Что такое дроссель в светильнике
Для чего нужен дроссель для люминесцентных ламп?
Электромагнитный дроссель находит применение в цепях коммутации люминесцентной лампы.
Назначение дросселя – формирование импульса для пробоя газонаполненной среды и поддержание необходимого напряжения и тока в схеме и на контактах элементов работающего светильника. Принцип работы дросселя основан на способности катушки индуктивности извлекать энергию из источника тока и сохранять ее в виде магнитного поля.
Чтобы выяснить, как работает дроссель, нужно рассмотреть свойства катушки индуктивности. Она плохо проводит переменный ток или совсем не проводит его. Индуктивность измеряется в Генри (Гн) и ее значение можно увеличить путем применения сердечника, оно таким образом повышается в несколько раз.
Во время замыкания контактов выключателя величина тока на катушке постепенно возрастает, а при размыкании сначала растет многократно, а затем плавно уменьшается. В соленоиде этот параметр не изменяется мгновенно.
Дроссель для люминесцентных ламп – это катушка индуктивности с ферромагнитным сердечником. Он находит применение только в электрических цепях, в которых предусмотрено наличие электромагнитного ПРА.
На картинках показана схема подключения газоразрядной лампы низкого давления с использованием электромагнитного дросселя.
При замыкании выключателя ток протекает по следующему пути: «дроссель – электрод лампы – стартер – второй электрод лампы – сеть».
Величины этого тока очень мало для зажигания лампы. Но его значения хватает для нагревания электродов стартера и появления в нем тлеющего разряда. Напряжение этого разряда меньше напряжения сети, но больше напряжения работающей лампы.
Разогретый биметаллический электрод в стартере замыкается со вторым, после чего тлеющий разряд между ними гаснет, электроды остывают и занимают первоначальное положение.
В момент замыкания электродов в стартере ток в схеме значительно возрастает и электроды люминесцентной лампы начинают нагреваться. В то же время при размыкании цепи на дросселе (в результате самоиндукции) происходит скачок напряжения, который, складываясь с входным напряжением сети, создает условия для включения лампы.
К этому моменту температура на электродах лампы успевает повыситься до значения, необходимого для эмиссии, а дросселирующее устройство создает высоковольтный импульс. Поэтому в лампе создаются условия для возникновения тлеющего разряда, который сначала происходит в аргоновой среде до тех пор, пока ртуть, помещенная в колбу, не перейдет полностью в парообразное состояние. После этого разряд будет происходить в ртутных парах, и лампа войдет в стабильный рабочий режим.
Напряжение на работающей лампе меньше сетевого за счет его падения на дросселе. Поскольку для срабатывания стартера напряжение на нем должно превышать величину напряжения на включенной лампе, повторно разряд в этом приборе не зажжется.
Зажигание лампы происходит при условии совпадения по фазе импульса дросселируемого напряжения и напряжения сети. Но поскольку совпадения этих значений относительно разбросаны по времени, стартер может срабатывать неоднократно перед тем, как лампа войдет в рабочий режим. В этом случае наблюдается мигание лампы в процессе включения. Одновременно в стартере создаются радиопомехи, для подавления которых служит конденсатор, находящийся в общем со стартером футляре.
Так выглядит электромагнитный дроссель
Это означает, что кроме зажигания этого осветительного прибора дроссель необходим для ограничения возрастания тока разряда до величины, при достижении которой лампа выходит из строя.
Все, изложенное выше, объясняет, для чего нужен дроссель.
В результате того, что он ограничивает ток в схеме работающей лампы, он представляет собой дополнительную нагрузку (балласт) и на нем теряется какая-то часть мощности. По уровню этих потерь дроссели делятся на следующие классы: D – с обычными; C – с пониженными; B – с особо низкими.
Потери мощности в дросселях
Для чего нужны дроссели (ПРА) для люминесцетных ламп
Что такое дроссель и для чего он нужен.
Люминесцентные лампы, которые являются представителями типа газоразрядных ламп, невозможно зажечь как обычные лампы накаливания, просто подключив к ним напряжение питающей сети. Просто не произойдет ничего. Чтобы выполнить зажигание такой лампы необходима специальная схема или электронный пускорегулирующий аппарат.
В случае применения простейшей схемы для запуска тлеющего разряда в колбе газоразрядной лампы потребуется стартер и дроссель. Со стартером все понятно. Он требуется только для запуска, после чего он отключается. В работе всегда участвует дроссель. Его задача ограничивать ток, протекающий через лампы. Может показаться, что достаточно резистора. Он и меньшие размеры имеет. Теоретически, в цепи на переменном токе можно ограничивать ток резистором, конденсатором, катушкой индуктивности. Но в отличие от резистора, она обладает реактивным сопротивлением. И это делает его наиболее уместным вариантом, для его использования в качестве балластного элемента. В схеме он подключается последовательно с лампой.
Благодаря реактивному сопротивлению и выполняется защита от лавинообразного нарастания тока.
Устройство дросселя (ПРА).
Внешний вид дросселя
На фотографии представлен дроссель для люминесцентных ламп дневного света. По большому счету он является катушкой индуктивности с металлическим сердечником в корпусе (кожухе) из листового металла. Более современные изготавливаются в термоустойчивом пластиковом корпусе, имеют более низкие массо-габаритные показатели. Это промышленное название (максимально близкий перевод — ограничитель). Его сопротивление по постоянному току порядка 60 Ом. При проверке мультиметром, в случае индикации бесконечного сопротивления – дроссель неисправен, в обрыве. Если сопротивление менее 55 Ом, это также означает неисправность дросселя. В этом случае он, скорее всего, имеет межвитковое замыкание. Это случалось со старыми ПРА, когда начинает рассыпаться компаунд и происходит отслоение лака с проволоки. В простейшей схеме он выполняет функцию балласта.
Дроссель в разрезе
Сердечник дросселя обычно изготавливается из трансформаторной стали, при этом пластины, входящие в его набор, электрически не контактируют между собой. Это сделано для уменьшения вихревых токов.
Принцип работы дросселя.
Основное, что делает дроссель – это производит сдвиг фазы переменного тока в момент перехода через ноль. За счет этого поддерживается тлеющий разряд в колбе газоразрядной лампы. Для ограничения тока, проходящего через электроды лампы выбран дроссель так как он имеет реактивное сопротивление. Кроме того, любая катушка индуктивности может накапливать энергию.
Для зажигания тлеющего разряда необходим импульс электрического тока, это тоже обеспечивается дросселем.
При подаче питания на схему происходит следующее:
Важно помнить, что параметры лампы и дросселя коррелируют. Обычно самостоятельное изготовление дросселя лишено смысла. Сейчас на рынке очень много различной пуско-регулирующей аппаратуры. Дополнительно дроссель снижает помехи и сглаживает пульсации.
Классификация и разновидности дросселей.
В разных схемах дроссели могут выполнять разные функции. Допустим в схеме осветителя на люминесцентной лампе у него одни задачи, в электронике при помощи катушки можно, допустим, произвести развязку разночастотных электронных схем, или использовать в LC-фильтре. Это и определяет классификацию.
Вид дросселя зависит от его назначения в каждой конкретной схеме. Это могут быть фильтрующие, сглаживающие, сетевые, моторные, особого назначения. В любом случае, их объединяет общее свойство: высокое сопротивление по переменному току и низкое – по постоянному. Этим можно добиться снижения электромагнитных помех и наводок. В однофазных цепях катушку индуктивности можно применить в качестве ограничителя (предохранителя) от бросков напряжения. Функцию сглаживания дроссель выполняет в фильтрах выпрямителей. Обычно применяется LC-фильтр.
Схема подключения дросселя для люминесцентных ламп.
Схема подключения дросселя для люминесцентной лампы
Это простейшая схема для одного источника света. В случае использования двух ламп можно ограничится одним дросселем, но в этом случае, он должен выдерживать суммарную мощность двух ламп.
Схема подключения дросселя для двух люминесцентных ламп
В данной схеме конденсатор С1 желателен, но он не является обязательной частью схемы. Теоретически вместо стартеров можно поставить обычные кнопки без фиксации. После зажигания светильника эти кнопки необходимо отпустить.
Ремонт дросселя.
Неисправность дросселя можно установить с помощью замены стартера и/или люминесцентной лампы на заведомо исправные. Если в этом случае освещения нет, то причина в нем. Неисправность дросселя можно определить и при помощи мультиметра в режиме измерения сопротивления. Работоспособный электромагнитный дроссель имеет сопротивление около 60 Ом. Допустимое отклонение составляет около 10 процентов. Если сопротивление мало, то это указывает на межвитковое замыкание. Это случается на дросселе, который достаточно долго эксплуатируется. Причина заключается в отслоении лакокрасочной изоляции и замыкании витков. Бесконечное сопротивление указывает (либо вообще нет прозвонки) на обрыв, отсутствие контакта. Скорее всего он просто сгорел, так был скачок напряжения.
Ремонт дросселя для люминесцентной лампы заключается в разборке: снятии кожуха при его присутствии, разборке пластин сердечника и перемотке катушки. Однако, это нецелесообразный процесс в следствие его трудоемкости и низкой цены нового. Его проще заменить на заведомо исправный. При замене необходимо соблюсти мощностные параметры.
Выводы.
Хоть схема и имеет полувековую историю, она до сих пор остается актуальной. ПРА необходим для работы люминесцентной лампы. Все компоненты производятся и стоят недорого. К достоинствам этой схемы можно отнести ее простоту и доступность компонентов. Обычно дроссель является самым долгоживущим компонентом схемы.
Из минусов отмечено, что при использовании классической схемы при включении освещения несколько секунд наблюдается мерцание. Это плохо отражается на сроке полезной эксплуатации самого источника света. Т.е. Лампа проработает меньше в такое схеме, чем при использовании электронного пускателя.
В плане экономической целесообразности, при частом включении и выключении света использовать такую элементную базу не выгодно, проще приобрести электронный пускатель, хоть его покупка и обойдется дороже, но это будут одномоментные затраты.
Для чего нужен дроссель в люминесцентных лампах? (Схемы подключения)
Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.
Для чего нужна пускорегулирующая аппаратура
Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.
Схема, поясняющая устройство ЛДС
Перед нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.
Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников. Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться. Само же УФ излучение практически полностью поглощается стеклом и люминофором.
Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.
Стартеры для запуска ДЛС
Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение. Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.
Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.
ЭмПРА для ЛДС мощностью 36 Вт
Таким образом, без стартера лампа не запустится, без балласта – сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.
Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.
Схема подключения люминесцентной лампы
Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.
Схема подключения одной люминесцентной лампы
Как это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет. За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты. За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.
Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.
Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует. В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя. Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком велик.
Наглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселем
Пару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.
Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.
Схема подключения двух люминесцентных ламп к одному дросселю
Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.
Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.
Зачем нужен дроссель в схеме
В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.
Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.
Дроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводом
Почему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим. Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, “сопротивляется” и не дает это сделать быстро. Именно за счет такого постоянного перемагничивания ток ограничивается.
Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.
Преимущества и недостатки электромагнитного дросселя
Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:
Недостатков у этого прибора, увы, немного больше. Это:
Можно ли обойтись без него
Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.
ЭПРА для люминесцентных ламп
Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:
Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.
Типовые неисправности — замыкание, перегрев, обрыв
А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:
Как проверить электромагнитный дроссель
Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:
Важно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).
Итак, собираем схему, включаем. В результате видим:
Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.
Вот и подошла к концу беседа об электромагнитных дросселях. Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.
Подскажите пожалуйста. 1)Можно ли поставить лампы по 225 ватт в солярий расчитанный с завода на 54 лампы по 200 ватт, дроссель 200 ватт?
2) Что может произойти? Может будет греться и выйдет из строя дроссель или перегорит стартер
Здравствуйте! Вы уверены что там дроссель или так просто обозвали пускорегулирующую аппаратуру? Если там именно дроссель – то можно, лампы должны загореться, но возможно будут работать не на полную мощность. Но если там электронная пускорегулирующая аппаратура – лампа может не зажечься а ЭПРА сгореть.
Кто будет греться? С чего стартеру перегореть? Он по определению не связан с мощностью лампы, он стоит параллельно ей.
Дроссель для люминесцентных ламп: зачем нужен, принцип работы
Важным условием комфортного проживания современного человека является качественное освещение. Существует несколько видов электрических источников света. Одним из экономичных источников являются люминесцентные лампы (ЛЛ). Хотя такие излучатели и проигрывают по некоторым параметрам светодиодным устройствам, тем не менее, они широко используются как на производстве, так и в быту.
Принцип работы
В классическом виде ЛЛ (люминесцентная лампа) представляет собой стеклянную трубку с нанесенным на ее внутреннюю поверхность люминофором. Внутри трубки при пониженном давлении помещают инертный газ, смешанный с парами ртути. На концах изделия впаиваются электроды (катоды) из вольфрама.
В рабочем состоянии после пробоя газа высоким напряжением через лампу протекает ток, в результате воздействия которого появляется невидимое для человеческого глаза УФ излучение. Под воздействием этого излучения люминофор генерирует световой поток в видимом диапазоне, цветовые оттенки которого может меняться в зависимости от типа люминофора.
Ток при газовом разряде меняется лавинообразно и для его ограничения используется последовательно включенная нагрузка.
Примечание! Для запуска и поддержания рабочего режима ЛЛ используется специальная пускорегулирующая аппаратура (ПРА). Такая аппаратура часто называется балластом.
Виды ПРА
В качестве балласта могут быть использованы как электромагнитные устройства (дроссель, стартер), так и электронные приборы (ЭПРА).
Электромагнитные ПРА существует многие годы и постепенно вытесняются новыми электронными устройствами созданными на новой элементной базе. Каждая из этих видов аппаратуры имеют свои достоинства и недостатки.
ПРА электромагнитного типа
Электрическая схема питания ЛЛ с использованием обычной ПРА приведена на рис. 1.
Стартер представляет собой устройство, предназначенное для кратковременного автоматического включения и выключения электроцепи.
Существуют различные конструкции стартеров – тлеющего разряда, тепловые, электронные, электромагнитные. Наиболее распространенными являются стартеры тлеющего разряда, в которых используются биметаллические пластины.
Такие пластины при возникновении в стартере тлеющего разряда нагреваются и замыкают цепь. После замыкания разряд прекращается, электроды остывают и размыкаются. Параметры стартера выбираются таким образом, чтобы напряжение тлеющего разряда было выше рабочего напряжения ЛЛ и ниже минимального сетевого напряжения.
Цены на стартер для люминесцентных ламп
Дроссель представляет собой обычную катушку индуктивности, намотанную на сердечник. Для предотвращения появления в сердечнике вихревых токов он собран из отдельных тонких пластин. Допустимая мощность дросселя должна соответствовать мощности ЛЛ. В противном случае лампа не включится.
При кратковременном замыкании стартера через электроды ЛЛ проходит большой ток, нагревающий нити этих электродов. и вызывающий термоэлектронную эмиссию. В результате этой эмиссии около электродов образуются электронные облачка, способствующие пробою и появлению разряда.
При размыкании контактов стартера согласно явлению самоиндукции в цепи генерируется мощный импульс напряжения, величина которого пропорциональна индуктивности дросселя. Под действием этого импульса происходит пробой газа и возникает тлеющий разряд, который может перейти в дуговой. Но наличие балансного сопротивления в виде дросселя ограничивает величину протекающего через прибор тока.
Таким образом, дроссель играет двойную роль:
На рис.1 компенсирующий конденсатор С1, включенный на входе схемы питания ЛЛ, предназначен для повышения коэффициента мощности (cos φ ). Для уменьшения влияния радиопомех параллельно контактам стартера включен конденсатор небольшой емкости (С2). Этот конденсатор позволяет также изменить переходный процесс в схеме и увеличить мощность импульса напряжения.
Электронный балласт (ЭПРА) является сложным устройством со множеством электронных элементов. Блок – схема такого устройства приведена на рис. 4.
Основное отличие ЭПРА от обычного ПРА – это наличие инвертора, который с помощью транзисторных ключей преобразует сетевое напряжение 50 Гц в напряжение с частотой в 30- 40 кГц. Благодаря этому уменьшаются размеры и габариты этого устройства. При включении схемы происходит прогрев катодов ЛЛ, образование вблизи них электронных «облаков», а на конденсаторе, включенном параллельно лампе, возникает резонансное напряжение около 600 В, которого достаточно для поджига лампы.
После включения ЛЛ напряжение на ней падает до рабочего, а ток ограничивается балансным дросселем.
Достоинства и недостатки
Сравнительные характеристики двух видов ПРА приведены в таблице.
№ | ПРА | ЭПРА |
---|---|---|
1 | Простая понятная конструкция | Сложная схема |
2 | Малая цена | Относительно высокая цена |
3 | Большие масса и габариты | Компактное устройство |
4 | Наличие мерцания (100 Гц) | Мерцание отсутствует |
5 | Большое время пуска | Мгновенный запуск |
6 | Трудности при запуске на низкой температуре | Трудностей нет |
7 | Малый кпд и cos φ | Высокий кпд |
8 | Не работает при низком напряжении | Широкий диапазон напряжений |
9 | Быстро изнашиваются ЛЛ | ЛЛ работают полный срок |
Цены на Электронные ПРА для люминесцентных ламп
Ремонт
При выходе из строя светильника с ЛЛ, питаемого с помощью ПРА, наряду с другими элементами схемы необходимо проверить работоспособность дросселя. При этом возможны следующие неисправности:
Для проверки дросселя надо собрать схему, приведенную на рис. 6.
При включении схемы возможны три варианта – лампа горит, лампа не горит, лампа моргает.
В первом случае, по-видимому, в дросселе имеется короткое замыкание. Во втором случае, очевидно, имеется обрыв в обмотке. В третьем случае, возможно, что дроссель цел и надо искать неисправность в другом элементе схемы. Для полной уверенности необходимо дать схеме поработать в течение 0,5 часа. Если при этом окажется, что дроссель сильно нагрелся, то это свидетельствует о замыкании между витками обмотки.
Запуск ЛЛ без дросселя
Схемы для включения ЛЛ без дросселя, как правило, представляют собой источник питания постоянного тока в виде умножителя. Одна из схем такого источника приведена на рис.7. В качестве ограничителя тока в схеме используется обыкновенная лампа накаливания.
В такой схеме напряжение на ЛЛ достигает 700 В приблизительно за 25 мс.
Сравнение дросселей для различных типов ламп
Дроссели применяются в газоразрядных лампах различного типа. В любом случае они служат для ограничения рабочего тока светильника. При этом такие дроссели не всегда взаимозаменяемы.
Так лампы Днат и ДРЛ работают в режиме дугового разряда, тогда как ЛЛ работают при тлеющем разряде. Разные режимы работы требуют разных характеристик дросселей. Кроме того, отличие состоит в том, что дроссель в качестве источника напряжения для поджига используется только в ЛЛ.
Примечание! В лампах Днат для запуска применяется специальное импульсное устройство (ИЗУ), а лампы ДРЛ запускаются непосредственно от сети 220 В.