Что такое гипертрофия мышц

Гипертрофия мышц

Содержание

Механизмы гипертрофии скелетных мышц [ править | править код ]

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Гипертрофия скелетных мышц (греч. hyper – больше и греч. trophe – питание, пища) – это адаптационное увеличение объема или массы скелетной мышцы. Уменьшение объема или массы скелетной мышцы называется атрофией. Уменьшение объема или массы скелетной мышцы в пожилом возрасте называется саркопенией.

Гипертрофия обуславливает скорость сокращения скелетной мышцы, максимальную силу, а также способность противостоять утомлению, — все это важные физические качества, имеющие непосредственное отношение к спортивным показателям. Благодаря высокой вариативности различных характеристик мышечной ткани, таких, как размер и состав мышечных волокон, а также степень капилляризации ткани, скелетные мышцы способны быстро приспосабливаться к изменениям, возникающим в ходе тренировочного процесса. В то же время характер адаптации скелетных мышц к силовым упражнениям и упражнениям на выносливость будет отличаться, что свидетельствует о существовании различных систем реагирования на нагрузку.

Таким образом, приспособительный процесс скелетных мышц к тренировочным нагрузкам можно рассматривать как совокупность согласованных локальных и периферических событий, ключевыми регуляторными сигналами к которым являются гормональные, механические, метаболические и нервные факторы. Изменения в скорости синтеза гормонов и ростовых факторов, а также содержание их рецепторов являются важными факторами регуляции приспособительного процесса, позволяющего скелетным мышцам удовлетворить физиологические потребности различных видов двигательной активности.

Типы гипертрофии мышечных волокон [ править | править код ]

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Можно выделить два крайних типа гипертрофии мышечных волокон [1] [2] : миофибриллярную гипертрофию и саркоплазматическую гипертрофию.

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Нередко к гипертрофии относят и гиперплазию мышцы (увеличение количества волокон), однако последние исследования [4] показали, что вклад гиперплазии в объем мышцы составляет менее 5% и носит более существенный характер только при использовании анаболических стероидов. Гормон роста при этом не вызывает гиперплазии. Таким образом, люди склонные к гипертрофии, как правило, имеют большее количество мышечных волокон. Общее число волокон заложено генетически и практически не меняется в течение жизни без применения специальной фармакологии.

Методика оценки степени гипертрофии [ править | править код ]

Для того, чтобы оценить степень гипертрофии скелетной мышцы, необходимо измерить изменение её объема или массы. Современные методы исследования (компьютерная или магнито-резонансная томография) позволяют оценить изменение объема скелетных мышц человека и животных. С этой целью выполняются многократные «срезы» поперечного сечения мышцы, что позволяет вычислить её объем. Однако, до настоящего времени о степени гипертрофии скелетных мышц достаточно часто судят по изменению максимального значения поперечного сечения мышцы, полученного посредством компьютерной или магниторезонансной томографии.

В бодибилдинге гипертрофию мышц оценивают измеряя охваты рук (на уровне предплечья и бицепса), бедер, голеней, грудной клетки с помощью метровой ленты.

Показатели, определяющие объем скелетных мышц [ править | править код ]

В первом приближении [6] объем всей мышцы (Vм) можно выразить формулой:

Влияние тренировки на параметры, определяющие объем скелетных мышц [ править | править код ]

Механизмы гипертрофии скелетных мышц [ править | править код ]

В основе миофибриллярной гипертрофии мышечных волокон лежит интенсивный синтез и уменьшенный распад мышечных белков. Существует несколько гипотез миофибриллярной гипертрофии:

Гипотеза ацидоза предполагает, что пусковым стимулом для повышенного синтеза белка в скелетных мышцах является накопление в них молочной кислоты (лактата). Увеличение лактата в мышечных волокнах вызывает повреждение сарколеммы мышечных волокон и мембран органелл, появление в саркоплазме мышечных волокон ионов кальция, что вызывает активизацию протеолитических ферментов, расщепляющих мышечные белки. Увеличение синтеза белка в этой гипотезе связано с активацией и последующим делением клеток-сателлитов.

Гипотеза гипоксии предполагает, что пусковым стимулом для повышенного синтеза белка в скелетных мышцах является временное ограничение поступления кислорода (гипоксия) к скелетным мышцам, что происходит при выполнении силовых упражнений с большими отягощениями. Гипоксия и последующая реперфузия (восстановление притока кислорода к скелетным мышцам) вызывает повреждение мембран мышечных волокон и органоидов, появление в саркоплазме мышечных волокон ионов кальция, что вызывает активизацию протеолитических ферментов, расщепляющих мышечные белки. Увеличение синтеза белка в этой гипотезе связано с активизацией и последующим делением клеток-сателлитов.

Согласно вышеописанным гипотезам повреждение мышечного волокна вызывает запаздывающие болезненные ощущения в мышцах (DOMS), что связывается с их воспалением.

Возрастное развитие мышечной массы идет параллельно с увеличением продукции андрогенных гормонов. Первое заметное увеличение объема мышечных волокон наблюдается в 6-7-летнем возрасте, когда усиливается образование андрогенов. С наступлением полового созревания (11 – 15 лет) начинается интенсивный прирост мышечной массы у мальчиков, который продолжается и после периода полового созревания. У девочек развитие мышечной массы в основном заканчивается с периодом полового созревания.

В опытах на животных установлено, что введение препаратов андрогенных гормонов (анаболиков) вызывает значительную интенсификацию синтеза мышечных белков, в результате чего увеличивается масса тренируемых мышц и как результат – их сила. Вместе с тем гипертрофия скелетных мышц может происходить и без участия андрогенных и других гормонов (гормона роста, инсулина и тиреоидных гормонов).

Влияние тренировки на композицию и гипертрофию мышечных волокон различных типов.

В результате силовой тренировки степень гипертрофии быстрых мышечных волокон (II типа) значительно больше, чем медленных волокон (I типа), тогда как тренировка направленная на выносливость ведет к гипертрофии в первую очередь медленных волокон (I типа). Эти различия показывают, что степень гипертрофии мышечного волокна зависит, как от меры его использования в процессе тренировок, так и от его способности к гипертрофии.

Силовая тренировка связана с относительно небольшим числом повторных максимальных или близких к ним мышечных сокращений, в которых участвуют как быстрые, так и медленные мышечные волокна. Однако и небольшого числа повторений достаточно для развития гипертрофии быстрых волокон, что указывает на их большую предрасположенность к гипертрофии (по сравнению с медленными волокнами). Высокий процент быстрых волокон (II типа) в мышцах служит важной предпосылкой для значительного роста мышечной силы при направленной силовой тренировке. Поэтому люди с высоким процентом быстрых волокон в мышцах имеют более высокие потенциальные возможности для развития силы и мощности.

Тренировка выносливости связана с большим числом повторных мышечных сокращений относительно небольшой силы, которые в основном обеспечиваются активностью медленных мышечных волокон. Поэтому при тренировке на выносливость более выражена гипертрофия медленных мышечных волокон (I типа) по сравнению с гипертрофией быстрых волокон (II типа).

Факторы гипетрофии [ править | править код ]

Синтез сократительных белков [ править | править код ]

Рибонуклеиновая кислота (РНК) [ править | править код ]

Гиперплазия (клетки-сателлиты) [ править | править код ]

Клетки-сателлиты или спутниковые клетки

Влияние андрогенных анаболических стероидов [ править | править код ]

Влияние инсулина, аминокислот и физических упражнений на гипертрофию [ править | править код ]

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Источник

Гипертрофия мышц | Что это? I Два вида

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Фарида Сеидова

Врач и редактор / Опубликовано

Поделиться этой страницей

Т е, кто регулярно поднимает тяжелые веса, вероятно, часто сталкиваются с техническими терминами, которые обозначают суть методов набора и увеличения мышц. Два термина, которые используются регулярно, — это саркоплазматическая и миофибриллярная гипертрофия. Знаете ли вы, что они означают и как связаны с тренировкой? В этой статье мы проясним этот вопрос.

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Рост мышц

Различают два вида мышечного роста — саркоплазматический и миофибриллярный рост.

Миофибриллы — это нитевидные структуры в волокнах скелетных мышц, которые служат для мышечного сокращения.

Гипертрофия — это увеличение органа или ткани в размерах, которое происходит в результате увеличения количества клеток. Мышечную гипертрофию также называют мышечным ростом.

Миофибриллярная гипертрофия

Такая гипертрофия возникает, если стимулировать мышцы поднятием весов. В результате, в отдельных мышечных волокнах появляются повреждения и микротрещины. Организм человека воспринимает это как травму и реагирует соответствующим образом — в попытке исцелить поврежденные волокна, он увеличивает объем и плотность «поврежденных» миофибрилл.

Этот вид гипертрофии приводит к физиологической адаптации, то есть, к увеличению размера, силы и мощности мышц. Мы можем стимулировать миофибриллярную гипертрофию с помощью наших тренировок.

Саркоплазматическая гипертрофия

Саркоплазма — это жидкость, которая окружает пространство между миофибриллами в мышцах. Она содержит АТФ, гликоген, креатинфосфат и воду.

Саркоплазматическая гипертрофия возникает при увеличении объема саркоплазматической жидкости в мышечных клетках. Этот вид гипертрофии увеличивает объем мышц, но при этом не влияет на размер и количество волокон. Это значит, что такая гипертрофия не приводит к повышению производительности.

Гипертрофия и тренировки

Саркоплазматическая гипертрофия достигается в результате выполнения физических упражнений и подъема тяжестей. Cпортсмены, выбравшие этот вид гипертрофии, должны работать с бòльшим количеством повторений, развивая силу и мощь в определенных мезоциклах. Желательно обеспечивать более длительные периоды отдыха между подходами.

В основном саркоплазматическая гипертрофия наблюдается у бодибилдеров, потому что они часто проводят определенные виды тренировок. Общее правило бодибилдеров — это включать в свои тренировки более частые повторения с умеренным весом и короткими периодами отдыха. Цель — «накачаться», наполнив мышцы кровью.

Миофибриллярная гипертрофия более эффективна в таких видах спорта, где все зависит от результата. Это тяжелая атлетика, боевые искусства, гимнастика. Более крупные мышечные волокна адаптируются к тренировке, чтобы иметь возможность создавать большую силу. Это приводит к большей силе и скорости. Таким образом, миофибриллярная гипертрофия является наиболее функциональным способом роста мышц.

На сегодня существует много теорий о том, как эти два способа наращивания мышц могут быть применены в спорте и силовых тренировках. Мы бы посоветовали включать в тренировку оба способа, комбинируя их.

Хорошо для начала применить правило 5×5, выполняя комплексные упражнения, которые прорабатывают большие группы мышц с тяжелым весом. Для достижения саркоплазматической гипертрофии мы рекомендуем завершить тренировку, следуя системе 3х15 со средним весом.

Прирост мышечной массы может быть достигнут путем поддержания прогрессирующей перегрузки мышц, но только при использовании достаточных методов восстановления. Возраст и питание считаются основными факторами, влияющими на гипертрофию. Естественная гипертрофия обычно прекращается в позднем подростковом возрасте с остановкой роста. Помните, что если вы бодибилдер, вам необходимо ежедневно потреблять около двух граммов белка на килограмм веса.

Заключение

Все хотят стать обладателями больших мышц, но если на каждой тренировке просто качать мышцы, эффекта не будет. На самом деле, нужно добиться долгосрочной адаптации, которая достигается с помощью миофибриллярной гипертрофии.

В конечном итоге, увеличится размер и количество мышечных волокон, что приведет к увеличению силы и размера мышц. Убедитесь, что ваша тренировочная программа включает в себя множество схем повторений, для каждой из которых выбрана правильная нагрузка. Это позволит вам добиться определенной адаптации как для гипертрофии, так и для увеличения силы.

Часто задаваемые вопросы:

Что такое миофибриллярная гипертрофия?

Миофибриллярная гипертрофия происходит в результате стимуляции мышечных волокон тяжелыми весами. В результате этой стимуляции мышечные волокна разрушаются. Организм начинает восстанавливать поврежденные волокна, и делает это, увеличивая объем и плотность миофибрилл.

Что такое саркоплазматическая гипертрофия?

При саркоплазматической гипертрофии в мышечных клетках увеличивается объем саркоплазматической жидкости. Это приводит к увеличению общего объема мышц. При этом сила и размер волокон остаются прежними.

Как мне тренироваться для достижения саркоплазматической гипертрофии?

Чтобы нарастить мышцы по саркоплазматическому типу, вам следует качать мышцы, используя умеренный вес, большое количество повторений и короткие периоды отдыха.

Как мне тренироваться для достижения миофибриллярной гипертрофии?

Для этого вам нужно тренироваться с очень тяжелыми весами и выделять на отдых между подходами большее время.

Статьи на нашем сайте представлены только в просветительских и информационных целях. Мы не рекомендуем использовать материалы статей в качестве медицинских рекомендаций. Если вы решили принимать биодобавки или внести основательные изменения в свой рацион, предварительно проконсультируйтесь со специалистом.

Источник

Гипертрофия мышц человека – как наши мышцы растут?

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Рассматривая базовые принципы роста мышц у спортсменов, нельзя не упомянуть определяющий фактор развития в любом силовом виде спорта. Речь идет о гипертрофии. Что такое гипертрофия? Как объем мышц связан с силой и связан ли вообще? Рассмотрим все по порядку.

Общие сведения

Чтобы понять, почему возникает гипертрофия мышц, обратимся к биомеханике организма. Мышечная гипертрофия – это в первую очередь увеличение мышечной массы и площади поперечного сечения каждой отдельной мышечной клетки. Увеличение размера связано с увеличением ширины отдельных мышечных волокон.

И сердечная, и скелетная мышцы адаптируются к регулярным нагрузкам: адаптация – это один из самых важных аспектов, связанных с тренировками. Организм имеет способность приспосабливаться к возрастающим нагрузкам. Увеличивая рабочие нагрузки, которые превышают текущие показатели мышечного волокна, мы стимулируем ткани к росту.

Примечание: именно поэтому негативные повторения так эффективно влияют на прорыв в случае силового застоя.

Как происходит?

Когда кто-то начинает тренировать мышцу, сначала возникает увеличение нервных импульсов, которые вызывают сокращение мышц. Это само по себе часто приводит к увеличению прочности без заметного изменения размера мышц. По мере продолжения упражнений происходит сложное взаимодействие реакций нервной системы, которые стимулируют синтез белка в течение нескольких месяцев, в результате чего мышечные клетки становятся все больше и сильнее.

Таким образом, для роста мышц нужны компонента – стимуляция и восстановление. Стимуляция происходит во время сокращения мышц или во время фактического упражнения на мышцы. Каждый раз, когда мышца начинает работу, происходит сжатие. Это повторное сокращение во время тренировки вызывает повреждение внутренних мышечных волокон. После повреждения они готовы к восстановлению в большем объеме.

Восстановление мышечного волокна происходит после тренировки, пока мышцы находятся в режиме покоя. Новые мышечные волокна производятся, чтобы заменить и восстановить поврежденные.

Для производства поврежденных волокон производится больше волокон, и именно так происходит фактический рост мышц.

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Виды мышечной гипертрофии

Есть два способа гипертрофии скелетных мышечных волокон.

Интересный факт: так как грудные и другие мышцы выглядят намного красивее при саркоплазматической гипертрофии, бодибилдеры стремятся именно к такому росту. Другие тяжелоатлеты относятся к такому увеличению объема скептически и называют подобную мускулатуру «пустые мышцы». И это справедливо, поскольку бодибилдеры, хотя и увеличивают общую функциональность, делают это с гораздо меньшим коэффициентом эффективности, чем пауэрлифтеры, которые стремятся к миофибриллярной гипертрофии.

Определяющие факторы

ФакторВлияние
ПитаниеОпределяющий фактор в создании гипертрофии. Используется для создания базового восстановительного фона при процессах супервосстановления и сращения миофибрилл в клеточных структурах.
ТренировкиЗапускают микроразрывы в мышцах с последующим супер восстановлением, а следовательно наращиванием мышечной массы.
ВосстановлениеВо время восстановления запускаются основные строительные процессы в организме, которые обеспечивают анаболизм и рост миофибриллярный волокон.
Спортивное питаниеИспользуется для создания базового восстановительного фона при процессах супервосстановления и сращения миофибрилл в клеточных структурах.
Анаболические стероидыАльтернативный фактор для создания гипертрофии скелетных мышц. Прямой стимулятор синтеза дополнительного белка с последующим его распределением внутри костных мышечных тканей. Не работают без питания восстановления и тренировок.
Гормоны ростаПри наличии белка вызывают искусственный рост всех мышечных тканей без увеличения их плотности и функциональных возможностей
Пептидные гормоныПри наличии белка, вызывает искусственный рост всех мышечных тканей без увеличения их плотности и функциональных возможностей.
Стимуляторы естественной выработки тестостеронаПрямой стимулятор синтеза дополнительного белка с последующим его распределением внутри костных мышечных тканей. Не работает без питания восстановления и тренировок. В отличие от анаболических стероидов, не наносит вред организму.

Тренировки

Тренировки – важнейший определяющий фактор, запускающий процесс гипертрофии.

Гипертрофия мышечных тканей – это естественная реакция на внешние раздражители. Если организму кажется, что его текущих сил недостаточно для выполнения определенной работы (которую он считает важной для выживания), он будет инициировать гипертрофию. На это влияют факторы появления молочной кислоты и принципа супервосстановления, благодаря которому микроразрывы зарастают с запасом.

Интересный факт: принцип роста тканей по принципу микроразрывов и супервосстановления используется не только для гипертрофии мышц, но и для искусственного увеличения роста после 25 лет. Для этого делаются микроскопические разрезы костной ткани голени, куда устанавливаются специальные штифты, которые каждую неделю подкручиваются на 1 мм. За год человек может вырасти таким образом на 5-6 см.

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Питание

Другой основополагающий аспект в гипертрофии – энергетический баланс. На любой стресс организм может отреагировать двумя способами:

Однако без специального стимулирования в виде сверх-калорийности и избытка белка организм просто не будет наращивать мышечные ткани, так как будет считать, что неспособен поддерживать новые объемы энергией. Поэтому питание стоит на втором месте по значимости после тренировок для достижения гипертрофии мышечных тканей.

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

© elenabs — depositphotos.com. Пропорции правильного питания

Вспомогательный спортпит

Гипертрофии поможет различное спортивное питание. Оно не запустит процессы роста мышц, однако ускорит его, или увеличит интенсивность.

Наиболее эффективные виды спортивного питания:

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Как еще можно добиться?

Как добиться гипертрофии мышц без интенсивных тренировок и соблюдения диетологии? Если речь идет о саркоплазматической гипертрофии, то её добиться несколько проще чем микрофибриллярной. Для этого порой достаточно увеличить общий синтез белка из поступающих аминокислот в организме. Чтобы это сделать, используется два официальных чит-кода.

Внимание! Редакция не рекомендует использовать допинг-средства для достижения спортивных целей. Они имеют ряд противопоказаний и массу побочных эффектов. Перед приемом любого из представленных препаратов получите консультацию у эндокринолога.

1-ый опосредованный: использование анаболических стероидов. Они косвенно влияют на общий синтез белка, увеличивают силовые показатели, скорость восстановления, а значит, позволяют тренироваться интенсивнее и больше. Как результат – выраженная временная гипертрофия.

2-ой прямой: использование гормона роста. Гормон роста вызывает оба вида гипертрофии путем прямого стимулирования роста мышечной ткани за счет роста всех её компонентов.

Примечание: никогда не комбинируйте гормон роста и анаболические стероиды, это ведет к катастрофическим последствиям.

Заключение

Гипертрофии добиться довольно легко. Именно за счет этого процесса возникает естественный прирост мышечной ткани.

Но помните о мере. Далеко не всегда большие мышцы более функциональны в сравнении с небольшими. Яркими примерами этому служат кроссфитеры, вес которых редко превышает 90 кг, но при этом они всегда сухие и гораздо более функциональные, чем бодибилдеры и даже чем пауэрлифтеры.

Что такое гипертрофия мышц. Смотреть фото Что такое гипертрофия мышц. Смотреть картинку Что такое гипертрофия мышц. Картинка про Что такое гипертрофия мышц. Фото Что такое гипертрофия мышц

Эксперт проекта. диагностика, лечение, первичная, вторичная профилактика заболеваний почек, суставов, сердечно-сосудистой системы; дифференциальная диагностика заболеваний различных органов и систем; рекомендации по диетическому питанию, физическим нагрузкам, лечебной физкультуре, подбор индивидуальной схемы питания.

Источник

Механизмы мышечной гипертрофии и их связь с силовой тренировкой

В статье рассмотрены типы мышечной гипертрофии, влияние на гипертрофию мышц деления клеток-сателлитов, гормонов, гипоксии, механического напряжения, повреждения мышц, метаболического стресса, а также переменных тренировки: интенсивности, объема, типа упражнений, интервала отдыха, работы «до отказа»и скорости выполнения упражнений.

Schoenfeld B. J. The mechanisms of muscle hypertrophy and their application to resistance training //J Strength Cond Res. 2010. V. 24. N.10 P. 2857-2872.

Бред Шёнфилд

Механизмы мышечной гипертрофии и их связь с силовой тренировкой

Аннотация

Те, кто поднимают тяжести, стремятся увеличить мышечную массу тела. Однако не хватает исследований, каким образом максимизировать рост мышц под воздействием физической нагрузки. Бодибилдеры обычно тренируются с умеренными нагрузками и довольно короткими промежутками отдыха, которые вызывают большое количество метаболического стресса. Пауэрлифтеры, наоборот, обычно тренируются с нагрузками высокой интенсивности и длительными периодами отдыха между подходами. Хотя обе группы, как известно, показывают впечатляющую мускулатуру, не ясно, какой метод лучше для гипертрофии мышц. Было показано, что многие факторы опосредуют гипертрофический процесс и что механическое напряжение, повреждение мышц, а также метаболический стресс могут играть определенную роль в вызванной физической нагрузкой гипертрофии мышц. Таким образом, цель данной работы является двоякой: (а) дать широкий обзор литературы, как о механизмах мышечной гипертрофии, так и их применении для осуществления подготовки и (б) сделать выводы из исследований какой протокол тренировки является оптимальным для максимизации роста мышц.

Ключевые слова: развитие мышц, гипертрофия мышц, рост мышцы, напряжение мышцы, повреждение мышцы, метаболический стресс.

Введение

Стремление увеличить мышечную массу тела широко преследуют те, кто поднимает тяжести. Учитывая сильную корреляцию между площадью поперечного сечения мышц и мышечной силой (111), увеличение мышечной массы является одной из главных целей спортсменов, участвующих в скоростно-силовых и силовых видах спорта, таких как футбол, регби, и пауэрлифтинг. Мышечная масса также является жизненно важной для бодибилдинга, где о соперниках судят по количеству и качеству развития мышц. В общем, гипертрофию мышц развивают также рекреационные лифтеры, которые стремятся развить свое телосложение в полной мере. Таким образом, максимизация мышечной массы имеет далеко идущие последствия для различных групп населения, связанных со спортом и здоровьем.

У нетренированных людей на начальных этапах силовой тренировки гипертрофия мышц практически отсутствует и прирост силы возникает за счет нервных влияний (124). Через пару месяцев тренировок, однако, гипертрофия мышц начинает становиться доминирующим фактором, начиная с верхних конечностей и заканчивая нижними (124, 177). На прирост мышечной массы влияют генетические предпосылки, пол, возраст и другие факторы (93). Кроме того, с приобретением опыта тренировок становится все труднее увеличить мышечную массу, поэтому увеличивается важность правильной организации тренировки.

Хотя гипертрофия мышц может быть достигнута с помощью широкого спектра программ силовой тренировки, принцип специфичности подсказывает, что некоторые программы способствуют большей гипертрофии мышц, чем другие (16). Не хватает исследований, свидетельствующих о наиболее эффективных процедурах тренировки. Бодибилдеры обычно тренируются с умеренными нагрузками и дают довольно короткие промежутки отдыха, которые вызывают большое количество метаболического стресса. Пауэрлифтеры, наоборот, обычно тренируются с большими отягощениями и дают длительный отдых между подходами. Хотя обе группы, как известно, показывают впечатляющий прирост мышечной массы, пока не ясно, какой метод лучше всего подходит для максимизации гипертрофического прироста мышечной массы (149). Таким образом, цель данной работы является двоякой: (а) дать широкий обзор литературы, как о механизмах мышечной гипертрофии и их применении к силовой тренировке (б) сделать выводы из исследований и разработать рекомендации по гипертрофии мышц.

Типы гипертрофии мышц

Мышечная гипертрофия отличается от мышечной гиперплазии. При гипертрофии мышц, увеличиваются сократительные элементы, и межклеточный матрикс расширяется для поддержки роста (187). Гиперплазия приводит к увеличению количества мышечных волокон. Гипертрофия сократительных элементов может происходить путем добавления саркомеров либо последовательно или параллельно.

Наиболее часто при гипертрофии, вызванной упражнениями, саркомеры и миофибриллы добавляются параллельно (135, 179). Когда скелетные мышцы подвергают перегрузкам, это вызывает изменения в мышечных волокнах, а также в соответствующем внеклеточном матриксе. Это устанавливает начало цепи миогенных событий что, в конечном итоге, приводит к увеличению размера и количества миофибриллярных сократительных белков: актина и миозина, и общего количества саркомеров, расположенных параллельно. Это, в свою очередь, увеличивает диаметр отдельных мышечных волокон и тем самым приводит к увеличению площади поперечного сечения мышцы (182).

Увеличение количества саркомеров, расположенных вдоль мышечного волокна, связано с маленькой длиной саркомеров (182). Гипертрофия, возникающая при увеличении количества саркомеров в миофибрилле, возникает в том случае, когда мышца вынуждена адаптироваться к новой функциональной длине. Это видно на примере конечностей, которые помещаются в гипс. Иммобилизация сустава приводит к увеличению числа саркомеров в миофибрилле, если мышца растянута и к уменьшению количества саркомеров в миофибрилле, если мышца сокращена (182). Существует ряд доказательств, что определенные типы упражнений могут повлиять на количество саркомеров в миофибриллах. Lynn и Morgan (107) показали, что, когда крысы бежали по беговой дорожке вверх, они имели меньшее количество саркомеров в миофибриллах по сравнению с теми, кто двигался вниз по дорожке. Это говорит о том, что повторные эксцентричные упражнения приводят к увеличению количества саркомеров в миофибриллах, в то время как двигательные действия в концентрическом режиме приводят к последовательному уменьшению количества саркомеров.

Предполагается, что гипертрофия может быть увеличена за счет увеличения различных неконтрактильных элементов и жидкости (108, 205). Эта концепция получила название “саркоплазматической гипертрофии”’ и может привести к большей мышечной массе без сопутствующего увеличения силы (154). Увеличение мышцы за счет саркоплазматической гипертрофии, как считается, связано со специальной тренировкой. Доказано, что мышечная гипертрофия у бодибилдеров отличается от пауэрлифтеров (179). В частности, у бодибилдеров, как правило, больше соединительно-тканного эндомизия, и большее содержание гликогена по сравнению с пауэрлифтерами (109, 177), по-видимому, из-за различий в методологии подготовки. Хотя саркоплазматическая гипертрофия часто описывается как нефункциональная, однако она вызывает отек мышечных волокон, таким образом, может опосредованно влиять на последующее увеличение синтеза белка, которое приводит к большему росту сократительной ткани.

Некоторые исследователи предполагают, что увеличение площади поперечного сечения мышцы может происходить по крайней мере частично из-за увеличения числа волокон (8). Мета-анализ, проведенный Келли (84) показал, что гиперплазия имеет место в мышцах некоторых видов животных в экспериментальных условиях в результате механической перегрузки. Увеличение числа мышечных волокон было наибольшим среди тех групп исследователей, которые изучали птиц, а не млекопитающих. И перегрузки в виде растягиваний давали более значительное увеличение числа волокон, чем упражнения. Однако последующие исследования показали, что такие наблюдения могут быть ошибочными, из-за того, что удлинение волокон считалось увеличением их количества (135). Доказательств того, что гиперплазия имеет место у людей не хватает и, даже, если это имеет место, эффект воздействия на площадь поперечного сечения мышцы минимален (1,108).

Клетки-сателлиты и гипертрофия мышц

Мышцы – это постмитотические ткани. Это означает, что они не являются постоянными клетками, а заменяются в течение жизни. Эффективный способ для клеточного восстановления нужен для того, чтобы предотвращать апоптоз клеток (регулируемый процесс клеточной гибели) и поддерживать массу скелетных мышц. Это осуществляется через динамический баланс между синтезом белков в мышцах и их распадом (69, 182). Мышечная гипертрофия возникает тогда, когда синтез белков превышает их распад.

Гипертрофия служит связующим звеном между активностью клеток-сателлитов, которые находятся между базальной мембраной и сарколеммой (66, 146). Эти «миогенные стволовые клетки» обычно неподвижны, но становятся активными, когда на скелетные мышцы воздействует достаточное количество механических стимулов (187). Однажды пробужденные, клетки-сателлиты пролифелируют (делятся), после чего или сливаются с существующими клетками или взаимодействуют между собой для создания новых мышечных волокон, что приводит к восстановлению и впоследствии гипертрофии новых мышечных волокон (182).

Клетки-сателлиты могут влиять на гипертрофию мышц несколькими способами. Первый, они жертвуют дополнительные ядра мышечным тканям, увеличивая возможность синтеза новых сократительных белков (123). Поскольку отношение количества ядер к объему мышечного волокна (объем мионуклеарного домена) во время гипертрофии мышц остается постоянным, изменяются требования к необходимому количеству внешних источников митотически активных клеток. Клетки-сателлиты сохраняют способность к делению, и тем самым служат как резерв миоядер, используемый для поддержки мышечного роста (15). Это согласуется с концепцией миоядерного домена, которая предполагает, что миоядра регулируют производство иРНК, соответствующее объему саркоплазмы и любые увеличения в размере мышечных волокон должны сопровождаться пропорциональным увеличением количества миоядер. Учитывая, что мышцы включают в себя множество мионуклеарных доменов, гипертрофия может предположительно возникать, как результат либо увеличения количества доменов (через увеличение количества миоядер) либо посредством увеличения размера существующих доменов. Как полагают, в процессе гипертрофии происходят оба процесса, при этом клетки-сателлиты принимают в них активное участие (182).

Более того, клетки-сателлиты сопровождают различные миогенные регуляторные факторы (включая Myf5, MyoD, myogenin и MRF4) которые помогают в восстановлении мышц, регенерации и росте. Эти регуляторные факторы связываются с последовательностью специфических элементов ДНК, представленных в мышечных генах-промоторах, выполняя распределенные роли в миогенезе (148,155).

Миогенные пути

Вызванная упражнениями мышечная гипертрофия связана с большим количеством сигнальных путей, которые под воздействием механической стимуляции передают вниз сигналы, которые сдвигают баланс или в сторону синтеза или в сторону катаболизма белков. Несколько первичных анаболических путей идентифицированы: Akt-mammalian Target of Rapamycin (mTOR), митоген активируемая протеинкиназа (МАРК) и кальций зависимая протеинкиназа.

Akt-mammalian Target of Rapamycin (Akt/mTOR) путь

Akt/mTOR предполагается действует как регулятор роста скелетных мышц (18, 77, 181). Несмотря на то, что специфический молекулярный механизм выяснен не полностью, Akt считается важной узловой молекулярной точкой, которая так же является активатором анаболического синтеза и главным ингибитором катаболических сигналов. Когда он активирован, Akt подает сигналы mTOR, который затем оказывает влияние на различные нижележащие цели, которые содействуют гипертрофии мышечных тканей.

Митоген Активируемый Протеин Киназный (МАПК) путь

Митоген активируемая протеинкиназа считается главным регулятором экспрессии генов, окислительно-восстановительного процесса и метаболизма (88). Специфичная для вызываемой физическими упражнениями гипертрофии скелетных мышц, МАПК связывает стресс с приспособительными ответами мышечных волокон, модуляцией их роста и дифференциации.

С мышечной гипертрофией связаны три различных МАПК сигнальных модуля: экстраклеточная сигнально-регулирующая киназа (ERK ½), p38 МАПК, и c-Jun NH2 – терминал киназа (JNK). Из этих составляющих, JNK показывается как самая отзывчивая к механическим воздействиям и повреждениям мышц и она частично восприимчива к эксцентрическим упражнениям. Вызываемая физическими упражнениями, JNK связана с быстрым ростом в mRNA транскрипционных факторов, которые модулируют клеточное распространение и восстановление ДНК.

Кальций зависимая протеинкиназа

Различные кальций зависимые протеинкиназные пути причастны к регуляции мышечного роста. Кальцинейрин (Cn), и кальций-регулирующая фосфатаза, предположительно являются частью критического регулятора сигнального каскада кальция. Кальцинейрин (Cn) участвует в кальциевом пути и служит связующим звеном между различными гипертрофическими эффекторами, такими как фактор-2 увеличения мышечных волокон, фактор GATA транскрипции, и внутриклеточный фактор активирования Т клеток (118).

Cn-зависимые пути связаны с гипертрофией всех типов мышечных волокон, и их торможение используется для предотвращения роста мышц даже при условии наличия мышечной перегрузки.

Гормоны и Цитокины[1]

Гормоны и цитокины играют неотъемлемую роль в гипертрофической реакции, выступающей в качестве вышестоящих регуляторов анаболических процессов. Повышенная концентрация анаболического гормона увеличивает вероятность рецепторных взаимодействий, способствующих белковому обмену с последующим ростом мышц (31). Многие также участвуют в пролиферации и дифференциации клеток-сателлитов, и возможно облегчают привязку клеток-сателлитов к поврежденным волокнам при восстановлении мышц (182, 187).

Гормональная регуляция гипертрофии – это комплекс с многочисленными гормонами и цитокинами, приводящий к ответной реакции. Гепато-фактор роста, Интерлейкин-5 (IL-5), Интерлейкин-6 (IL-6), фактор роста фибробластов и ингибирующий лейкоз фактор, все это стимулирует анаболизм. Инсулин, как было показано, обладает анаболическими свойствами, с большим воздействием на протеолиз, чем на усиление синтеза белка. Инсулин также, по мнению ученых, вызывает митоз и дифференциацию клеток-сателлитов. Учитывая, что уровень инсулина уменьшается при физической нагрузке, этот аспект тренировочного режима не будет рассматриваться далее.

Различные виды упражнений, как было показано, вызывают острые и в некоторых случаях хронические перестройки гормонального фона, что играет существенную роль в гипертрофии мышц. Существуют три наиболее широко изученных в этом направлении гормона: инсулино-подобный фактор роста (IGF1), тестостерон и гормон роста (GH). Некоторыми исследователями ставится под сомнение острый гормональный ответ на упражнения, обеспечивающий значительные анаболические эффекты. Однако преобладают фундаментальные и косвенные доказательства обратного, а именно огромной важности гормональной сигнализации при занятиях силовыми упражнениями.

Инсулиноподобный фактор роста (IGF-1)

Инсулиноподобный фактор роста часто упоминается, как самый важный анаболический гормон млекопитающих. Это связано с тем, что этот гормон отвечает за основной анаболический эффект организма и реагирует на механическую нагрузку (19, 63).

Конструктивно, IGF-1 – это пептидный гормон, названный так из-за структурного сходства с инсулином. Рецепторы инсулиноподобного фактора роста находятся в активированных клетках-сателлитах, взрослых миофибриллах и Шванновских клетках (15). Во время тренировки мышцы не только производят более системный IGF-1, чем в печени, но также используют циркулирующий IGF-1 (49). Доступность IGF-1 для мышц контролируется с помощью IGF-1-связывающих белков (IGFBPs), которые либо стимулируют, либо тормозят эффекты IGF-1, после привязки к конкретному связывающему белку IGFBP (182).

Определены три различные изоформы IGF-1: системные формы IGF-1Ea и IGF-1Eb и соединяющий IGF-1Ec. Хотя все три формы выражены в мышечной ткани, только IGF-1 Ec активируется путем механического сигнала (63, 199). Из-за его ответа на механическое раздражение, IGF-1Ec еще называют механическим фактором роста (MGF).

Инсулиноподобный фактор роста, как было показано, вызывает гипертрофию в аутокринной и паракринной системе (34) и оказывает свое действие несколькими способами. Например, IGF-1 непосредственно стимулирует анаболизм за счет увеличения скорости синтеза белка в дифференцированных миофибриллах (15,63). Кроме того, локальная экспрессия MGF активирует клетки-сателлиты и служит связующим звеном их пролиферации и дифференцировки (69, 200). С другой стороны считается, что IGF-1Ea повышает слияние клеток-сателлитов в мышечных волокнах, способствуя отдачи миоядер и помогает поддерживать объем мионуклеарного домена на постоянном уровне (182).

Инсулиноподобный фактор роста также активирует экспрессию генов L-типа калиевых каналов в результате повышения внутриклеточной концентрации ионов кальция. Это приводит к активации нескольких анаболических кальций-зависимых путей, в том числе кальциневрина и его многочисленных нисходящих сигнальных целей.

Тестостерон

Тестостерон является холестерол-производным гормоном, который оказывает значительное анаболическое действие на мышечную ткань (33, 105). В дополнение к его воздействию на мышцы тестостерон также может взаимодействовать с рецепторами на нейронах и тем самым увеличивать количество освобожденных медиаторов, регенерировать нейроны и увеличивать размеры клеточного тела. В основном тестостерон синтезируется и секретируется клетками Лейдига семенников и через гипоталамо-гипофизарно-гонадную ось в небольших количествах из яичников и надпочечников (22). В крови, большая часть тестостерона связывается либо с альбумином (38%) или со стероидным гормоном, связывающим глобулин (60%). Оставшиеся 2% циркулируют в свободном состоянии. Хотя только несвязанная форма биологически активна и доступна для использования тканями, связанный тестостерон может стать активным, быстро отделившись от альбумина (105). Несвязанный тестостерон связывается с андрогенными рецепторами тканей-мишеней, которые расположены в цитоплазме клеток. Это вызывает конформационные изменения, которые способствуют транспортировке тестостерона в клеточное ядро, где он взаимодействует непосредственно с хромосомной ДНК.

Хотя влияние тестостерона на скелетные мышцы видно и в отсутствие нагрузки, его действие усиливается механическими нагрузками, стимулируя анаболизм за счет увеличения скорости синтеза белка и замедления распада белков (22). Тестостерон также может способствовать синтезу белка, косвенно стимулируя выброс других анаболических гормонов, таких как гормон роста (31). Кроме этого, было выявлено, что он способствует репликации клеток-сателлитов и их активации, в результате чего увеличивается количество миогенных клеток-сателлитов (155). Было выявлено, что приостановление действия тестостерона негативно сказывается на устойчивости к силовой тренировке (100).

Было установлено, что силовые упражнения вызывают повышение содержание рецепторов андрогенов в организме человека (13, 80). У грызунов, модуляция содержания андрогенных рецепторов проявляется в типе волокон определённым образом с увеличением быстро сокращающихся мышц (20). Таким образом, увеличивается потенциал для связывания тестостерона на клеточном уровне, что способствует его поступлению в ткани-мишени.

Силовые упражнения могут иметь ощутимый резкий эффект на выделение тестостерона. Ahtianen et al. (2) установили существенную корреляцию между повышением уровня этого гормона под воздействием тренировки и поперечным сечением мышцы, предположив, что повышение уровня тестостерона в мышцах при тренировках может играть существенную роль в их гипертрофии. Однако срочные ответы лимитированы у женщин и у лиц пожилого возраста, что уменьшает гипертрофический потенциал этих групп населения (61,90, 130).

До сих под не ясен кумулятивный эффект влияния силовых тренировок на содержание тестостерона в мышцах. Некоторые исследования показывают достоверный рост его уровня в мышцах в результате силовой тренировки (60, 93, 163), другие – незначительное увеличение (3,142). В связи с этим необходимы дальнейшие исследования этой проблемы.

Гормон роста

Гормон роста (соматотропный гормон, СТГ) представляет собой полипептидный гормон, который, как считается, обладает как анаболическими, так и катаболическими свойствами. В частности, СТГ действует как агент перераспределения, провоцирующий жировой обмен, приводящий к мобилизации триглицеридов и стимулирующий клеточное поглощение и включение аминокислот в различные белки, в том числе мышцы (187). При отсутствии механической нагрузки СТГ преимущественно активирует иРНК системного IGF-1 (инсулиноподобного фактора роста-1) и опосредованную негепатическую экспрессию генов IGF-1 аутокринным/паракринным образом (63).

Гормон роста выделяется передней долей гипофиза и вводится в действие пульсирующим образом с наибольшими выделениями, не вызываемыми выполнением физических упражнений, происходящими во время сна. Было обнаружено более 100 молекулярных изоформ СТГ; однако, большая часть тренировок с отягощениями сосредоточена исключительно на изоформах 22-кДа, что приводит к ограничению его вывода. Новейшие исследования свидетельствуют о преимущественном выделении нескольких изоформ СТГ с пролонгированным периодом полужизни во время выполнения физических упражнений, что создает возможность для пролонгированного действия на ткани-мишени (131).

В дополнение к воздействию, оказываемому на мышечную ткань, СТГ также принимает участие в регуляции иммунной функции, формирования костей и объема тканевой жидкости. В общей сложности, предполагается, что СТГ активизирует свыше 450 действий в 84 типах клеток (190).

Уровень гормона роста резко повышается после выполнения различных типов физических упражнений (96). Повышение уровня СТГ в связи с выполнением физических упражнений высоко коррелирует с величиной гипертрофии мышечных волокон типа I и II (113). Предполагается, что кратковременное повышение СТГ может приводить к усилению взаимодействия с рецепторами мышечных волокон, что облегчает восстановление волокон и стимулирует гипертрофический ответ (134). Считается, что гормон роста также участвует в вызываемом тренировкой повышении локально экспрессируемого IGF-1 (75). В сочетании с интенсивными физическими упражнениями выделение СТГ связано с заметным повышением экспрессии гена IGF-1 в мышцах таким образом, что большее количество превращается в изоформу MGF (механический фактор роста) (63).

Некоторые исследователи подвергают сомнению существенное гипертрофическое влияние СТГ на мышечную ткань (143). Данная точка зрения базируется на результатах нескольких исследований, в ходе которых не удалось обнаружить значительного увеличения мышечной массы при введении СТГ при выполнении тренировки с отягощениями (101, 201-203). С другой стороны, в данных программах тренировки не воспроизводились большие резкие подъемы СТГ, наблюдаемые после выполнения физических упражнений; учитывая время при котором уровень СТГ был повышен в сочетании с травмой мышц. Таким образом из этих исследований, невозможно сделать выводы относительно того, как СТГ связан с физической нагрузкой. Ответ связан с анаболическими процессами в скелетных мышцах и многое до сих пор не ясно. В связи с этим необходимы дальнейшие исследования, чтобы полностью осветить его роль в развитии мышц.

О взаимосвязи гормонов и мышечной массы можно прочесть в моей книге «Гормоны и гипертрофия скелетных мышц человека»

Клеточная гидратация (отек)

Клеточная гидратация (т.е. клеточный отёк) служит регулятором физиологической функции клеток (65), что используется для моделирования анаболических процессов, то есть увеличения синтеза белка и уменьшения его распада (53,120,165). Хотя физиологическую основу, связывающую отек клеток с анаболическими процессами еще предстоит определить, можно предположить, что увеличение давления на мембрану воспринимается как угроза целостности клетки, что в свою очередь заставляет ее подавать сигналы. Это в итоге приводит к укреплению ее ультраструктуры.

Гидратированные клетки, как было показано, инициировали процесс, который включает активацию протеин-киназных сигнальных путей в мышцах, и, возможно, опосредующих аутокринных эффектов факторов роста в передаче сигнала анаболического ответа на участке мембраны (106). Клеточный отек вызывает растяжение участка мембраны, что может напрямую влиять на транспорт аминокислот посредством интегрин-ассоциированных рецепторов объема. Фосфатдилинозитол- 3-киназы, являются важным компонентом связи модуляции глютамина и альфа-(метил) аминоизомасляной кислоты в транспорте в мышцы, потому что клетки отекают (106). Силовые упражнения, как было показано, взывают изменения водного баланса внутри клетки (156), степень которого зависит от типа и интенсивности упражнения. Клеточный отек достигает максимума при использовании физических упражнений гликолитического типа с накоплением лактата, который вносит основной вклад в осмотические изменения в скелетных мышцах (41, 157). Быстросокращающиеся волокна, особенно чувствительны к осмотическим изменениям, связанными с высокой концентрацией воды в транспортных каналах, называемых аквапорин-4. Аквапорин-4 сильно выражен в сарколемме гликолитических и окислительно-гликолитических волокон, что облегчает приток жидкости в клетку. Учитывая, что быстро сокращающиеся волокна являются наиболее чувствительными к гипертрофии, можно предположить, что клеточная гидратация увеличивает гипертрофический ответ во время тренировки с отягощениями, что в значительной мере опирается на анаэробный гликолиз.

Упражнения, которые вызывают повышение гликогена в мышечных волокнах также увеличивают отек клеток. Учитывая, что гликоген притягивает три грамма воды на каждый грамм гликогена (25), это может влиять на увеличение возможностей для синтеза белка в тех мышечных волокнах, которые обладают большими запасами гликогена.

Гипоксия

Гипоксия, как было показано, способствует мышечной гипертрофии. Эти эффекты видны даже в отсутствии физической нагрузки. Takarada et al. (172) обнаружили, что две ежедневные сессии сосудистой окклюзии тормозят мышечную атрофию в группе пациентов, содержащихся на постельном режиме. Подобные эффекты окклюзии наблюдали Kubota et al. (62, 98), что предотвращало падение мышечной силы и уменьшение площади поперечного сечения во время 2-х недельного периода иммобилизации.

В сочетании с физическими упражнениями, гипоксия, кажется, оказывает дополнительный эффект на гипертрофию мышц. Это было продемонстрировано Takarada et al. (173), которые разделили 24 пожилых женщин, выполняющих сгибание руки в локтевом суставе на три подгруппы. Первая группа женщин выполняла упражнение с низкой интенсивностью (50% от максимума [1РМ]) и имела окклюзию сосудов. Вторая группа женщин выполняла упражнение с низкой интенсивностью, как и первая, но без окклюзии. Третья группа выполняла упражнение с высокой интенсивностью (80% от максимума), но без окклюзии. После 16 недель такой тренировки, первая группа показала значительно большую площадь поперечного сечения локтевого сгибателя по сравнению со второй группой. При этом гипертрофия мышц была такой же, как в третьей группе.

Есть несколько теорий, объясняющих влияние гипоксии на гипертрофию мышц. С одной стороны, гипоксия, как было показано, вызывает повышенное накопление лактата и уменьшает его удаление (173). Это увеличивает отек мышечных волокон, что, как было показано, активирует синтез белка. Кроме того, увеличение лактата приводит к увеличению анаболических гормонов и цитокинов. Takarada et al. (172) отметили 290% возрастание уровня гормона роста после низкоинтенсивной гипоксической тренировки и увеличение концентрации миогенного цитокина IL-6, который оставался повышенным в течение 24 часов.

Другой потенциальный механизм влияния гипоксии на гипертрофию скелетных мышц связан с ее влиянием на активность активных форм кислорода (ROS). Производство активных форм кислорода, как было показано, способствует росту, как гладкой мускулатуры, так и сердечной мышцы (170), и предполагается аналогичное гипертрофическое воздействие на скелетные мышцы (171). Оксид азота (ROS), продуцируемый во время физических упражнений, опосредует пролиферацию клеток-сателлитов, которые, предположительно, приводят к большому росту скелетных мышц (81, 174). Активные формы кислорода, возникающие во время тренировки, активируют передачу сигнала MAPK в скелетных миобластах (83) и таким образом модулируют гипертрофический ответ.

Гипоксия также может способствовать гипертрофическому эффекту посредством реперфузии (гиперемии, т.е., возобновлению притока крови) после ишемического упражнения (173). Реперфузия в поврежденной мышце предположительно влияет на поставку анаболических эндокринных агентов и факторов роста в клетках-сателлитах, тем самым регулируя их пролиферацию и последующий синтез мышечных трубок (187).

Начало гипертрофии, индуцированной Упражнениями

Предполагается, что существуют три основных фактора ответственных за инициацию гипертрофической реакции при выполнении силовых упражнений: это механическое напряжение, мышечное повреждение и метаболический стресс. Ниже приводится краткий обзор каждого из вышеперечисленных факторов.

Механическое напряжение

Механически индуцированное напряжение вызывается генерируемой силой и растяжением, что считается необходимым для роста мышц, а сочетание этих стимулов, вызывает дополнительный эффект (48, 72, 185). Более конкретно, механическая нагрузка увеличивает мышечную массу, в то время как при ее отсутствии результат ведет к мышечной атрофии (47). Этот процесс в значительной степени контролирует скорость синтеза белка, посредством инициализации трансляции (11,87). Считается, что напряжение, связанное с силовыми тренировками, нарушает целостность скелетных мышц, вызывая механо-химическим путем изменение молекулярных и клеточных реакций в миофибриллах и клетках-сателлитах (182). Импульс сигнала проходит через ряд различных процессов, которые включают в себя факторы роста, цитокины, каналы, активируемые растягиванием, и комплексы фокальной адгезии (23,48, 162). Опыт показывает, что последующий процесс регулируется с помощью путей AKT/mTOR, либо посредством прямого взаимодействия или путем модуляции производства фосфатной кислоты. На данный момент, однако, исследование не предоставило четкого понимания того, как эти процессы осуществляются.

Во время эксцентрических сокращений, пассивное мышечное напряжение развивается посредством удлинения цитоскелета мышечного волокна и титина (182). Это повышает возможность развития активного мышечного напряжения, развиваемого в сократительных элементах, увеличивая гипертрофическую реакцию. И амплитуда, и продолжительность возбуждения мышц определяется частотой активации ДЕ, кодирующих сигналы различных путей, в том числе Ca 2+ кальмодулина фосфатазы кальцинейрином, CaMKII и CAMKIV, и РКС (26). По этим путям можно определить экспрессию гена, соединение мышечного возбуждения с транскрипцией (182).

Пассивное напряжение дает гипертрофическую реакцию волокон конкретного типа, а именно быстро сокращающихся, но не медленных. Это было продемонстрировано Prado et al. (139), которые обнаружили, что медленно сокращающиеся волокна у кроликов показали низкий уровень содержания титина, зато выявили высокий уровень у быстро сокращающихся волокон. Хотя, механическое напряжение может произвести мышечную гипертрофию, это вряд ли принесет гипертрофическую выгоду в целом (79). На самом деле, тренировки различной мощности и с различной степенью мышечного напряжения, в основном, вызывают лишь адаптацию нервной системы без результирующей гипертрофии (28, 188).

Повреждения мышц

Тренировка может привести к локализованным повреждениям мышечной ткани, которые, при определенных условиях, вызывают гипертрофическую реакцию (38, 69). Повреждение может быть специфическим всего для нескольких макромолекул ткани или привести к большим повреждениям сарколеммы, базальной мембраны и соединительной ткани. Повреждение может индуцировать повреждения сократительной части и цитоскелета (187). Поскольку самые слабые саркомеры могут быть расположены в разных частях миофибрилл, неодинаковое удлинение вызывает сдвиг миофибрилл. Это деформирует мембраны, частично Т-трубочки, что ведет к нарушению гомеостаза кальция и, следовательно, к повреждению от разрыва мембран и /или открытию каналов активируемых посредством растягивания (4). Реакцию на травму мышцы можно сравнить с острой реакцией на воспалительную инфекцию. После того, как повреждение воспринимается организмом, нейтрофилы мигрируют к области поврежденных мышечных волокон, затем удаляются посредством макрофагов и лимфоцитов. Макрофаги удаляют поврежденные части мышечных волокон для поддержания ультраструктуры и вырабатывают цитокины, которые активируют миобласты, макрофаги и лимфоциты. Считается, что это приводит к высвобождению различных факторов роста, которые регулируют пролиферацию клеток-сателлитов и их дифференцировку (182, 187). Высокая концентрация клеток-сателлитов, обеспечивает рост мышц (69, 155). Это приводит к тому, что нервы поврежденного волокна могут стимулировать активность клеток-сателлитов, тем самым способствуя гипертрофии (187).

Метаболический стресс

Многочисленные исследования поддерживают анаболическую роль индуцированного физической нагрузкой метаболического стресса (145, 149, 161) и некоторые полагают, что накопление метаболитов может быть важнее, чем развитие силы в оптимизации гипертрофической реакции при тренировке (153). Хотя метаболический стресс, кажется, не является важным компонентом мышечного роста, большое количество доказательств показывает, что, тем не менее, он может привести к значительному гипертрофическому эффекту, либо первичным, либо вторичным образом. Это можно заметить эмпирическим путем при тренировках умеренной мощности, которые проводились у большого количества бодибилдеров, которые предназначены для повышения метаболического стресса, сохраняя значительное мышечное напряжение. Метаболический стресс проявляется в результате упражнений анаэробного типа, что приводит к последующим накоплениям метаболитов, таких как лактат, ионы водорода, неорганический фосфат, креатин и другие (169, 178). При мышечной ишемии, также был выявлен метаболический стресс, и, возможно, это производит аддитивный гипертрофический эффект при сочетании с гликолитической тренировкой (136, 182). Стресс-индуцированные механизмы теоретически являются посредниками гипертрофической реакции, включают изменения гормональной среды, набухание клеток, производство свободных радикалов, и повышение активности факторов транскрипции, ориентированных на рост (50, 51, 171). Также была выдвинута гипотеза, что повышение кислотности среды, вызванное гликолитической тренировкой может привести к увеличению деградации волокон и большей стимуляции симпатической нервной системы, тем самым способствуя повышению адаптивного гипертрофического ответа (22).

Переменные тренировки и гипертрофия мышц

В соответствии с правилом специфичности, подбор тренировочных переменных имеет большое значение для максимизации гипертрофии мышц, вызванной упражнениями.

Ниже приводится обзор о том, как каждая переменная влияет на гипертрофию мышц относительно физиологических переменных, обсуждавшихся ранее.

Интенсивность

Интенсивность (то есть величина нагрузки), имеет большое влияние на гипертрофию мышц и является, пожалуй, самой важной переменной для стимулирования роста мышц (42). Интенсивность обычно выражают в процентах от массы отягощения, которое спортсмен может поднять один раз, что соответствует количеству повторений, которое может быть выполнено с заданным весом. Повторения классифицируются на три основных диапазона: низкий (1-5), умеренный (6-12) и высокий (15+). Каждый из этих диапазонов будет включать в себя использование различных энергетических систем и напряжения нервно-мышечной системы, по-разному влияя на степень гипертрофии (24, 71). При отсутствии искусственно индуцированной ишемии (то есть тренировки с окклюзией), масса отягощения, меньше, чем 65% от максимума не давала существенной гипертрофии (115). Хотя такая тренировка может вызвать большой метаболический стресс, такое отягощение недостаточно для активирования и утомления больших ДЕ. Вызывает ли низкий или умеренный диапазоны большую гипертрофическую реакцию, был вопрос дебатов. В конечном итоге, пришли к тому, что оба диапазона играют важную роль в увеличении мышц (24). Тем не менее, есть другое мнение, что умеренный диапазон, приблизительно 6-12 повторений, оптимизирует гипертрофическую реакцию (86, 89, 205).

Анаболическое превосходство умеренного диапазона было отнесено к факторам, связанным с метаболическим стрессом. Хотя низкое количество повторений выполняется почти исключительно за счет системы креатинфосфата, а умеренное количество повторения в значительной степени зависит от анаэробного гликолиза (144), это приводит к значительному накоплению метаболитов. Исследования упражнений бодибилдеров, выполняемые несколькими сетами, по 6-12 повторений, показали большое снижение АТФ, креатинфосфата и гликогена, наряду с существенным увеличением лактата в крови, внутримышечного лактата, глюкозы и глюкозы-6-фосфата (37,178). Рост этих метаболитов, как было показано, значительно влияет на анаболический процесс (96). Поэтому возможно, существует максимальный порог гипертрофии мышц, вызванной напряжением, выше которого метаболические факторы становятся более важными, чем дополнительное увеличение нагрузки.

Тренировка в диапазоне от 6 до 12 повторений также максимизирует высокую клеточную гидратацию. Во время этой тренировки, вены, принимающие кровь из работающих мышц сжаты, в то время как артерии по-прежнему поставляют кровь в работающие мышцы, тем самым создавая повышенную концентрацию внутримышечной плазмы крови. Это заставляет плазму просачиваться из капилляров и в пространства между мышечными волокнами. Накопление жидкости в пространстве между мышечными волокнами вызыв%

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *