСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, (2)

Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅— функция распрСдСлСния случайных ошибок (ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ), Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ появлСния ошибки Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Οƒ – срСдняя квадратичная ошибка.

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Οƒ Π½Π΅ являСтся случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ процСсс ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Если условия ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ, Ρ‚ΠΎ Οƒ остаСтся постоянной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ этой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ диспСрсиСй ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Π§Π΅ΠΌ мСньшС диспСрсия, Ρ‚Π΅ΠΌ мСньшС разброс ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈ Ρ‚Π΅ΠΌ Π²Ρ‹ΡˆΠ΅ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ.

Π’ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ срСднСй ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ошибки Οƒ, ΠΊΠ°ΠΊ ΠΈ истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ измСряСмой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, нСизвСстно. БущСствуСт Ρ‚Π°ΠΊ называСмая статистичСская ΠΎΡ†Π΅Π½ΠΊΠ° этого ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, Π² соотвСтствии с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ срСдняя квадратичная ошибка равняСтся срСднСй ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ошибкС срСднСго арифмСтичСского Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, (3)

Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅— Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ i-Π³ΠΎ измСрСния; Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅— срСднСС арифмСтичСскоС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ; n – число ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ.

Π§Π΅ΠΌ большС число ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, Ρ‚Π΅ΠΌ мСньшС Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ΠΈ Ρ‚Π΅ΠΌ большС ΠΎΠ½ΠΎ приблиТаСтся ΠΊ Οƒ. Если истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ измСряСмой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΞΌ, Π΅Π΅ срСднСС арифмСтичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Π° случайная Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Π°Ρ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Ρ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Π² Π²ΠΈΠ΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅.

Π˜Π½Ρ‚Π΅Ρ€Π²Π°Π» Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΎΡ‚ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅Π΄ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ измСряСмой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΞΌ, называСтся Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² физикСявляСтся случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ, Ρ‚ΠΎ истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ Π² Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ Ξ±, которая называСтся Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΈΠ»ΠΈ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Π­Ρ‚Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° числСнно Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ. (см. рис.)

ВсС это справСдливо для достаточно большого числа ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, ΠΊΠΎΠ³Π΄Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ Οƒ. Для отыскания Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΈ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ вСроятности ΠΏΡ€ΠΈ нСбольшом числС ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ Π² Ρ…ΠΎΠ΄Π΅ выполнСния Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ распрСдСлСниС вСроятностСй Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π°. Π­Ρ‚ΠΎ распрСдСлСниС вСроятностСй случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ коэффициСнтом Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π°, Π΄Π°Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅Π² долях срСднСй ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ошибки срСднСго арифмСтичСского Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. (4)

Ѐункция распрСдСлСния Ρ‚Π°Π±ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π° (Ρ‚Π°Π±Π».1). Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ коэффициСнта Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° находится Π½Π° пСрСсСчСнии строки, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ числу ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ n, ΠΈ столбца, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ вСроятности Ξ±

Π’Π°Π±Π»ΠΈΡ†Π° 1.

nΞ±nΞ±
0,80,90,950,980,80,90,950,98
1,92,94,37,01,52,02,63,4
1,62,43,24,51,41,92,43,1
1,52,12,83,71,41,92,43,9

ΠŸΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹, ΠΌΠΎΠΆΠ½ΠΎ:

1) ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», задаваясь ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ;

2) Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ.

ΠŸΡ€ΠΈ косвСнных измСрСниях ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ ΠΎΡˆΠΈΠ±ΠΊΡƒ срСднСго арифмСтичСского значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. (5)

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΈ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² случаС прямых ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ (Π°Π½Π³Π». Confidence Intervals) ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Ρ‚ΠΈΠΏΠΎΠ² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ†Π΅Π½ΠΎΠΊ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π² статистикС, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ для Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ уровня значимости. Они ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ нСизвСстного статистичСского ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности находится Π² ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ, которая Π·Π°Π΄Π°Π½Π° Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ статистичСской значимости.

ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ распрСдСлСниС

Когда извСстна вариация (Οƒ 2 ) Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности Π΄Π°Π½Π½Ρ‹Ρ…, для расчСта Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ² (Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована z-ΠΎΡ†Π΅Π½ΠΊΠ°. По ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ t-распрСдСлСния, использованиС z-ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π±ΠΎΠ»Π΅Π΅ ΡƒΠ·ΠΊΠΈΠΉ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Π½ΠΎ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ Π½Π°Π΄Π΅ΠΆΠ½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ матСматичСского оТидания ΠΈ срСднСквадратичСского (стандартного) отклонСния (Οƒ), ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Z-ΠΎΡ†Π΅Π½ΠΊΠ° основываСтся Π½Π° Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ распрСдСлСнии.

Π€ΠΎΡ€ΠΌΡƒΠ»Π°

Для опрСдСлСния Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, ΠΏΡ€ΠΈ условии Ρ‡Ρ‚ΠΎ извСстно срСднСквадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности Π΄Π°Π½Π½Ρ‹Ρ…, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°

Π³Π΄Π΅ X – матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ, Ξ± – ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ статистичСской значимости, ZΞ±/2 – Z-ΠΎΡ†Π΅Π½ΠΊΠ° для уровня статистичСской значимости Ξ±/2, Οƒ – срСднСквадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности, n – количСство наблюдСний Π² Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅. ΠŸΡ€ΠΈ этом, Οƒ/√ n являСтся стандартной ошибкой.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» для уровня статистичСской значимости Ξ± ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ насчитываСт 25 наблюдСний, матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ равняСтся 15, Π° срСднСквадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности составляСт 8. Для уровня значимости Ξ±=5% Z-ΠΎΡ†Π΅Π½ΠΊΠ° Ρ€Π°Π²Π½Π° ZΞ±/2=1,96. Π’ этом случаС ниТняя ΠΈ вСрхняя Π³Ρ€Π°Π½ΠΈΡ†Π° Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° составят

А сам Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записан Π² Π²ΠΈΠ΄Π΅

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ 95% матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности ΠΏΠΎΠΏΠ°Π΄Π΅Ρ‚ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΠΎΡ‚ 11,864 Π΄ΠΎ 18,136.

ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ суТСния Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°

Допустим, Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ [11,864; 18,136] являСтся слишком ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ для Ρ†Π΅Π»Π΅ΠΉ нашСго исслСдования. Π£ΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΌΠΎΠΆΠ½ΠΎ двумя способами.

Π‘Π½ΠΈΠ·ΠΈΠ² ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ статистичСской значимости Π΄ΠΎ Ξ±=10%, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Z-ΠΎΡ†Π΅Π½ΠΊΡƒ Ρ€Π°Π²Π½ΡƒΡŽ ZΞ±/2=1,64. Π’ этом случаС ниТняя ΠΈ вСрхняя Π³Ρ€Π°Π½ΠΈΡ†Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° составят

А сам Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записан Π² Π²ΠΈΠ΄Π΅

Π’ этом случаС, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ 90% матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности ΠΏΠΎΠΏΠ°Π΄Π΅Ρ‚ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ [12,376; 17,624].

Если ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ Π½Π΅ ΡΠ½ΠΈΠΆΠ°Ρ‚ΡŒ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ статистичСской значимости Ξ±, Ρ‚ΠΎ СдинствСнной Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ остаСтся ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ объСма Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ. Π£Π²Π΅Π»ΠΈΡ‡ΠΈΠ² Π΅Π΅ Π΄ΠΎ 144 наблюдСний, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ значСния Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ²

Π‘Π°ΠΌ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» станСт ΠΈΠΌΠ΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, суТСниС Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° Π±Π΅Π· сниТСния уровня статистичСской значимости Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ лишь Π·Π° счСт увСличСния объСма Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ. Если ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ объСма Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ Π½Π΅ прСдставляСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ, Ρ‚ΠΎ суТСниС Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒΡΡ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π° счСт сниТСния уровня статистичСской значимости.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΏΡ€ΠΈ распрСдСлСнии ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠΌ ΠΎΡ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ

Π’ случаС Ссли срСднСквадратичноС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности Π½Π΅ извСстно ΠΈΠ»ΠΈ распрСдСлСниС ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎ ΠΎΡ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ, для построСния Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ t-распрСдСлСниС. Π­Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° являСтся Π±ΠΎΠ»Π΅Π΅ консСрвативной, Ρ‡Ρ‚ΠΎ выраТаСтся Π² Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΈΡ… Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ…, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ, Π±Π°Π·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉΡΡ Π½Π° Z-ΠΎΡ†Π΅Π½ΠΊΠ΅.

Π€ΠΎΡ€ΠΌΡƒΠ»Π°

Для расчСта Π½ΠΈΠΆΠ½Π΅Π³ΠΎ ΠΈ Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π° Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° Π½Π° основании t-распрСдСлСния ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

Π³Π΄Π΅ X – матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ, Ξ± – ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ статистичСской значимости, tΞ± – t-ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° для уровня статистичСской значимости Ξ± ΠΈ количСства стСпСнСй свободы (n-1), Οƒ – срСднСквадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ, n – количСство наблюдСний Π² Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅.

Π‘Π°ΠΌ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записан Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅

РаспрСдСлСниС Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° ΠΈΠ»ΠΈ t-распрСдСлСниС зависит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° – количСства стСпСнСй свободы, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ€Π°Π²Π½ΠΎ количСству ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° (количСство наблюдСний Π² Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅). Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ t-критСрия Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° для Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ количСства стСпСнСй свободы (n) ΠΈ уровня статистичСской значимости Ξ± ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΈΠ· справочных Ρ‚Π°Π±Π»ΠΈΡ†.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ составляСт 25 ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ Ρ€Π°Π²Π½ΠΎ 50, Π° срСднСквадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ Ρ€Π°Π²Π½ΠΎ 28. НСобходимо ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» для уровня статистичСской значимости Ξ±=5%.

Π’ нашСм случаС количСство стСпСнСй свободы Ρ€Π°Π²Π½ΠΎ 24 (25-1), ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ t-критСрия Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° для уровня статистичСской значимости Ξ±=5% составляСт 2,064. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ниТняя ΠΈ вСрхняя Π³Ρ€Π°Π½ΠΈΡ†Π° Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° составят

А сам ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записан Π² Π²ΠΈΠ΄Π΅

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ 95% матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности окаТСтся Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ [38,442; 61,558].

ИспользованиС t-распрСдСлСния позволяСт ΡΡƒΠ·ΠΈΡ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π»ΠΈΠ±ΠΎ Π·Π° счСт сниТСния статистичСской значимости, Π»ΠΈΠ±ΠΎ Π·Π° счСт увСличСния Ρ€Π°Π·ΠΌΠ΅Ρ€Π° Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ.

Π‘Π½ΠΈΠ·ΠΈΠ² ΡΡ‚Π°Ρ‚ΠΈΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ с 95% Π΄ΠΎ 90% Π² условиях нашСго ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ t-критСрия Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° 1,711.

Π’ этом случаС ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ 90% матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности окаТСтся Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ [40,418; 59,582].

Если ΠΌΡ‹ Π½Π΅ Ρ…ΠΎΡ‚ΠΈΠΌ ΡΠ½ΠΈΠΆΠ°Ρ‚ΡŒ ΡΡ‚Π°Ρ‚ΠΈΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ СдинствСнной Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ объСма Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ. Допустим, Ρ‡Ρ‚ΠΎ ΠΎΠ½ составляСт 64 ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… наблюдСния, Π° Π½Π΅ 25 ΠΊΠ°ΠΊ Π² ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ условии ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°. Π’Π°Π±Π»ΠΈΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ t-критСрия Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° для 63 стСпСнСй свободы (64-1) ΠΈ уровня статистичСской значимости Ξ±=5% составляСт 1,998.

Π­Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π½Π°ΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ с Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ 95% матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности окаТСтся Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ [43,007; 56,993].

Π’Ρ‹Π±ΠΎΡ€ΠΊΠΈ большого объСма

К Π²Ρ‹Π±ΠΎΡ€ΠΊΠ°ΠΌ большого объСма относятся Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ ΠΈΠ· Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности Π΄Π°Π½Π½Ρ‹Ρ…, количСство ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… наблюдСний Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 100. БтатистичСскиС исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ большСго объСма ΠΈΠΌΠ΅ΡŽΡ‚ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΡŽ Π±Ρ‹Ρ‚ΡŒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ распрСдСлСнными, Π΄Π°ΠΆΠ΅ Ссли распрСдСлСниС Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности отличаСтся ΠΎΡ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, для Ρ‚Π°ΠΊΠΈΡ… Π²Ρ‹Π±ΠΎΡ€ΠΎΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ z-ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΈ t-распрСдСлСния Π΄Π°ΡŽΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΡ€ΠΈ построСнии Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, для Π²Ρ‹Π±ΠΎΡ€ΠΎΠΊ большого объСма допускаСтся ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ z-ΠΎΡ†Π΅Π½ΠΊΠΈ для Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ распрСдСлСния вмСсто t-распрСдСлСния.

ПодвСдСм ΠΈΡ‚ΠΎΠ³ΠΈ

Π’ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ собраны Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ Π²Ρ‹Π±ΠΎΡ€Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ построСния Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ² для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ситуаций.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠžΠ’Π•Π Π˜Π’Π•Π›Π¬ΠΠ«Π™ Π˜ΠΠ’Π•Π Π’ΠΠ›

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ «Π”ΠžΠ’Π•Π Π˜Π’ЕЛЬНЫЙ Π˜ΠΠ’Π•Π Π’ΠΠ›» Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… словарях:

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» β€” Ρ‚Π΅Ρ€ΠΌΠΈΠ½, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ Π² матСматичСской статистикС ΠΏΡ€ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΡŒΠ½ΠΎΠΉ (Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ) ΠΎΡ†Π΅Π½ΠΊΠ΅ статистичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Π΅Π΅ ΠΏΡ€ΠΈ нСбольшом ΠΎΠ±ΡŠΡ‘ΠΌΠ΅ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ. Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ нСизвСстный ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ … ВикипСдия

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» β€” ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», вычислСнный ΠΏΠΎ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ (Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ) Π½Π°ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ нСизвСстноС истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° распрСдСлСния. Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ: Π“ΠžΠ‘Π’ 20522 96: Π“Ρ€ΡƒΠ½Ρ‚Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ статистичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ-справочник Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎ-тСхничСской Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ

Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» β€” для скалярного ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности – это ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, с большой Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ содСрТащий этот ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€. Π­Ρ‚Π° Ρ„Ρ€Π°Π·Π° Π±Π΅Π· Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… ΡƒΡ‚ΠΎΡ‡Π½Π΅Π½ΠΈΠΉ бСссмыслСнна. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΠΎ Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅, СстСствСнна Сго… … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ социологичСской статистики

Π”ΠžΠ’Π•Π Π˜Π’Π•Π›Π¬ΠΠ«Π™ Π˜ΠΠ’Π•Π Π’ΠΠ› β€” (confidence interval) Π˜Π½Ρ‚Π΅Ρ€Π²Π°Π», Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΠΎ насСлСнию, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° основС Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ обслСдования, ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ вСроятности, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ 95%, Ρ‡Ρ‚ΠΎ обусловлСно самой Π²Ρ‹Π±ΠΎΡ€ΠΊΠΎΠΉ (sample). Ширина… … ЭкономичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» β€” – ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ находится истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ опрСдСляСмой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ. ΠžΠ±Ρ‰Π°Ρ химия : ΡƒΡ‡Π΅Π±Π½ΠΈΠΊ / А. Π’. Π–ΠΎΠ»Π½ΠΈΠ½ [1] … Π₯имичСскиС Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π”Π˜ β€” Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Π”Π˜ * Π΄Π°Π²ΡΡ€Π°Π»ΡŒΠ½Ρ‹ інтэрвал, Π”Π† * confidence interval ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» значСния ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°, рассчитанный для ΠΊ. Π». ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° распрСдСлСния (Π½Π°ΠΏΡ€., срСднСго значСния ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°) ΠΏΠΎ Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅ ΠΈ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ (Π½Π°ΠΏΡ€., 95% для 95% … Π“Π΅Π½Π΅Ρ‚ΠΈΠΊΠ°. ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» β€” β€” [http://www.iks media.ru/glossary/index.html?glossid=2400324] Π’Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡΠ²ΡΠ·ΡŒ, основныС понятия EN confidence interval … Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ тСхничСского ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Ρ‡ΠΈΠΊΠ°

Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» β€” pasikliovimo intervalas statusas T sritis Standartizacija ir metrologija apibrΔ—ΕΎtis DydΕΎio verčiΕ³ intervalas, kuriame su pasirinktΔ…ja tikimybe yra matavimo rezultato vertΔ—. atitikmenys: angl. confidence interval vok. Vertrauensbereich, m rus.… … Penkiakalbis aiΕ‘kinamasis metrologijos terminΕ³ ΕΎodynas

Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» β€” pasikliovimo intervalas statusas T sritis chemija apibrΔ—ΕΎtis DydΕΎio verčiΕ³ intervalas, kuriame su pasirinktΔ…ja tikimybe yra matavimo rezultatΕ³ vertΔ—. atitikmenys: angl. confidence interval rus. Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ; Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» … Chemijos terminΕ³ aiΕ‘kinamasis ΕΎodynas

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π».

Π’Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ истинноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ измСряСмой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π»Π΅ΠΆΠΈΡ‚ Π²Π½ΡƒΡ‚Ρ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, называСтся Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΈΠ»ΠΈ коэффициСнтом надСТности,Π° сам ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅.

Π½Π° Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ коэффициСнт Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π°. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² физикСдля ряда Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ΠΈ n ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅.

Число ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ nΠ”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ y
0,670,900,950,99
2,06,312,763,7
1,32,43,25,8
1,22,12,84,6
1,22,02,64,0
1,11,82,33,3
1,01,72,02,6

ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, для измСряСмой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ y ΠΏΡ€ΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ вСроятности y ΠΈ числС ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ n получаСтся условиС

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ случайной ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽΠ²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ y.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: см. Π»Π΅ΠΊΡ†ΠΈΡŽ β„–5 – ряд чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ΠŸΡ€ΠΈ числС ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ – 45 ΠΈ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ вСроятности – 0,95 ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ коэффициСнт Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π΅Π½ 2,15. Π’ΠΎΠ³Π΄Π° Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» для Π΄Π°Π½Π½ΠΎΠ³ΠΎ ряда ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Ρ€Π°Π²Π΅Π½ 62,6.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΎΠΌ Π³Ρ€ΡƒΠ±Ρ‹Ρ… ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ Π½Π΅Ρ€Π΅Π΄ΠΊΠΎ Π±Ρ‹Π²Π°ΡŽΡ‚ Ρ€Π΅Π·ΠΊΠΈΠ΅ измСнСния условий измСрСния ΠΈ ошибки, Π΄ΠΎΠΏΡƒΡ‰Π΅Π½Π½Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ:

— Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ отсчСт ΠΏΠΎ шкалС ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°, происходящий ΠΈΠ·-Π·Π° Π½Π΅Π²Π΅Ρ€Π½ΠΎΠ³ΠΎ ΡƒΡ‡Π΅Ρ‚Π° Ρ†Π΅Π½Ρ‹ ΠΌΠ°Π»Ρ‹Ρ… Π΄Π΅Π»Π΅Π½ΠΈΠΉ ΡˆΠΊΠ°Π»Ρ‹;

— Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ запись Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° наблюдСний, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ€ использованного Π½Π°Π±ΠΎΡ€Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π³ΠΈΡ€ΡŒ;

— хаотичСскиС измСнСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² напряТСния, ΠΏΠΈΡ‚Π°ΡŽΡ‰Π΅Π³ΠΎ срСдства измСрСния, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π΅Π³ΠΎ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΈΠ»ΠΈ частоты.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π·Π° 15 ΠΌΠΈΠ½ΡƒΡ‚

Π”ΠΎΠ±Ρ€Ρ‹ΠΉ дСнь, ΡƒΠ²Π°ΠΆΠ°Π΅ΠΌΡ‹Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΠΈ!

МСня Π·ΠΎΠ²ΡƒΡ‚ ΠšΠΈΡ€ΠΈΠ»Π» ΠœΠΈΠ»ΡŒΡ‡Π°ΠΊΠΎΠ². БСгодня ΠΌΡ‹ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅ΠΌ наш Ρ€Π°Π·Π³ΠΎΠ²ΠΎΡ€ ΠΎ биостатистикС. Π’Π΅ΠΌΠ° сСгодняшнСй нашСй бСсСды Π±ΡƒΠ΄Π΅Ρ‚ Β«Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Β». Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»? Π’Ρ‹ навСрняка Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Π»ΠΈΡΡŒ с Π½ΠΈΠΌ Π² Π½Π°ΡƒΡ‡Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» 95 %, Π»ΠΈΠ±ΠΎ сочСтаниС символов Π”Π˜ ΠΈ CI (confidence interval) 95 %. Π§Ρ‚ΠΎ ΠΆΠ΅ ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ эти 95 %? КакиС ΠΎΠ½ Π΅Ρ‰Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ значСния? И ΠΊΠ°ΠΊ Π΅Π³ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ? Об этом ΠΎΠ±ΠΎ всСм сСгодня ΠΌΡ‹ ΠΈ ΠΏΠΎΠ³ΠΎΠ²ΠΎΡ€ΠΈΠΌ Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅.

Π’ΠΈΠ΄Π΅ΠΎ-вСрсия ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΎ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅

Π“Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½Π°Ρ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΈ выборочная ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΡƒΠ³Π»ΡƒΠ±Π»ΡΡ‚ΡŒΡΡ Π² Ρ‚Π°ΠΉΠ½Ρ‹ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, Ρ…ΠΎΡ‚Π΅Π» Π±Ρ‹ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ с Π²Π°ΠΌΠΈ 2 основных понятия статистичСской совокупности, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ Ρ‡Π°Ρ‰Π΅ всСго Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ – это Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½Π°Ρ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ выборочная ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ Π²Ρ‹Π±ΠΎΡ€ΠΊΠ°.

Π“Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½Π°Ρ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ – это Ρ‚ΠΎΡ‚ массив Π΄Π°Π½Π½Ρ‹Ρ…, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²Ρ‹ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

Π’Ρ‹Π±ΠΎΡ€ΠΊΠ° являСтся Ρ‡Π°ΡΡ‚ΡŒΡŽ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности, которая участвуСт нСпосрСдствСнно Π² вашСм экспСримСнтС. Π•ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠ΅ понятиС ΠΊΠ°ΠΊ Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, сСгодня ΠΌΡ‹ Π½Π΅ Π±ΡƒΠ΄Π΅ΠΌ Π΅Π³ΠΎ ΠΊΠ°ΡΠ°Ρ‚ΡŒΡΡ, Π³Π»Π°Π²Π½ΠΎΠ΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π±ΠΎΡ€ΠΊΠ° Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ.

Если привСсти нСбольшой ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности ΠΈ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ ΠΎ простом случаС ΠΈΠ· вашСй ΠΆΠΈΠ·Π½ΠΈ. Когда Π²Ρ‹ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ ΡƒΠ·Π½Π°Ρ‚ΡŒ, достаточно Π»ΠΈ посолСн суп, Π²Ρ‹ Π±Π΅Ρ€Π΅Ρ‚Π΅ Π»ΠΎΠΆΠΊΡƒ супа ΠΈ ΠΏΡ€ΠΎΠ±ΡƒΠ΅Ρ‚Π΅ Π΅Π³ΠΎ. Π’Π°ΠΌ Π½Π΅ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π΅ΡΡ‚ΡŒ вСсь суп, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, насколько ΠΎΠ½ посолСн. Π›ΠΎΠΆΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ случаС являСтся Π²Ρ‹Π±ΠΎΡ€ΠΊΠΎΠΉ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²Ρ‹ Π΄Π΅Π»Π°Π΅Ρ‚Π΅ Π²Ρ‹Π²ΠΎΠ΄ ΠΎΠ±ΠΎ всСй ΠΊΠ°ΡΡ‚Ρ€ΡŽΠ»Π΅ супа. Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС ΠΊΠ°ΡΡ‚Ρ€ΡŽΠ»Ρ супа являСтся Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒΡŽ, Π° Π»ΠΎΠΆΠΊΠ° супа являСтся Π²Ρ‹Π±ΠΎΡ€ΠΊΠΎΠΉ.

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ вспомнили с Π²Π°ΠΌΠΈ ΠΎ 2 ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… статистичСских совокупностях – ΠΎ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности ΠΈ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ совокупности. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½ΡƒΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΈΠΏΡ‹ исслСдования, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ проводятся Π½Π°Π΄ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒΡŽ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎ-Ρ€Π°Π·Π½ΠΎΠΌΡƒ. Над Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒΡŽ проводятся Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ ΡΠΏΠ»ΠΎΡˆΠ½Ρ‹Π΅ исслСдования, Π½Π°Π΄ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒΡŽ – Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½Ρ‹Π΅.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ вспомним нСбольшиС отличия ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ этих 2 совокупностСй. БСгодня для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Π½Π°ΠΌ понадобятся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π΅Ρ‰ΠΈ: Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ срСднСй арифмСтичСской Π² Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности ΠΈ Π² Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ совокупности. Π’ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡ΠΎΠΊ Β΅ (мю), Π² Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ – это xΜ… (Ρ… с Ρ‡Π΅Ρ€Ρ‚ΠΎΠΉ) β€” это срСдниС арифмСтичСскиС ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ совокупности.
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π”Π°Π»Π΅Π΅ Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ стандартноС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡ΠΎΠΊ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ – Π»ΠΈΠ±ΠΎ S, Π»ΠΈΠ±ΠΎ SD (standard deviation), Π° Π² случаС Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности ΠΎΠ½ΠΎ носит Π½Π°Π·Π²Π°Π½ΠΈΠ΅ срСднСквадратичного отклонСния ΠΈ обозначаСтся Π±ΡƒΠΊΠ²ΠΎΠΉ Οƒ (сигма).

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ расчСта Π΄ΠΎΠ²Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅ чисто Π³ΠΈΠΏΠΎΡ‚Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΠΈΡ‚ΡƒΠ°Ρ†ΠΈΡŽ, ΠΊΠΎΠ³Π΄Π° ΠΏΠ΅Ρ€Π΅Π΄ Π½Π°ΠΌΠΈ стоит Π·Π°Π΄Π°Ρ‡Π° исслСдований срСднСго роста марсианина. Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΅Π³ΠΎ ΡƒΠ·Π½Π°Ρ‚ΡŒ, Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ 3 экспСдиции. ΠŸΠ΅Ρ€Π²ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ… ΠΏΠΎΠ²Π΅Π·Π»ΠΎ большС всСго: ΠΎΠ½ΠΈ смогли ΠΏΠΎΠΉΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· 200 марсианин ΠΈ ΠΏΠΎΠΌΠ΅Ρ€ΠΈΡ‚ΡŒ Π΅Π³ΠΎ рост.

Как ΠΌΡ‹ ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρƒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ распрСдСлСния ΠΏΠΎ оси Π₯ находится Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°, Π»ΠΈΠ±ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° (Π² Π΄Π°Π½Π½ΠΎΠΌ случаС это рост Π² сантимСтрах), Π° ΠΏΠΎ оси Y – частота встрСчаСмости ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Ρ‚ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° (ΠΌΡ‹ Π΅Π³ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅ΠΌ Π±ΡƒΠΊΠ²ΠΎΠΉ П.

Π˜Ρ‚Π°ΠΊ, оказалось, Ρ‡Ρ‚ΠΎ Ρƒ всСх 200 марсиан срСдний рост составил 40 сантимСтров. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, пСрвая экспСдиция смогла провСсти Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ΅ сплошноС исслСдованиС, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΡ€Π°Π±ΠΎΡ‚Π°Π»Π° со всСми Π΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ наблюдСния Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ ΠΏΡ€Π°Π²ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ этот ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ Β΅.

Однако, Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ экспСдиции ΠΏΠΎΠ²Π΅Π·Π»ΠΎ Π³ΠΎΡ€Π°Π·Π΄ΠΎ мСньшС. Они ΠΏΠΎΠΏΠ°Π»ΠΈ Π² самыС ΠΏΠ»ΠΎΡ…ΠΎ насСлСнныС участки ΠœΠ°Ρ€ΡΠ° ΠΈ смогли ΠΎΡ‚ΠΎΠ±Ρ€Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 10 марсиан. Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС оказалось, Ρ‡Ρ‚ΠΎ срСдний рост ΠΏΠΎ ΠΈΡ… Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅ составил всСго 38 сантимСтров Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ случаС ΠΈ 41 сантимСтр Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ случаС.

Π§Ρ‚ΠΎ ΠΆΠ΅ Π΄Π΅Π»Π°Ρ‚ΡŒ? Π”Π°, Ρƒ нас Π΅ΡΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ ΠΈΠ· самого ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ исслСдования, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ относится ΠΊ ΠΏΠ΅Ρ€Π²ΠΎΠΉ экспСдиции. Но ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π½ΠΈ ΠΎΠ΄Π½Π° Π±Ρ‹ ΠΈΠ· Π½ΠΈΡ… Π½Π΅ смогла Π±Ρ‹ ΠΏΠΎΡ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ со всСй ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΈ Ρƒ нас Π±Ρ‹Π»ΠΈ Π±Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ экспСдиции. Π§Ρ‚ΠΎ ΠΆΠ΅ Π² этой ситуации Π΄Π΅Π»Π°Ρ‚ΡŒ? Π’ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½ΠΈΠΊΡ‚ΠΎ 40 сантимСтров Π² Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½Π΅ достиг: Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ экспСдиции Π‘ ΠΎΠ½Π° Ρ€Π°Π²Π½Π° 38 сантимСтрам, Π° Π² экспСдиции Π’ – 41 сантимСтр. Π’ΠΎ Π΅ΡΡ‚ΡŒ Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½ΠΈΠΊΡ‚ΠΎ Π½Π΅ достиг 40 сантимСтров. Π§Ρ‚ΠΎ ΠΆΠ΅ Π΄Π΅Π»Π°Ρ‚ΡŒ Π² Π΄Π°Π½Π½ΠΎΠΌ случаС?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

И Π²ΠΎΡ‚ здСсь Π½Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ ΠΊ Π½Π°ΠΌ ΠΏΡ€ΠΈΡ…ΠΎΠ΄ΠΈΡ‚ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°. Π”ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» являСтся Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ этапом ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°. ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡ‚ΡŒ, насколько Π² ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅ этот ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ наша срСдняя (xΜ…Π±, xΜ…Π²) ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ, ΠΎΡˆΠΈΠ±Π°Ρ‚ΡŒΡΡ ΠΎΡ‚ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π² Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности. Насколько?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π˜Ρ‚Π°ΠΊ, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΠΌΡ‹ нашли Π½Π°ΡˆΡƒ ΠΎΡˆΠΈΠ±ΠΊΡƒ рСпрСзСнтативности mr. Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС ΠΎΠ½Π° составила 2,7 сантимСтра. Но Ρ‡Ρ‚ΠΎ ΠΆΠ΅ это Π½Π°ΠΌ Π΄Π°Π΅Ρ‚? А Π΄Π°Π΅Ρ‚ Π½Π°ΠΌ это ΡƒΠΆΠ΅ достаточно ΠΌΠ½ΠΎΠ³ΠΎ. Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹, зная, насколько Π² ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅ наша Π²Ρ‹Π±ΠΎΡ€ΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡˆΠΈΠ±Π°Ρ‚ΡŒΡΡ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности, ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Π³Π΄Π΅ ΠΆΠ΅ находится Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ – Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Π΅ 40 сантимСтров Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности Π½Π° основании Π΄Π°Π½Π½Ρ‹Ρ… лишь нашСй Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ.

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ Π·Π°Π»Π΅Π·Π°Ρ‚ΡŒ Π² ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π° сСгодня, я скаТу лишь, Ρ‡Ρ‚ΠΎ:

для Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° 95 % ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ t=2,

для Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° 99 % ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ t=3

ΠΈ для Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° 68 % ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ t=1.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π˜Ρ‚Π°ΠΊ, послС Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΠΌΡ‹ нашли Π½Π°ΡˆΡƒ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΡˆΠΈΠ±ΠΊΡƒ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π». Но для этого Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ самим Π·Π°Π΄Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‚ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ для нас ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ большС всСго. Π§Π°Ρ‰Π΅ всСго Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ошибки 5 %, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» 95 % ΠΈΠ»ΠΈ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ошибки 5 % (Ρ€=0,05, Ρ€=5 %).

Π§Ρ‚ΠΎ ΠΆΠ΅ Π·Π½Π°Ρ‡Π°Ρ‚ эти 95 %? А Π·Π½Π°Ρ‡Π°Ρ‚ ΠΎΠ½ΠΈ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅, Ρ‡Ρ‚ΠΎ с 95%-Π½ΠΎΠΉ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ Π² нашСм ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π»Π΅ΠΆΠΈΡ‚ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, ΠΈ лишь Π² 5 % случаСв ΠΌΡ‹ ошибаСмся. Π’ΠΎ Π΅ΡΡ‚ΡŒ Π² нашСм ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ случаС наша ошибка рСпрСзСнтативности составила 2,7 сантимСтра. ΠŸΡ€Π΅Π΄Π΅Π»ΡŒΠ½Π°Ρ ошибка ΠΎΡ‚ΡΡŽΠ΄Π° Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° Ρ‡Π΅ΠΌΡƒ? ИмСнно 5,4 сантимСтра, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ здСсь ΠΈ плюс, ΠΈ минус, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΎΡˆΠΈΠ±ΠΊΡƒ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° 2, составил 10,8 сантимСтров. А ΠΈΠΌΠ΅Π½Π½ΠΎ наши 38 см±5,4 см. Π¨ΠΈΡ€ΠΈΠ½Π° всСго Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° составляСт 10,8 см. Напомню, Ρ‡Ρ‚ΠΎ ΠΎΠ½ складываСтся ΠΈΠ· ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ошибок Π²ΠΎΠΊΡ€ΡƒΠ³ нашСй Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ срСднСй.

Π˜Ρ‚Π°ΠΊ, говоря ΠΎ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, Π½ΡƒΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ряд Π²Π°ΠΆΠ½Ρ‹Ρ… Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ².

Если это Π²ΠΈΠ΄Π΅ΠΎ оказалось Π’Π°ΠΌ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌ, ΠΎΠ½ΠΎ хотя Π±Ρ‹ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ раскрыло Ρ‚Π°ΠΉΠ½Ρ‹ Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, ΡΡ‚Π°Π²ΡŒΡ‚Π΅ Π»Π°ΠΉΠΊΠΈ, ΠΏΠΎΠ΄ΠΏΠΈΡΡ‹Π²Π°ΠΉΡ‚Π΅ΡΡŒ Π½Π° наши рассылки ΠΈ Π² коммСнтариях ΠΏΠΈΡˆΠΈΡ‚Π΅, ΠΊΠ°ΠΊΠΈΠ΅ Ρ‚Π΅ΠΌΡ‹ ΠΏΠΎ биостатистикС Π²Π°ΠΌ Π±Ρ‹ Π±Ρ‹Π»ΠΈ интСрСсны для ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… выпусков. На этом я с Π²Π°ΠΌΠΈ ΠΏΡ€ΠΎΡ‰Π°ΡŽΡΡŒ. МСня Π·ΠΎΠ²ΡƒΡ‚ ΠšΠΈΡ€ΠΈΠ»Π». Пока!

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *