Что такое гниение в химии

Гниение

Даже в организме живых существ происходят контролируемые их иммунитетом процессы гниения, в результате которых преобразуется потребляемая ими пища. Гниение в кишечнике происходит под действием бактерий, называемых симбиотиками. Продукты гниения в организме обезвреживаются в печени, а затем выводятся почками.

Гниение является окислительным процессом, поэтому для него необходимо наличие кислорода. При свободном доступе воздуха гниение происходит до конца, а весь углерод, содержащийся в органических соединениях, выделяется в виде углекислого газа.

В результате бактерий, обеспечивающих гниение, портятся продукты питания. В них тоже начинают выделяться вредные для человека вещества, именно поэтому продукты можно хранить лишь в течение определённого срока. Различные вещества в большей или меньшей степени подвержены гниению и сроки хранения для них также разные.

Чтобы предотвратить порчу продуктов, необходимо снизить активность гнилостных бактерий. Некоторые бактерии погибают при высокой температуре и от них можно избавиться при помощи кипячения, копчения или другой термической обработки. Другие не выносят низких температур или существенно замедляют своё действие, поэтому продукты питания дольше сохраняются при низких температурах.

Некоторые гнилостные бактерии даже нашли своё применение в деятельности человека. Препараты, получаемые из таких микроорганизмов, применяют, например, при выделке шкур животных, химическая чистка одежды.

Источник

Гниение

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

Гние́ние (аммонификация) — процесс разложения азотсодержащих органических соединений (белков, аминокислот), в результате их ферментативного гидролиза под действием аммонифицирующих микроорганизмов с образованием токсичных для человека конечных продуктов — аммиака, сероводорода, а также первичных и вторичных аминов при неполной минерализации продуктов разложения:

«Гниение» в переносном смысле — процесс изменения чего-либо или кого-либо в худшую сторону.

Содержание

Аммонифицирующие микроорганизмы

Аммонифицирующие микроорганизмы (иначе гнилостные микроорганизмы, гнилостная микрофлора) широко распространены в почве, воздухе, воде, животных и растительных организмах. Поэтому любой подходящий субстрат быстро подвергается гниению. Наиболее глубокий распад белка с образованием безазотистых и азотистых соединений (индол, скатол, NH3,H2S) идет при участии спорообразующих бактерий рода Bacillus (например Bacillus subtilis, Bacillus mycoides), Clostridium (Clostridium perfringens, Clostridium tetani, Clostridium histolyticum), и семейства Enterobacteriaceae(например Proteus, Escherichia).

Умеренное, контролируемое иммунитетом организма бактериальное гниение белков также является необходимой частью пищеварения и происходит в толстом кишечнике человека и животных. Их активаторами являются Proteus, Escherichia, Morganella, Klebsiella, Pseudomonas. По мнению И. И. Мечникова, постоянно образующиеся в кишечнике продукты гниения (скатол, индол и др.), вызывают хроническую интоксикацию и являются одной из причин преждевременного старения. Чрезмерно интенсивное гниение в толстом кишечнике является причиной гнилостной диспепсии, диареи и дисбактериоза толстого кишечника.

Этапы гниения

Первой стадией разложения белков является их гидролиз как микробными протеазами, так и протеазами клеток погибшего организма, высвобождаемыми из лизосом в результате смерти клеток (аутолиз). Протеолиз происходит в несколько стадий- в начале белки расщепляются до всё ещё крупных полипептидов, затем образовавшиеся полипептиды расщепляются до олигопептидов, которые в свою очередь расщепляются до дипептидов и свободных аминокислот. [1] Образовавшиеся свободные аминокислоты затем подвергаются ряду превращений, приводящих к выделению характерных для гниения продуктов. Первыми стадиями является дезаминирование аминокислот, в результате которого аминогруппа аминокислоты отщепляется и высвобождается свободный ион аммония и декарбоксилирование, в результате которого карбоксильная группа отщепляется с высвобождением двуокиси углерода (реакция декарбоксилирования чаще всего происходит в условиях пониженного pH). В результате декарбоксилирования высвобождаются также первичные амины:

Выделяют так называемое окислительное дезаминирование (наиболее распространённый вид дезаминирования, в результате которого NAD(P) восстанавливается до NAD(P)H2) и гидролитическое дезаминирование, при котором аминогруппа аминокислоты заменяется на гидроксильную.

Также некоторые аминокислоты трансаминируются путём перемещения аминогруппы аминокислоты на 2-оксикислоту (в результате этого процесса также происходит дезаминирование аминокислот, кроме этого синтезируются те аминокислоты, которые бактерии не могут синтезировать путём аминирования ионами аммония).

Образовавшиеся в результате дезаминирования и декарбоксилирования продукты могут как окисляться микроорганизмами с целью получения энергии в виде АТФ, так и участвовать в реакциях промежуточного обмена. [2]

Образование скатола и индола

Анаэробное разложение белков представителями рода Clostridium

Характерной особенностью так называемых протеолитических клостридиев (то есть разрушающих белки — например Clostridium hystoliticum) является способность сбраживать аминокислоты (таким образом используя их для получения энергии и как источник углерода) и продуцировать протеолитические ферменты. Представители рода Clostridium способны сбраживать глутаминовую кислоту, глутамин, гистидин, лизин, аргинин, фенилаланин, серин, треонин, аланин и цистеин. Некоторые аминокислоты могут сбраживаться одиночно (например лизин, в результате сбраживания которого происходит образование аммиака, масляной и уксусной кислот), а некоторые лишь парами (при котором происходит сопряжённая окислительно-восстановительная реакция, в которой одна аминокислота выступает в роли донора электронов, а вторая- акцептора). Донорами электронов в реакциях парного сбраживания могут выступать аспарагин, аланин, валин, серин, гистидин, в роли акцептора — глицин, пролин, орнитин, аргинин.

Хорошо изучено сопряжённое окисление-восстановление пары аланина и глицина. Суммарно реакция выглядит так:

В результате парного сбраживания аланина и глицина бактерия получает 1 молекулу АТФ на каждую молекулу аланина. [3]

Анаэробная и гнилостная инфекция

Анаэробная инфекция — тяжелая токсическая раневая инфекция, вызванная анаэробной гнилостной микрофлорой, с преимущественным поражением соединительной и мышечной ткани.

В хирургии принято выделять: [4]

При анаэробной инфекции (газовой гангрене) ткани, омертвевшие под действием экзотоксинов, образуемых бактериями рода Clostridium, колонизируются вторичной гнилостной микрофлорой.

Возбудителями анаэробной неклостридиальной инфекции являются представители нормальной микрофлоры человека, находящейся на коже, в полости рта, желудочно-кишечного тракта. Это бактероиды, пептококки, пептострептококки, актиномицеты, микрококки.

Гнилостная инфекция — инициируется представителями анаэробной неклостридиальной микрофлоры в сочетании с аэробными микроорганизмами (чаще стафилококками или граммотрицательными палочками Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Enterobacter aerogenes, Klebsiella)

Судебная медицина

Под гниением трупа человека в судебной медицине понимают такие поздние трупные явления, при которых под воздействием микроорганизмов происходит разложение сложных органических соединений тканей человека (прежде всего белков). Гниение трупа начинается через сутки-двое после смерти человека. При гниении трупа выделяется много газообразных продуктов (аммиака, сероводорода, метана), при этом труп распухает (так называемая трупная эмфизема, особенно распухают ткани лица, конечности, мошонка и молочные железы), при этом ткани могут разрываться с выделением жидкости, окрашенной в коричневые и зелёные тона, представляющей собой разложившиеся внутренние органы тела.

Гниение наиболее интенсивно происходит в условиях повышенной влажности воздуха и повышенной температуры. В условиях доступа свежего воздуха гниение также происходит быстрее, чем в воде или почве (в гробах и других герметично закрытых ёмкостях гниение происходит медленнее). При низких температурах гниение замедляется, при температурах ниже нуля может совсем приостановиться. При наличии гнойных процессов, а также сепсиса гниение значительно ускоряется.

Толстый кишечник первым вовлекается в процесс гниения (из-за обильной обсеменённости кишечника симбионтными бактериями), при этом при комнатной температуре через сутки на нижней части брюшной стенки появляются зелёные пятна, распространяющиеся через 11—13 суток на всё тело. Тело распухает из-за выделяющихся газообразных продуктов гниения, кровь окрашивается в грязно-зелёный цвет. В дальнейшем все мягкие ткани человека разлагаются, становятся кашицеобразными, превращаясь в дурнопахнущую жидкость и наступает скелетизация трупа, при этом остаётся один скелет. [5]

Источник

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

ГК «Униконс»

Продвижение и реализация комплексных пищевых добавок, антисептиков и др. продукции.

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

«Антисептики Септоцил»

Септоцил. Бытовая химия, антисептики.

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

«Петритест»

Микробиологические экспресс-тесты. Первые результаты уже через 4 часа.

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

«АльтерСтарт»

Закваски, стартовые культуры. Изготовление любых заквасок для любых целей.

Гниение

Микроорганизмы играют большую роль в процессах разрушения белковых веществ. Последние в громадном масштабе происходят в природе, являясь составной частью круговорота веществ.

Обычно гниением называют целый ряд внешне сходных, а по существу весьма различных процессов. Это порча мяса, рыбы, плодов, овощей, древесины, а также процессы, происходящие в почве, навозе и др.

В более узком понимании гниением принято считать процесс разложения белков или субстратов, богатых белком, под влиянием микроорганизмов.

Разрушение молекул белка микроорганизмами ведется с различных позиций — одни продукты расщепления необходимы в качестве пластического материала для построения своего тела, другие используют их как энергетический материал. Последние вызывают более глубокий распад.

С этих позиций порчу древесины, в которой крайне мало белка, нельзя назвать гниением. Термин «гниение» неприменим также к портящимся фруктам и овощам, в которых основная масса сухого вещества приходится на углеводы. Кроме того, следует иметь в виду, что плоды, ягоды, овощи являются живыми организмами и к ним более применимо понятие «микробиологическое заболевание», а не «гниение».

Расщеплять белки с помощью выделенных во внешнюю среду ферментов способны многие микроорганизмы.

Некоторые виды гнилостных бактерий расщепляют белки до пептонов и аминокислот. Другие вызывают более полное расщепление белка с образованием более простых азотистых и безазотистых продуктов — индола, скатола, фенола, жирных кислот, аммиака, метана, углекислоты, водорода. Многие из этих соединений отличаются неприятным запахом.

Гниение легко протекает как при доступе воздуха, так и в условиях полного анаэробиоза.

Первые этапы микробиологического воздействия на белки всегда сводятся к протеолитическому расщеплению сложной белковой молекулы в зависимости от глубины процесса на отдельные составные части — пептоны, полипептиды и аминокислоты.

Схематично этот этап сводится к следующему:

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

Дальнейшие превращения могут протекать по двум различным направлениям.

Дезаминирование заключается в отщеплении от аминокислот аминной группы в виде аммиака. Различают дезаминирование окислительное, гидролитическое и восстановительное. В каждом случае образуются различные продукты. Ниже рассматривается дезаминирование аминокислот в различных условиях на примере аланина.

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

Возможны и другие пути дезаминирования, приводящие к образованию иных продуктов, например ненасыщенных соединений.

Декарбоксилирование заключается в отщеплении от аминокислот карбоксильной группы в виде углекислого газа. Декарбоксилирование активнее протекает в кислой среде. В результате, помимо углекислого газа, образуются амины — кадаверин, путреецин и агматин (трупные яды). В настоящее время ядовитость их не считается подтвержденной. Схема образования некоторых аминов приведена ниже:

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

В практических условиях декарбоксилирование и дезаминирование протекают часто совместно. В результате образуется большое число различных соединений — кислот, спиртов и др. Например, продолжая рассматривать разрушение аминокислот на примере аланина, можно убедиться в возможности образования этих веществ:

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

При глубоком разрушении серосодержащих аминокислот (метионина и пестеина) образуются сероводород, аммиак, меркаптаны — вещества, обладающие неприятным запахом, ощущаемым даже при ничтожных концентрациях:

Что такое гниение в химии. Смотреть фото Что такое гниение в химии. Смотреть картинку Что такое гниение в химии. Картинка про Что такое гниение в химии. Фото Что такое гниение в химии

Разрушение в процессе гниения аминокислот, имеющих циклическое строение, приводит к образованию веществ, имеющих специфический неприятный запах индола и скатола.

Из аэробных микроорганизмов наиболее часто в процессах гниения принимают участие следующие.

Микоидес — подвижная почвенная бацилла; образует споры овальной формы разной величины; на агаре дает характерные ветвистые колонии, по внешнему виду напоминающие мицелий гриба; широко распространена в природе; белки разрушает без образования сероводорода.

Сенная палочка (бациллюс субтилис) — короткая, подвижная споровая палочка с округленными концами; образует морщинистые колонии; широко распространена в природе, энергично вызывает глубокое разрушение белка.

Картофельная палочка (бациллюс мезентерикус) — по свойствам близка к палочке, известна как возбудитель картофельной болезни хлеба.

Бацилла мегатериум — подвижная споровая палочка, часто образующая цепочки; в отличие от бациллы микоидес продуцирует много сероводорода; колонии ее имеют слизистую поверхность.

Бактерия флуоресценс — небольшая подвижная палочка; на питательных средах дает зеленую опалесцирующую окраску за счет образуемого пигмента флуоресцеина.

Бактерия продигиозум (палочка чудесной крови) — мелкая подвижная палочка; образует кроваво-красные колонии или сплошной налет красного, розового цветов на различных продуктах.

По способности разрушать белки к этой группе относят кишечную палочку и палочку протея, являющиеся условными анаэробами.

Среди анаэробных бактерий активными возбудителями гниения являются путрификус, спорогенес и др.

Путрификус — подвижная споровая палочка; разлагает белки с выделением газообразных веществ; встречается в гниющих пищевых продуктах, почве, консервах, навозе.

Спорогенес — подвижная споровая палочка; характерна активным образованием сероводорода при гниении.

Источник

гниение

Полезное

Смотреть что такое «гниение» в других словарях:

гниение — упадок, (ра)спад, разложение, порча, загнивание, тлен(ие); сопревание, распад, перегнивание, прение, истлевание, сгнивание, истление, сепсис, загнаиавание, тление. Ant. расцвет, прогресс, развитие Словарь русских синонимов. гниение загнивание,… … Словарь синонимов

ГНИЕНИЕ — ГНИЕНИЕ, распад белковых и других азотистых веществ под влиянием гнилостных бактерий (см. ниже), сопровождающийся образованием зловонных продуктов. Развитию процессов Г. способствуют: достаточная степень влажности, надлежащее осмотическое… … Большая медицинская энциклопедия

ГНИЕНИЕ — биологический процесс преобразования мертвого органического материала микроорганизмами под воздействием кислорода и с малым количеством воды (аэробное разложение) или без кислорода и в присутствии большого количества воды (анаэробное разложение) … Экологический словарь

Гниение — См. Порок естественный Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

ГНИЕНИЕ — ГНИЕНИЕ, процесс расщепления сложных азотсодержащих органических соединений (преимущественно белков) под действием гнилостных микроорганизмов. Играет важную роль в круговороте веществ в природе. Для предохранения от гниения пищевых продуктов… … Современная энциклопедия

ГНИЕНИЕ — процесс расщепления сложных азотсодержащих органических соединений (преимущественно белков) под действием гнилостных микроорганизмов. Играет важную роль в круговороте веществ в природе. Для предохранения пищевых продуктов от процессов гниения… … Большой Энциклопедический словарь

ГНИЕНИЕ — (гнилостное разложение), разложение органических веществ, особенно, белков, в результате воздействия ГРИБОВ, БАКТЕРИЙ или ОКИСЛЕНИЯ. В процессе гниения возникает неприятный запах. При гниении мяса, например, вырабатывается СЕРОВОДОРОД, АМИНЫ и… … Научно-технический энциклопедический словарь

ГНИЕНИЕ — ГНИЕНИЕ, гниения, мн. нет, ср. (книжн.). 1. Процесс разрушения, разложения омертвелого и неживого органического вещества. 2. перен. Духовное разложение, упадок. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

гниение — ГНИТЬ, гнию, гниёшь; гнил, гнила, гнило; несов. Разрушаться, подвергаясь органическому разложению. Сено гниёт. Продукты гниют. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

ГНИЕНИЕ — разложение азотсодерлоших органич. соединений (преим. белков) микроорганизмами; играет важную роль в круговороте веществ в природе. В Г. участвуют аэробные, факультативно анаэробные (Bacillus cereus, В. subtilis, Proteus vulgaris и др.) и… … Биологический энциклопедический словарь

Источник

§ 17. РАЗЛОЖЕНИЕ БИОЛОГИЧЕСКОГО МАТЕРИАЛА ПОСЛЕ НАСТУПЛЕНИЯ СМЕРТИ

После наступления смерти под влиянием специфических клеточных ферментов, так называемых катепсинов, происходит аутолиз (самопереваривание) клеток, в результате чего белковые вещества разлагаются на более простые соединения. Катепсины содержатся в лизосомах клеток многих органов. Наибольшие их количества содержатся в клетках поджелудочной железы, печени, почек, селезенки. В меньших количествах они содержатся в других органах и тканях.

При жизни организма катепсины и некоторые другие гидролитические ферменты обладают незначительной активностью. Вызываемый катепсинами распад белков в живом организме быстро восполняется путем их синтеза. После смерти активность катепсинов значительно возрастает. При жизни ткани организма имеют рН = 6,8. 7,2, а после смерти рН тканей сдвигается в более кислую область, благоприятную для проявления активности катепсинов.

Таким образом, аутолиз является одним из ранних трупных явлений. Аутолизу в первую очередь подвергаются ткани трупов, наиболее богатые катепсинами (поджелудочная железа, печень, почки и др.). Более быстрому аутолизу тканей трупов способствует прижизненное их повреждение (воспаление, ожоги, обморожение и др.). Известен ряд факторов, тормозящих процесс аутолиза (наличие в трупах фторидов, цианидов, соединений мышьяка, карбоксигемоглобина, сердечных гликозидов и др.).

Уже через несколько часов после смерти бактерии, находящиеся в кишках, проникают через их стенки и по кровеносным сосудам распространяются почти по всему трупу. В результате этого под влиянием ферментов микроорганизмов наступает процесс гниения (путрификации) органов и тканей трупов. Видовой состав бактериальной флоры, развивающейся в трупах (трупной флоры), зависит от природы бактерий, находящихся в кишках. Чаще всего трупную флору составляют стрептококки, стафилококки.

Таким образом, разложение трупов вначале происходит в результате аутолиза, затем аутолизу сопутствует процесс гниения, который начинается через 3—4 ч после смерти. О начале гниения трупа свидетельствует появление специфического гнилостного запаха. Дальнейшее, более глубокое, разложение тканей трупов происходит путем гниения, вызванного ферментами микроорганизмов.

При гнилостном разложении белковых и других веществ в трупах образуется ряд более простых соединений, химические свойства которых могут быть подобны свойствам некоторых ядов. Это затрудняет химико-токсикологическое исследование некоторых ядов, находящихся в гнилостных органах и тканях трупов,

Интенсивность процессов гниения трупов и состав образующихся при этом веществ зависят от видового состава микробной флоры, температуры, влаги, доступа воздуха и ряда других факторов.

При гниении белковых веществ образуются пептиды, которые разлагаются с образованием аминокислот. Последние могут подвергаться дезаминированию с выделением аммиака. Аминокислоты, содержащие серу, разлагаются с выделением сероводорода. При гниении белков могут образовываться меркаптаны (тиоспирты и тиофенолы), органические кислоты, продукты их декарбоксилирования, а также амины, которые часто называют птомаинами (путресцин, кадаверин, этилендиамин и др.).

При гнилостном разложении углеводов образуются органические кислоты, продукты их декарбоксилирования, альдегиды, кетоны, лактоны, оксид углерода (IV).

Под влиянием гнилостных бактерий наступает окисление аминокислот и жиров с образованием спиртов, в смеси которых содержатся метиловый, этиловый и высшие спирты. Под влиянием ферментов кишечной палочки из глюкозы образуются различные количества пропилового, бутилового и метилового спиртов. Из лейцина образуется амиловый спирт, а из валина — изобути-ловый. Перечисленные выше спирты затем окисляются до альдегидов и соответствующих кислот.

Ф. Сельми в 1878 г. в гнилостных трупах обнаружил так называемые птомаины, получившие это название от греческого слова Ptoma, что означает мертвое тело (труп). К числу главных птомаинов вначале относили путресцин (тетраэтилендиамин) и кадаверин (пентаметилендиамин). Эти вещества считали одними из наиболее токсичных из известных в то время веществ.

Позднее другие исследователи сообщили о выделении ими из загнившего биологического материала так называемых трупных алкалоидов (кониина, вератрина, стрихнина и др.), которые тоже относили к числу птомаинов. Гадамер обобщил данные литературы о птомаинах и привел сводку, включающую 67 названий этих веществ. Доказательство принадлежности веществ, выделенных из гнилостных органов трупов, к числу трупных алкалоидов базировалось на незначительном числе неспецифических реакций осаждения и окрашивания. Так, например, если вещество, выделенное из трупа, давало такие же реакции, как и ко-ниин, его называли «трупным кониином».

С развитием органической и аналитической химии стало ясно, что «трупные алкалоиды» по элементному составу не идентичны соответствующим алкалоидам. Аналогичные выводы были сделаны и на основании результатов некоторых физико-химических методов анализа (хроматографии, спектрофотометрии и др.). Таким образом, установлено, что большинство птомаинов относится не к алкалоидам, а к другим азотистым веществам основного характера, которые мешают обнаружению алкалоидов, выделенных из биологического материала.

Поэтому делать заключение о наличии алкалоидов, выделенных из гнилостного биологического материала, только на основании качественных реакций невозможно. Для указанной цели должны применяться качественные реакции и физико-химические методы.

Токсичность птомаинов тоже оказалась спорной. После очистки птомаинов были получены вещества, обладающие меньшей токсичностью, чем птомаины, выделенные из трупов. Путресцин и кадаверин, полученные в лаборатории путем синтеза, тоже оказались менее токсичными, чем те, которые выделены из органов трупов. Поэтому токсичность птомаинов объясняется действием некоторых примесей, содержащихся в гнилостном биологическом материале наряду с птомаинами. К примесям относятся бактериальные токсины и ряд продуктов синтеза, образующихся в трупном материале под влиянием бактериальных ферментов.

Описанные выше гнилостные процессы происходят в трупах в основном без доступа воздуха (в могилах). Однако в отдельных случаях трупы могут находиться и на поверхности или в местах, в которые хорошо проникает кислород воздуха. В этих случаях гниение трупов происходит под влиянием ферментов аэробных бактерий. Такие процессы разложения трупов называются тлением.

Тление. Этот вид гниения трупов в основном происходит под влиянием аэробных бактерий при доступе воздуха и небольшой влажности. Тление происходит значительно быстрее, чем гниение трупов в могилах.

При тлении в трупах образуются вещества, которые по химическому составу отличаются от веществ, образующихся при гниении трупов в могилах без доступа воздуха. При отсутствии воздуха в трупах при гниении образуется большее число соединений, чем при тлении. Кроме этого, многие соединения, образующиеся при гниении без доступа воздуха, являются более токсичными, чем вещества, образующиеся при тлении. В процессе тления происходит быстрое обезвоживание трупов и создаются условия для появления червей, которые могут объедать труп до скелета, и плесневых грибов.

В зависимости от условий разложения может происходить образование жировоска или мумификация трупов.

Жировоск является своеобразным состоянием тканей трупов, возникающим в результате взаимодействия жирных кислот с солями щелочноземельных и щелочных металлов в условиях повышенной влажности (в воде, во влажной почве), при недостаточности или отсутствии воздуха. При указанных условиях происходит процесс мацерации, при котором отслаивается эпидермис, а затем через лишенную эпидермиса кожу в труп проникает вода. Она вымывает кровь и ряд веществ из тканей, а затем происходит омыление жиров в трупах. Жиры разлагаются на глицерин и жирные кислоты. Глицерин и олеиновая кислота вымываются из тканей трупов водой, а пальмитиновая и стеариновая кислоты с солями щелочноземельных и щелочных металлов образуют соли (мыла), которые и составляют жировоск. Он представляет собой твердую мылообразную или творожистую массу.

В результате образования жировоска труп сохраняет внешнюю форму. Внутренние органы трупа, находящегося в состоянии жировоска, отсутствуют. На их месте обнаруживаются комки воскообразной массы. При судебно-медицинской экспертизе трупов или их частей, находящихся в состоянии жировоска, можно обнаружить следы ранее причиненных повреждений (огнестрельных ран, порезов и др.). В жировоске долгое время могут сохраняться и некоторые яды. Таким образом, жировоск является одним из видов естественной консервации трупов.

Мумификация — полное высыхание трупов. Этот процесс происходит при сухом воздухе, повышенной температуре и хорошей вентиляции. В этих условиях прекращаются процессы гниения и происходит высыхание трупов. В результате мумификации уменьшается объем и масса трупов, их мягкие ткани уплотняются и сморщиваются, кожа приобретает буровато-коричневую окраску и пергаментный вид. Трупы взрослых мумифицируются в течение 3—6 мес, а трупы новорожденных за 3—4 недели. В мумифицированных трупах длительное время могут сохраняться некоторые яды, вызвавшие отравления.

Выше при описании процессов разложения органов и тканей трупов были перечислены некоторые образующиеся при этом вещества. Однако список этих веществ не исчерпывается приведенными данными. На основании литературных данных Гадамером установлено, что в результате разложения трупов может образовываться около 1300 различных соединений. Многие из этих соединений дают такие же реакции, как и некоторые вещества, подлежащие исследованию при судебно-химическом анализе биологического материала на наличие ядов.

Безусловно, такое большое число продуктов разложения трупов никогда не может одновременно содержаться в разлагающемся биологическом материале. Образование этих веществ в трупах происходит поэтапно. На каждом этапе гниения трупов образуется определенное число продуктов разложения, которые подвергаются дальнейшим превращениям. Химический состав соединений, образующихся на данном этапе, зависит от времени разложения трупного материала, температуры, наличия влаги, доступа воздуха, бактериальной флоры, состава органов и тканей, подвергающихся разложению, и от ряда других факторов.

Учитывая, что со временем число продуктов разложения трупного материала увеличивается, анализ этого материала на наличие ядов должен производиться через 1—2 сут после наступления смерти. Однако в ряде случаев в судебно-химические лаборатории на анализ поступают органы трупов и биологические жидкости (кровь, моча), уже подвергшиеся гнилостным изменениям. Это объясняется рядом причин. Иногда трупы обнаруживаются только через несколько суток или месяцев после наступления смерти, а затем подвергаются вскрытию. В ряде случаев возникает необходимость производить эксгумацию трупов (извлечение из земли погребенных трупов для судебно-медицинского и судебно-химического исследований).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *