Что такое гаплоидные клетки
Гаплоидная клетка
Вы будете перенаправлены на Автор24
Гаплоидная клетка – это структура, ядро которой имеет одинарный набор хромосом.
Типы гаплоидных клеток
В основном гаплоидные клетки называют гаметами или клетками, через которые осуществляется процесс полового размножения. Кроме того, гаплоидный набор хромосом характерен для прокариотических (безъядерных) организмов. Все соматические клетки эукариот (ядерных) организмов имеют диплоидный набор хромосом.
Гаплоидная прокариотическая клетка обладает следующими особенностями:
Также прокариотические клетки могут образовывать капсулы для того, чтобы пережить неблагоприятные условия окружающей среды и сохранить после этого жизнеспособность. Хромосомы прокариотических клеток свободно плавают в цитоплазме и не защищаются никакими структурами. Чаще всего наследственный материал прокариот находится в виде одной кольцевой ДНК или нуклеоида.
Прокариотические клетки чаще всего проявляют свои свойства в полной мере, попадая в организм хозяина и реализуя свой обмен веществ внутри обмена веществ другого организма.
Прокариотические клетки размножаются простым делением пополам, что позволяет им размножаться достаточно быстро и эффективно. Клетки эукариот также могут обладать одинарным набором хромосом. Эти клетки отличаются от соматических и реализуют процесс полового размножения. Половое размножение может происходит только при слиянии двух гамет, которые синтезируются особями одного и того же вида, но противоположного пола. После слияния двух половых клеток в процессе оплодотворения образуется зигота, которая уже будет обладать двойным набором хромосом. Половые клетки эукариот называются яйцеклетками и сперматозоидами.
Функции гаплоидных клеток эукариот
Яйцеклетки – это женские гаметы, несущие информацию о материнском организме.
Сперматозоиды – это мужские гаметы, несущие информацию об отцовском организме.
Готовые работы на аналогичную тему
Рисунок 1. Сперматозоид. Автор24 — интернет-биржа студенческих работ
Яйцеклетки вырабатываются в организме самок в яичниках. Сперматозоиды продуцируются организмом самцов в семенниках. Что касается женских половых клеток, то они неподвижны и обладают большими размерами, по сравнению с мужскими половыми клетками. Основная задача половой клетки женского типа заключается в обеспечении будущей зиготы питательными веществами на раннем этапе развития. В состав яйцеклеток входят:
Кроме того, внутри яйцеклеток присутствуют кортикальные гранулы, содержащие ферменты, которые не дают сперматозоидами попадать в яйцеклетку уже после оплодотворения. Это необходимо потому, что в противном случае может произойти полиплоидия и увеличиться количество мутаций. Яйцеклетки сохраняют питательные вещества и дают возможность обеспечить будущее полноценное развитие дочернего организма, особенно в эмбриональном периоде онтогенеза.
Сперматозоиды в свою очередь сперматозоид сохраняет и передает наследственный материал от отцовского источника. Подобная гаплоидная клетка обладает минимальными размерами, и не содержит питательных веществ, но имеет гаплоидное ядро. Сперматозоид состоит из: хвоста, головки, и промежуточного между ними отдела. Хвостик состоит из микротрубочек и встроенных в них белков. Благодаря такому строению, сперматозоид может весьма быстро достигать собственной цели. Ядро находится в головке сперматозоида. На внешней стороне этой части мужской половой клетки находится аутосома.
Гаплоидные клетки растений также делятся на две части и называются яйцеклетками и сперматозоидами (спермиями). Яйцеклетки находятся в завязи пестика, а спермии в тычинках или пыльце. При попадании пыльце на рыльце пестика происходит процесс оплодотворения и образуется плод и семена. Низшие растения, а также высшие споровые растения обладают таким свойством как чередование поколений. Одно поколение размножается бесполым путем, а другое половым. Первое поколение именую спорофитом, а второе называют гаметофитом. Для папоротников спорофит представлен растением с большими листьями, а гаметофит представлен небольшим растением в форме сердца.
Гаплоидное число хромосом для каждой клетки может быть своеобразным. У человека гаплоидный набор хромосом равен 23. К неполовым хромосомам относят 22 аутосомы и половые хромосомы.
Гаплоидные клетки образуются в процессе мейоза. В мейозе диплоидная клетки меняется дважды, чтобы образовать четыре гаплоидных дочерних клетки. Перед началом мейотического цикла клетка удваивает собственный набор ДНК, увеличивает массу и количество органелл. Подобная стадия подготовки более известна как интерфаза.
Когда клетка пройдет подготовительную фазу, она вступает в два деления (мейоз I и мейоз II). Каждое деление имеет несколько фаз6 профазу, метафазу, анафазу и телофазу. Первое деление называется редукционным и в конце такого деления образуется две гаплоидные клетки. После этого клетки входят в мейоз II и снова делятся, но уже по типу митоза. В конце второго деления сестринские хроматиды отделяют каждую из четырех клеток с половиной числа хромосом относительно родительской (исходной) клетки.
При половом размножении гаплоидные половые клетки объединяются и становятся диплоидными. Иногда гаплоидные клетки растений, водорослей, грибов реализуют половое размножение. Такими клетками являются споры. Такие организмы, как уже отмечалось ранее, обладают способностью к чередованию поколений. В растениях и водорослях гаплоидные споры развиваются в гаметофитные структуры без оплодотворения.
Гаметофит образует гаметы и его называют гаплоидной фазой жизненного цикла. Диплоидная фаза зависит от образования спорофита.
Таким образом, гаплоидные клетки имеют определенные свойства и помогают создать диплоидный организм, который содержит в себе рекомбинацию генетической информации родителей.
Гаплоидные клетки и их особенности: типы и основные функции гаплоидных клеток эукариот
Гаплоидные клетки и их особенности
Типы гаплоидных клеток
Что из себя представляет гаплоидная клетка?
Гаплоидная клетка — это определенная структура с ядром в виде одинарного набора хромосом.
Также под гаплоидом или гаплоидными клетками подразумевают гаметы или клетки, с помощью которых происходит процесс полового размножения. Гаплоидный набор хромосом — отличительная черта прокариотических или безъядерных организмов. В отличие от них, соматические клетки эукариот (то есть, ядерных), характеризуются наличием диплоидного набора хромосом.
Есть некоторые особенности гаплоидной прокариотической клетки:
Для прокариотических клеток характерно образование капсул — они используются при неблагоприятных условиях среды и способны сохранять после этого жизнеспособность. Что касается хромосом прокариотических клеток, то они беспрепятственно плавают в цитоплазме и не имеют защиты в виде каких-либо структур.
Наследственный материал прокариот обычно представлен одной кольцевой ДНК или нуклеоидом.
Когда прокариотические клетки попадают в организм хозяина и реализуют в нем свой обмен веществ, то, таким образом они в полной мере проявляют свои свойства.
Размножение прокариотических клеток происходит простым делением пополам. Такой способ размножения является очень быстрым и эффективным. Для клеток эукариот тоже характерен одинарный набор хромосом. От соматических клеток они заметно отличаются и отвечают за половое размножение.
Половое размножение возможно только в случае слияния двух гамет, синтезируемые особями одного вида, но противоположного пола. В результате слияния двух половых клеток в процессе оплодотворения формируется зигота, обладающая двойным набором хромосом.
Половые клетки эукариот — яйцеклетки и сперматозоиды.
Основные функции гаплоидных клеток эукариот
Яйцеклетки — женские гаметы, обладающие информацией о материнском организме.
Сперматозоиды — мужские гаметы, имеющие информацию об отцовском организме.
Организм самок вырабатывает яйцеклетки — это происходит в яичниках. Организм самцов, соответственно, продуцирует сперматозоиды — это происходит в семенниках.
Женские половые клетки не отличаются подвижностью и имеют довольно большие размеры, в отличие от мужских половых клеток. Половая клетка женского типа имеет одну важную задачу: обеспечить будущую зиготу необходимыми питательными веществами на ранней стадии ее развития.
Яйцеклетка состоит из:
Внутри яйцеклетки есть также картикальные гранулы. Они содержат ферменты, которые препятствуют попаданию сперматозоидов в яйцеклетку после процесса оплодотворения. В случае такого проникновения может случиться полиплоидия и увеличение количества мутаций. Благодаря яйцеклеткам питательные вещества сохраняются, что обеспечивает полноценное будущее развитие дочернего организма, в частности, в эмбриональный период онтогенеза.
Функция сперматозоида — сохранение и передача наследственного материала от отцовского источника. У такой гаплоидной клетки минимальный размер. В ней нет питательных веществ, но есть гаплоидное ядро.
В состав сперматозоида входят:
В свою очередь хвост состоит из микротрубочек со встроенными в них белками. Такое строение дает возможность сперматозоиду достаточно быстро достигать своей цели. Расположение ядра — головка сперматозоида. На внешней стороне этой части мужской клетки располагается аутосома.
Что касается гаплоидных клеток растений, то для них тоже характерно деление на две категории: яйцеклетки и сперматозоиды (спермии). В завязи пестика располагаются яйцеклетки, а в тычинках или пыльце — спермии. Процесс оплодотворения происходит, когда пыльца попадает на рыльце пестика: так образуются плод и семена.
Чередование поколений характерно для низших растений и высших споровых растений. Одно поколение в этом случае размножается бесполым способом, а другое — половым. В первом случае речь идет о спорофите, а во втором — о гаметофите.
У папоротников спорофит представляют растения с большими листьями, а гаметофит — растения, имеющие форму сердца.
Для каждой клетки гаплоидное число хромосом может быть своим. Для человека гаплоидный набор хромосом составляет 23. Неполовыми хромосомами считаются 22 аутосомы и половые хромосомы.
Образование гаплоидных клеток происходит в результате мейоза (гаплоидной стадии). Диплоидные клетки в мейозе меняются два раза — таким образом формируются четыре гаплоидных дочерних клетки. До начала мейотического цикла клетка осуществляет удвоение собственного набора ДНК, увеличивает число органелл, а также увеличивается в размерах.
Такая стадия подготовки получила название интерфазы.
После подготовительной фазы клетка делится дважды — это мейоз I и мейоз II. Каждое из делений состоит из определенных фаз:
Первое деление — редукционное. В конце такого деления происходит образование двух гаплоидных клеток. Далее клетки входят во второй мейоз и опять делятся, однако по типу митоза. В конце второго деления каждая из четырех клеток отделяются сестринскими хроматидами — с половиной числа хромосом по отношению к родительской исходной клетке.
Гаплоидные половые клетки в случае полового размножения объединяются и становятся диплоидными. В некоторых случаях гаплоидные клетки растений, водорослей и грибов осуществляют половое размножение. В качестве этих клеток выступают споры. У таких организмов есть способность к чередованию поколений. В растениях и водорослях происходит развитие гаплоидных спор в гаметофитные структуры без оплодотворения.
Гаметофит образует гаметы. Это гаплоидная фаза жизненного цикла. Диплоидная фаза связана с образованием спорофита.
Гаплоидные клетки характеризуются особыми свойствами и участвуют в создании диплоидного организма, содержащего рекомбинацию генетической информации обоих родителей.
Гаплоидные клетки
Смотрите также
Полезное
Смотреть что такое «Гаплоидные клетки» в других словарях:
гаплоидные клетки — ЭМБРИОЛОГИЯ ЖИВОТНЫХ ГАПЛОИДНЫЕ КЛЕТКИ – клетки, содержащий гаплоидный (одинарный) набор хромосом: половые клетки – гаметы животных … Общая эмбриология: Терминологический словарь
ГАПЛОИДНЫЕ КЛЕТКИ — клетки с половинным или одинарным набором хромосом … Словарь ботанических терминов
клетки деление — ЭМБРИОЛОГИЯ ЖИВОТНЫХ КЛЕТКИ ДЕЛЕНИЕ – процесс образования новых клеток из уже существующих. У прокариотических клеток – бактерий – осуществляется путем равномерного бинарного деления. У эукариотических клеток возможны три варианта деления клеток… … Общая эмбриология: Терминологический словарь
Диплоидные клетки — Diploid cells have two homologous copies of each chromosome. Диплоидные клетки это живые клетки, в отличие от гаплоидных клеток (содержащих половинный набор), содержащая полный набор … Википедия
Индуцированные стволовые клетки — Индуцированные стволовые клетки cтволовые клетки, полученные из каких либо иных (cоматических, репродуктивных или плюрипотентных) клеток путем эпигенетического перепрограммирования. В зависимости от степени дедифференцировки клетки при… … Википедия
Saccharomycetes — Клетки дрожжей Saccharomyces cerevisiae под микроскопом. Дрожжи внетаксономическая группа одноклеточных грибов, утративших мицелиальное строение в связи с переходом к обитанию в жидких и полужидких, богатых органическими веществами субстратах.… … Википедия
Дрожжевые грибы — Клетки дрожжей Saccharomyces cerevisiae под микроскопом. Дрожжи внетаксономическая группа одноклеточных грибов, утративших мицелиальное строение в связи с переходом к обитанию в жидких и полужидких, богатых органическими веществами субстратах.… … Википедия
Хересные дрожжи — Клетки дрожжей Saccharomyces cerevisiae под микроскопом. Дрожжи внетаксономическая группа одноклеточных грибов, утративших мицелиальное строение в связи с переходом к обитанию в жидких и полужидких, богатых органическими веществами субстратах.… … Википедия
Семейство Сахаромицетовые (Saccharomycetaceae) и другие группы дрожжей — Представители семейства сахаромицетовых (Saccharomycetaceae) не образуют типичного мицелия, их вегетативные клетки почкуются или делятся. Аскоспоры образуются в сумках, представляющих одиночные клетки. У многих дрожжей в цикле развития… … Биологическая энциклопедия
РАСТИТЕЛЬНАЯ КЛЕТКА — Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой. Клетка это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.… … Биологическая энциклопедия
Половые клетки человека, хромосомы, оплодотворение
Половые клетки — гаметы (от греч. gametes — «супруг») можно обнаружить уже у двухнедельного эмбриона человека. Их называют первичными половыми клетками. В это время они совсем не похожи на сперматозоиды или яйцеклетки и выглядят абсолютно одинаковыми. Никаких различий, присущих зрелым гаметам, на этой стадии развития зародыша обнаружить у первичных половых клеток не удается. Это не единственная их особенность. Во-первых, первичные половые клетки появляются у зародыша гораздо раньше собственно половой железы (гонады), а во-вторых, они возникают на значительном удалении от того места, где эти железы сформируются позднее. В определенный момент происходит совершенно удивительный процесс — первичные половые клетки дружно устремляются к половой железе и заселяют, «колонизируют» ее.
После того, как будущие гаметы попали в половые железы, они начинают интенсивно делиться, и количество их увеличивается. На этом этапе половые клетки содержат пока то же количество хромосом, что и «телесные» (соматические) клетки — 46. Однако для успешного осуществления своей миссии половые клетки должны иметь в 2 раза меньше хромосом. В противном случае после оплодотворения, то есть слияния гамет, клетки зародыша будут содержать не 46, как установлено природой, а 92 хромосомы. Нетрудно догадаться, что в следующих поколениях их число прогрессивно бы увеличивалось. Чтобы избежать такой ситуации формирующиеся половые клетки проходят специальное деление, которое в эмбриологии называется мейоз (греч. meiosis — «уменьшение»). В результате этого удивительного процесса диплоидный (от греч. diploos — «двойной»), набор хромосом как бы «растаскивается» на составляющие его одинарные, гаплоидные наборы (от греч. haploos — одиночный). В результате из диплодной клетки с 46 хромосомами получаются 2 гаплоидные клетки с 23 хромосомами. Вслед за этим наступает завершающий этап формирования зрелых половых клеток. Теперь в гаплоидной клетке копируются имеющиеся 23 хромосомы и эти копии используются для образования новой клетки. Таким образом, в результате описанных двух делений из одной первичной половой клетки образуется 4 новых.
Причем, в сперматогенезе (греч. genesis — зарождение, развитие) в результате мейоза появляется 4 зрелых сперматозоида с гаплоидным набором хромосом, а в процессе формирования яйцеклетки — в оогенезе (от греч. oon — «яйцо») только одна. Это происходит потому, что образовавшийся в результате мейоза второй гаплоидный набор хромосом яйцеклетка не использует для формирования новой зрелой половой клетки — ооцита, а «выбрасывает» их, как «лишние», наружу в своеобразном «мусорном контейнере», который называется полярным тельцем. Первое деление хромосомного набора завершается в оогенезе выделением первого полярного тельца непосредственно перед овуляцией. Второе репликационное деление происходит только после проникновения сперматозоида внутрь яйцеклетки и сопровождается выделением второго полярного тельца. Для эмбриологов полярные тельца — очень важные диагностические показатели. Есть первое полярное тельце, значит яйцеклетка зрелая, появилось второе полярное тельце — оплодотворение произошло.
Первичные половые клетки, оказавшиеся в мужской половой железе, до поры до времени не делятся. Их деление начинается только в период полового созревания и приводит к образованию когорты так называемых стволовых диплоидных клеток, из которых и формируются сперматозоиды. Запас стволовых клеток в яичках постоянно пополняется. Здесь уместно напомнить описанную выше особенность сперматогенеза — из одной клетки образуется 4 зрелых сперматозоида. Таким образом, после полового созревания у мужчины в течение всей жизни формируются сотни миллиардов новых сперматозоидов.
Формирование яйцеклеток протекает иначе. Едва заселив половую железу, первичные половые клетки начинают интенсивно делиться. К 5 месяцу внутриутробного развития их количество достигает 6-7 миллионов, но затем происходит массовая гибель этих клеток. В яичниках новорожденной девочки их остается не более 1-2 миллионов, к 7-летнему возрасту — всего лишь около 300 тысяч, а в период полового созревания 30 —50 тысяч. Общее же число яйцеклеток, которые достигнут зрелого состояния за период половой зрелости, будет еще меньше. Хорошо известно, что в течение одного менструального цикла в яичнике обычно созревает лишь один фолликул. Нетрудно подсчитать, что в течение репродуктивного периода, продолжающегося у женщин 30 — 35 лет, образуется около 400 зрелых яйцеклеток.
Если мейоз в сперматогенезе начинается в период полового созревания и повторяется миллиарды раз в течение жизни мужчины, в оогенезе формирующиеся женские гаметы вступают в мейоз еще в периоде внутриутробного развития. Причем начинается этот процесс почти одновременно у всех будущих яйцеклеток. Начинается, но не заканчивается! Будущие яйцеклетки доходят только до середины первой фазы мейоза, а дальше процесс деления блокируется на 12 — 50 лет! Лишь с приходом половой зрелости мейоз в оогенезе продолжится, причем не всех клеток сразу, а лишь для 1- 2 яйцеклеток ежемесячно. Полностью же процесс мейотического деления яйцеклетки завершится, как уже было сказано выше, только после ее оплодотворения! Таким образом, сперматозоид проникает в яйцеклетку, еще не завершившую деление, имеющую диплоидный набор хромосом!
Сперматогенез и оогенез — очень сложные и во многом загадочные процессы. Вместе с тем очевидна подчиненность их законам взаимосвязи и обусловленности природных явлений. Для оплодотворения одной яйцеклетки in vivo (лат. в живом организме) необходимы десятки миллионов сперматозоидов. Мужской организм вырабатывает их в гигантских количествах практически всю жизнь.
Вынашивание и рождение ребенка является чрезвычайно тяжелой нагрузкой на организм. Врачи говорят, что беременность — это проба на здоровье. Каким родится ребенок — напрямую зависит от состояния здоровья матери. Здоровье, как известно, не вечно. Старость и болезни, к сожалению, неотвратимы. Природа дает женщине строго ограниченное невосполнимое число половых клеток. Снижение способности к деторождению развивается медленно, но постепенно по наклонной. Наглядное доказательство того, что это действительно так, мы получаем, ежедневно оценивая результаты стимуляции яичников в программах ВРТ. Большая часть яйцеклеток обычно израсходована к 40 годам, а к 50 годам весь их запас полностью исчерпывается. Нередко так называемое истощение яичников наступает значительно раньше. Следует также сказать, что яйцеклетка подвержена «старению», с годами ее способность к оплодотворению снижается, процесс деления хромосом все чаще нарушается. Заниматься деторождением в позднем репродуктивном возрасте рискованно из-за возрастающей опасности рождения ребенка с хромосомной патологией. Типичным примером является синдром Дауна, который возникает из-за оставшейся при делении третьей лишней 21 хромосомы. Таким образом, ограничив репродуктивный период, природа охраняет женщину и заботится о здоровом потомстве.
По каким законам происходит деление хромосом? Как передается наследственная информация? Для того чтобы разобраться с этим вопросом, можно привести простую аналогию с картами. Представим себе молодую супружескую пару. Назовем их условно — Он и Она. В каждой его соматической клетке находятся хромосомы черной масти — трефы и пики. Набор треф от шестерки до туза он получил от своей мамы. Набор пик — от своего папы. В каждой ее соматической клетке хромосомы красной масти — бубны и червы. Набор бубен от шестерки до туза она получила от своей мамы. Набор червей — от своего папы.
Для того чтобы получить из диплоидной соматической клетки половую клетку, число хромосом должно быть уменьшено вдвое. При этом половая клетка обязательно должна содержать полный одинарный (гаплоидный) набор хромосом. Ни одна не должна потеряться! В случае карт такой набор можно получить следующим образом. Взять наугад из каждой пары карт черной масти по одной и таким образом сформировать два одиночных набора. Каждый набор будет включать все карты черной масти от шестерки до туза, однако, какие именно это будут карты (трефы или пики) определил случай. Например, в одном таком наборе шестерка может быть пиковой, а в другом — трефовой. Нетрудно прикинуть, что в примере с картами при таком выборе одиночного набора из двойного мы можем получить 2 в девятой степени комбинаций — более 500 вариантов!
Точно также будем составлять одиночный набор из ее карт красной масти. Получим еще более 500 разных вариантов. Из его одиночного и ее одиночного набора карт составим двойной набор. Он получится мягко сказать «пестреньким»: в каждой паре карт одна будет красной масти, а другая — черной. Общее число таких возможных наборов 500×500, то есть 250 тысяч вариантов.
Примерно также, по закону случайной выборки, поступает и природа с хромосомами в процессе мейоза. В результате из клеток с двойным, диплоидным набором хромосом получаются клетки, каждая из которых содержит одиночный, гаплоидный полный набор хромосом. Предположим, в результате мейоза в вашем теле образовалась половая клетка. Сперматозоид или яйцеклетка — в данном случае не важно. Она обязательно будет содержать гаплоидный набор хромосом — ровно 23 штуки. Что именно это за хромосомы? Рассмотрим для примера хромосому № 7. Это может быть хромосома, которую вы получили от отца. С равной вероятностью она может быть хромосомой, которую вы получили от матери. То же самое справедливо для хромосомы № 8, и для любой другой.
Поскольку у человека число хромосом гаплоидного набора равно 23, то число возможных вариантов половых гаплоидных клеток, образующихся из диплоидных соматических, равно 2 в степени 23. Получается более 8 миллионов вариантов! В процессе оплодотворения две половые клетки соединяются между собой. Следовательно, общее число таких комбинаций будет равно 8 млн. х 8 млн. = 64000 млрд. вариантов! На уровне пары гомологичных хромосом основа этого разнообразия выглядит так. Возьмем любую пару гомологичных хромосом вашего диплоидного набора. Одну из таких хромосом вы получили от матери, но это может быть хромосома либо вашей бабушки, либо вашего дедушки по материнской линии. Вторую гомологичную хромосому вы получили от отца. Однако она опять-таки может быть независимо от первой либо хромосомой вашей бабушки, либо вашего дедушки уже по отцовской линии. А таких гомологических хромосом у вас 23 пары! Получается невероятное число возможных комбинаций. Неудивительно, что при этом у одной пары родителей, рождаются дети, которые отличаются друг от друга и внешностью, и характером.
Кстати, из приведенных выше расчетов следует простой, но важный вывод. Каждый человек, ныне здравствующий, или когда-либо живший в прошлом на Земле, абсолютно уникален. Шансы появления второго такого же практически равны нулю. Поэтому не надо себя ни с кем сравнивать. Каждый из вас неповторим, и тем уже интересен!
Однако вернемся к нашим половым клеткам. Каждая диплоидная клетка человека содержит 23 пары хромосом. Хромосомы с 1 по 22 пару называются соматическим и по форме они одинаковы. Хромосомы же 23-й пары (половые хромосомы) одинаковы только у женщин. Они и обозначаются латинскими буквами ХХ. У мужчин хромосомы этой пары различны и обозначаются ХY. В гаплоидном наборе яйцеклетки половая хромосома всегда только Х, сперматозоид же может нести или Х или Y хромосому. Если яйцеклетку оплодотворит Х сперматозоид, родится девочка, если Y сперматозоид — мальчик. Все просто!
Почему мейоз у яйцеклетки так долго растянут во времени? Каким образом ежемесячно происходит выбор когорты фолликулов, которые начинают свое развитие и как из них выделяется лидирующий, доминантный, овуляторный фолликул, в котором созреет яйцеклетка? На все эти непростые вопросы у биологов нет пока однозначных ответов. Процесс формирования зрелых яйцеклеток у человека ждет новых исследователей!
Образование и созревание сперматозоидов, как уже было сказано, происходит в семенных канальцах мужской половой железы — яичках. Сформированный сперматозоид имеет длину около 50-60 микрон. Ядро сперматозоида находится в его головке. Оно содержит отцовский наследственный материал. За головкой располагается шейка, в которой имеется крупная извитая митохондрия — органоид, обеспечивающий движения хвоста. Иначе говоря, это своеобразная «энергетическая станция». На головке сперматозоида есть «шапочка». Благодаря ей форма головки — овальная. Но, дело не в форме, а в том, что содержится под «шапочкой». «Шапочка» эта на самом деле является контейнером и называется акросомой, а содержатся в ней ферменты, которые способны растворять оболочку яйцеклетки, что необходимо для проникновения сперматозоида внутрь — в цитоплазму яйцеклетки. Если у сперматозоида нет акросомы, головка у него не овальная, а круглая. Эта патология сперматозоидов называется глобулоспермия (круглоголовые сперматозоиды). Но, беда опять не в форме, а в том, что такой сперматозоид не может оплодотворить яйцеклетку, и мужчина с таким нарушением сперматогенеза до начала 90-х прошлого столетия был обречен на бездетность. Сегодня благодаря ВРТбесплодие у этих мужчин может быть преодолено, но об этом мы расскажем позднее в главе, посвященной микроманипуляциям, в частности, ИКСИ.
Перемещение сперматозоида осуществляется за счет движения его хвостика. Скорость движения сперматозоида не превышает 2-3 мм в минуту. Казалось бы, немного, однако, за 2-3 часа в женском половом тракте сперматозоиды проходят путь, в 80000 раз превышающий их собственные размеры! Будь на месте сперматозоида в этой ситуации человек, ему пришлось бы двигаться вперед со скоростью 60-70 км/час — то есть со скоростью автомобиля!
Сперматозоиды, находящиеся в яичке, неподвижны. Способность к движению они приобретают лишь, проходя по семявыводящим путям под воздействием жидкостей семявыводящих протоков и семенных пузырьков, секрета предстательной железы. В половых путях женщины сперматозоиды сохраняют подвижность в течение 3 — 4 суток, но оплодотворить яйцеклетку они должны в течение 24 часов. Весь процесс развития от стволовой клетки до зрелого сперматозоида длится примерно 72 дня. Однако, поскольку сперматогенез происходит непрерывно и в него одномоментно вступает громадное число клеток, то в яичках всегда есть большое количество спермиев, находящихся на разных этапах сперматогенеза, а запас зрелых сперматозоидов постоянно пополняется. Активность сперматогенеза индивидуальна, но с возрастом снижается.
Как мы уже говорили, яйцеклетки находятся в фолликулах яичника. В результате овуляции яйцеклетка попадает в брюшную полость, откуда она «вылавливается» фимбриями маточной трубы и переносится в просвет ее ампулярного отдела. Именно здесь происходит встреча яйцеклетки со сперматозоидами.
Какое же строение имеет зрелая яйцеклетка? Она довольно крупная и достигает 0,11-0,14 мм в диаметре. Сразу после овуляции яйцеклетка окружена скоплением мелких клеток и желатинообразной массой (так называемым лучистым венцом). Видимо, в таком виде фимбриям маточной трубы удобнее захватывать яйцеклетку. В просвете маточной трубы с помощью ферментов и механического воздействия (биения ресничек эпителия), происходит «очистка» яйцеклетки от лучистого венца. Окончательно освобождение яйцеклетки от лучистого венца происходит после встречи ее со сперматозоидами, которые буквально облепляют яйцеклетку. Каждый сперматозоид выделяет из акросомы фермент, растворяющий не только лучистый венец, но и действующий на оболочку самой яйцеклетки. Эта оболочка называется блестящей, так она выглядит под микроскопом. Выделяя фермент, все сперматозоиды стремятся оплодотворить яйцеклетку, но блестящая оболочка пропустит лишь один из них. Получается, что устремляясь к яйцеклетки, воздействуя на нее коллективно, сперматозоиды «расчищают дорогу» только для одного счастливчика. Отбором сперматозоида роль блестящей оболочки не ограничивается, на ранних стадиях развития эмбриона она поддерживает упорядоченное расположение его клеток (бластомеров). В какой-то момент блестящая оболочка становится тесной, она разрывается и происходит хетчинг (от анг. hatching — «вылупление») — вылупление эмбриона. Эмбрион готов к имплантации в эндометрий.
