Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅: коэффициСнт a ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹ΠΌ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ числом, ΠΊΡ€ΠΎΠΌΠ΅ нуля. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ссли a = 0, Ρ‚ΠΎ ax 2 + bx + c = 0Β·x 2 + bx + c = 0 + bx + c = bx + c. Π’ этом случаС Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Π½Π΅ остаётся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, поэтому Π΅Π³ΠΎ нСльзя ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½ΠΎΠΌ. Однако, Ρ‚Π°ΠΊΠΈΠ΅ выраТСния-Π΄Π²ΡƒΡ‡Π»Π΅Π½Ρ‹ ΠΊΠ°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 3x 2 βˆ’ 2x ΠΈΠ»ΠΈ x 2 + 5 ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Ρ‹, Ссли Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΈΡ… Π½Π΅Π΄ΠΎΡΡ‚Π°ΡŽΡ‰ΠΈΠΌΠΈ ΠΎΠ΄Π½ΠΎΡ‡Π»Π΅Π½Π°ΠΌΠΈ с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ коэффициСнтами: 3x 2 βˆ’ 2x = 3x 2 βˆ’ 2x + 0 ΠΈ x 2 + 5 = x 2 + 0x + 5.

Если стоит Π·Π°Π΄Π°Ρ‡Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ значСния ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ…, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π½ΡƒΠ»Π΅Π²Ρ‹Π΅ значСния, Ρ‚.Π΅. ax 2 + bx + c = 0, Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

Если ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ x1 ΠΈ x2 Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния, Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ: ax 2 + bx + c = a(x βˆ’ x1)(x βˆ’ x2)

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Если ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π½Π° мноТСствС комплСксных чисСл Π‘, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π²Ρ‹ Π΅Ρ‰Π΅ Π½Π΅ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ, Ρ‚ΠΎ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ всСгда.

Когда стоит другая Π·Π°Π΄Π°Ρ‡Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ всС значСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычислСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… значСниях ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ…, Ρ‚.Π΅. ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ y ΠΈΠ· выраТСния y = ax 2 + bx + c, Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ с ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ.

ΠŸΡ€ΠΈ этом ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ нулями ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Π­Ρ‚ΠΎ прСдставлСниС ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ свойств ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ находится Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π΅Ρ‰Π΅ ΠΎΠ΄Π½ΠΈΠΌ интСрСсным свойством, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠ°ΠΊ Π΅Ρ‘ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅.

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° прСдставляСт собой мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, расстояниС ΠΎΡ‚ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ плоскости, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ фокусом ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Ρ€Π°Π²Π½ΠΎ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ Π΄ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ прямой, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ дирСктрисой ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ эскиз Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.
НапримСр, для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x 2 Π±Π΅Ρ€Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ

x0123
y0149

БоСдиняя ΠΈΡ… ΠΎΡ‚ Ρ€ΡƒΠΊΠΈ, строим ΠΏΡ€Π°Π²ΡƒΡŽ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½ΠΊΡƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π›Π΅Π²ΡƒΡŽ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ симмСтричным ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Для построСния эскиза Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π° Π² качСствС Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π±Ρ€Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΅Ρ‘ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (ΠΊΠΎΡ€Π½ΠΈ уравнСния), Ссли ΠΎΠ½ΠΈ Π΅ΡΡ‚ΡŒ, Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния с осью ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (ΠΏΡ€ΠΈ x = 0, y = c) ΠΈ ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ Π΅ΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Ρ‚ΠΎΡ‡ΠΊΡƒ (βˆ’b/a; c).

xβˆ’b/2ax1x20βˆ’b/a
yβˆ’(b 2 βˆ’ 4ac)/4a00сс
ΠΏΡ€ΠΈ D β‰₯ 0

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (ax 2 + bx + c)’ = 2ax + b.

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΡƒΡ‡ΠΈΡ‚ΡŒ Π½Π°ΠΈΠ·ΡƒΡΡ‚ΡŒ, Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ Π²Ρ‹Π΄Π΅Π»ΡΡ‚ΡŒ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈΠ· Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ коэффициСнтами. Π­Ρ‚ΠΎ ΡƒΠΌΠ΅Π½ΠΈΠ΅ вСсьма ΠΏΠΎΠ»Π΅Π·Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ нСравСнств, для вычислСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² ΠΈ Ρ‚.Π΄.

Π˜Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = 3x 2 βˆ’ 5x + 2 ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° y = x 2 Π½ΡƒΠΆΠ½ΠΎ послСдний ΡΠ΄Π²ΠΈΠ½ΡƒΡ‚ΡŒ ΠΏΠΎ оси Ox Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° 5/6 β‰ˆ 0,83 Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹. Π—Π°Ρ‚Π΅ΠΌ Ρ€Π°ΡΡ‚ΡΠ½ΡƒΡ‚ΡŒ вдоль оси Oy Π² 3 Ρ€Π°Π·Π° ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ ΠΏΠΎ оси Oy Π½Π° 1/12 β‰ˆ 0,08 Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.
ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ.
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Если Π’Ρ‹ ΡΠ²Π»ΡΠ΅Ρ‚Π΅ΡΡŒ ΠΌΠΎΠΈΠΌ ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠΌ ΠΈΠ»ΠΈ подписчиком, Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ с ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ вСрсиями этих Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ².

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ с Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°:
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Π‘Ρ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π’ΠΈΠ΄Π΅ΠΎΡƒΡ€ΠΎΠΊΠΈ с ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΉ.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ коэффициСнты ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π°.

ПолоТСниС ΠΈ Π²ΠΈΠ΄ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² зависимости ΠΎΡ‚ Π·Π½Π°ΠΊΠ° ΠΈ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° c.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

БыстроС построСниС ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΊΠ°ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π”Ρ€ΡƒΠ³ΠΈΠ΅ случаи. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ построСния.

Π—Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π°Π½Π°Π»ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Задания Π²ΠΈΠ΄Π° «Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ коэффициСнтами ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ» Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² ΠžΠ“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π² 9-ΠΎΠΌ классС, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ ΡΠ΄Π°ΡŽΡ‰ΠΈΠΌ Π•Π“Π­ Π·Π° 11 класс Π² качСствС ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ дСйствия.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠΎΠ½Ρ€Π°Π²ΠΈΠ»ΠΈΡΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ сайта? Π£Π·Π½Π°ΠΉΡ‚Π΅, ΠΊΠ°ΠΊ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ сайт ΠΈ ΠΏΠΎΠΌΠΎΡ‡ΡŒ Π΅Π³ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ.

Π’Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Β©mathematichka. ΠŸΡ€ΡΠΌΠΎΠ΅ ΠΊΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… сайтах Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½ΠΎ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция ΠΈ Π΅Ρ‘ Π³Ρ€Π°Ρ„ΠΈΠΊ

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, которая задаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ y = ax 2 + bx + c.

ΠΠ°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ ΠΌΠΎΠΆΠ½ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΡ‹ Π²Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ… ΠΈ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Ρƒ. Но Π½Π΅ всСгда этот способ являСтся самым Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ.

НачнСм, ΠΊΠ°ΠΊ всСгда, с простого)

Бтандартная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°.

На ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π΅ΠΌ эти Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Ρ‡Π΅Ρ€Ρ‚ΠΈΠΌ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Начало ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΠΆΠ΅ являСтся Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ этой ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, ΠΊΠ°ΠΊ ΠΈ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ случаС, Π½ΠΎ Π²Π΅Ρ‚Π²ΠΈ ΡƒΠΆΠ΅ Π±ΡƒΠ΄ΡƒΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Если Ρƒ тСбя Ρ‡Π΅Ρ€Π½Ρ‹ΠΉ пояс ΠΏΠΎ Ρ€ΠΈΡΠΎΠ²Π°Π½ΠΈΡŽ стандартных ΠΏΠ°Ρ€Π°Π±ΠΎΠ», Ρ‚ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Ρ€Π°Π·Π΄Π΅Π» ΠΏΡ€ΠΎΠΉΠ΄Π΅Ρ‚ Ρƒ тСбя «Π½Π° ΡƒΡ€Π°».

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ со смСщСнной Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ.

Π—Π°Ρ‡Π΅ΠΌ я Π½Π°Ρ‡Π°Π»Π° ΡΡ‚Π°Ρ‚ΡŒΡŽ со стандартной ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹? ΠžΡ‚Π²Π΅Ρ‚ прост. Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ любой ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = Β±x 2 + bx + c (ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ коэффициСнт ΠΏΠ΅Ρ€Π΅Π΄ Ρ… 2 Π΄ΠΎΠ»ΠΆΠ΅Π½ Ρ€Π°Π²Π½ΡΡ‚ΡŒΡΡ Β±1) являСтся стандартной ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΉ, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ этих ΠΏΠ°Ρ€Π°Π±ΠΎΠ» Π½Π΅ Π±ΡƒΠ΄ΡƒΡ‚ находится Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½ΡƒΠΆΠ½ΠΎ сначала ΡƒΠ·Π½Π°Ρ‚ΡŒ, Π³Π΄Π΅ находится Π²Π΅Ρ€ΡˆΠΈΠ½Π°.

ΠŸΡƒΡΡ‚ΡŒ Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠ° О с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ (x1; y1). Π’ΠΎΠ³Π΄Π° Π½Π°ΠΉΡ‚ΠΈ эти ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠšΡΡ‚Π°Ρ‚ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ способом.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Ρ…Πž Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΏΠΎ Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅, Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ ΡƒΠž ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ подстановкой ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ…Πž Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

Π‘Π΅Π· ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π½Π΅ ΠΎΠ±ΠΎΠΉΡ‚ΠΈΡΡŒ)

НайдСм сначала Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ двумя способами, Ρ‡Ρ‚ΠΎΠ±Ρ‹ убСдится, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π° способа Ρ€Π°Π±ΠΎΡ‡ΠΈΠ΅.

1 способ: ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

2 способ: подстановкой.

ΠžΠ΄Π½Ρƒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΌΡ‹ ΡƒΠΆΠ΅ нашли ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π΅Π΅ Π² ΠΈΡΡ…ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹-ΡΡ‚Ρ€ΠΎΠΉΠ½ΡΡˆΠΊΠΈ ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹-ΠΏΡƒΡ…Π»ΡΡˆΠΊΠΈ.

Π£Π΄ΠΈΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π½ΠΎ числовой коэффициСнт ΠΏΠ΅Ρ€Π΅Π΄ Ρ… 2 оказываСтся влияСт Π½Π° ΡΡ‚Ρ€ΠΎΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠΎΠ»Π½ΠΎΡ‚Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ».

Если числовой коэффициСнт Π»Π΅ΠΆΠΈΡ‚ Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ (-1; 0) βˆͺ (0; 1), Ρ‚ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π±ΡƒΠ΄Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±ΡˆΠΈΡ€Π½ΠΎ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒΡΡ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости.

НС Π²Π΅Ρ€ΠΈΡˆΡŒ? Π”Π°Π²Π°ΠΉ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ! Для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° возьмСм Π΄Π²Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

К соТалСнию, здСсь ΡΡ…ΠΈΡ‚Ρ€ΠΈΡ‚ΡŒ Π½Π΅ получится: ΠΎΠ±Π΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ нСстандартныС ΠΈ для ΠΎΠ±Π΅ΠΈΡ… Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Но ΠΏΠ΅Ρ€Π΅Π΄ эти опрСдСлимся с ΠΈΡ… Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊ Ρ‚Π°Π±Π»ΠΈΡ†Π°ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ.

x02 468
y36763
x-1,5-1 -0,2501
y-314,53-3

Π§Π΅Ρ€Ρ‚ΠΈΠΌ ΠΎΠ±Π΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΠΌΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ΠΎΡ‚ ΠΎ Ρ‡Π΅ΠΌ я ΠΈ Π³ΠΎΠ²ΠΎΡ€ΠΈΠ»Π°) ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚ΠΎΠ±ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°-ΡΡ‚Ρ€ΠΎΠΉΠ½ΡΡˆΠΊΠ° ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°-ΠΏΡƒΡ…Π»ΡΡˆΠΊΠ° Π²ΠΎ всСй красС.

ΠŸΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒΠΌ ΠΏΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°ΠΌ.

Π’Π΅ΠΎΡ€ΠΈΡŽ ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π΅Ρ‰Π΅ ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΈ дальшС, Π½ΠΎ тСбя, скорСС всСго, интСрСсуСт ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌ.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Π΅Ρ‚ ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°Ρ…, Ρ‚ΠΎ с ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°ΠΌΠΈ ΠΌΡ‹ ΠΈ Π±ΡƒΠ΄Π΅ΠΌ сСйчас Π²ΠΎΠ·ΠΈΡ‚ΡŒΡΡ.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 1. На рисункС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΈΠ΄Π° y = ax 2 ​+ bx + c. УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ коэффициСнтов a ΠΈ c.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А) Если коэффициСнт Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…; Ссли коэффициСнт с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСсСкаСт ось ΠžΡƒ Π½ΠΈΠΆΠ΅ нуля. ΠŸΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ 1.

Π‘) Если коэффициСнт Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·; Ссли коэффициСнт с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСсСкаСт ось ΠžΡƒ Π²Ρ‹ΡˆΠ΅ нуля. ΠŸΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ 3.

Π’) Если коэффициСнт Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…; Ссли коэффициСнт с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСсСкаСт ось ΠžΡƒ Π²Ρ‹ΡˆΠ΅ нуля. ΠŸΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ 2.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 2 (Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚). На рисункС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΈΠ΄Π° y = ax 2 ​+ bx + c. УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ коэффициСнтов a ΠΈ c.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А) Π’Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π·Π½Π°Ρ‡ΠΈΡ‚ Π° > 0; Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСсСкаСт ось ΠžΡƒ Π²Ρ‹ΡˆΠ΅ нуля, Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΈ с > 0. ΠŸΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ ΠΏΠΎΠ΄ Π½ΠΎΠΌΠ΅Ρ€ΠΎΠΌ 3.

Π‘) Π’Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π·Π½Π°Ρ‡ΠΈΡ‚ Π° > 0; Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСсСкаСт ось ΠžΡƒ Π½ΠΈΠΆΠ΅ нуля, Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΈ с 0. ΠŸΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ ΠΏΠΎΠ΄ Π½ΠΎΠΌΠ΅Ρ€ΠΎΠΌ 2.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 3. УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ ΠΈ ΠΈΡ… функциями.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”Π°Π»ΡŒΡˆΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΡƒΡŽ Π³ΠΎΠ΄Π°ΠΌΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΡƒ. Она ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ‚Π²ΠΎΠΈ ошибки, Ссли Ρ‚Ρ‹, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, ΡƒΠΌΠ΅Π΅ΡˆΡŒ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ)

Π—Π°Π΄Π°Π½ΠΈΠ΅ 4 (Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, Π½ΠΎ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅ Ρ‚ΠΎΡ‚ ΠΆΠ΅). УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ функциями ΠΈ ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

На Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ 1 Π²Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ. Π’Π΅Ρ€ΡˆΠΈΠ½Π° снова чСткая, Π½ΠΎ для разнообразия Π΄Π°Π²Π°ΠΉΡ‚Π΅ возьмСм Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ρ‚ΠΎΡ‡ΠΊΡƒ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ (-4; 1). Π‘ΡƒΠ΄ΡŒ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»Π΅Π½ ΠΈ смотри, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π΅ Π±Ρ‹Π»ΠΎ Π½Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅!

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Задания Π½Π° свойства ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ°, ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹Π΅ затруднСния. Π­Ρ‚ΠΎ довольно странно, ΠΈΠ±ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ проходят Π² 8 классС, Π° ΠΏΠΎΡ‚ΠΎΠΌ всю ΠΏΠ΅Ρ€Π²ΡƒΡŽ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ 9-Π³ΠΎ класса «Π²Ρ‹ΠΌΡƒΡ‡ΠΈΠ²Π°ΡŽΡ‚» свойства ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΈ строят Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².

Π­Ρ‚ΠΎ связано с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ заставляя учащихся ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, практичСски Π½Π΅ ΡƒΠ΄Π΅Π»ΡΡŽΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π° «Ρ‡Ρ‚Π΅Π½ΠΈΠ΅» Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒΡŽΡ‚ осмыслСниС ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ с ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ. Π’ΠΈΠ΄ΠΈΠΌΠΎ, прСдполагаСтся, Ρ‡Ρ‚ΠΎ, построив дСсятка Π΄Π²Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², ΡΠΎΠΎΠ±Ρ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ школьник сам ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ ΠΈ сформулируСт связь коэффициСнтов Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΈ внСшний Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Ρ‚Π°ΠΊ Π½Π΅ получаСтся. Для ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ обобщСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹ΠΉ ΠΎΠΏΡ‹Ρ‚ матСматичСских ΠΌΠΈΠ½ΠΈ исслСдований, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ дСвятиклассников, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚. А ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚Π΅ΠΌ, Π² Π“Π˜Π ΠΏΡ€Π΅Π΄Π»Π°Π³Π°ΡŽΡ‚ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π·Π½Π°ΠΊΠΈ коэффициСнтов.

НС Π±ΡƒΠ΄Π΅ΠΌ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΡ‚ школьников Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΈ просто ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠΌ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡.

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, ΠΊΠ°ΠΊ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° внСшний Π²ΠΈΠ΄ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π·Π½Π°ΠΊΠΈ Π΅Π΅ коэффициСнтов.

Бамая простая Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ для коэффициСнта Π°. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ школьников ΡƒΠ²Π΅Ρ€Π΅Π½Π½ΠΎ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚: » Ссли Π° > 0, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π° Ссли Π° 0.

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС Π° = 0,5

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ для Π° 2 + b 0 + c = c. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Ρƒ = с. Π’ΠΎ Π΅ΡΡ‚ΡŒ с – это ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρƒ. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, эту Ρ‚ΠΎΡ‡ΠΊΡƒ Π»Π΅Π³ΠΊΠΎ Π½Π°ΠΉΡ‚ΠΈ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅. И ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π²Ρ‹ΡˆΠ΅ нуля ΠΎΠ½Π° Π»Π΅ΠΆΠΈΡ‚ ΠΈΠ»ΠΈ Π½ΠΈΠΆΠ΅. Π’ΠΎ Π΅ΡΡ‚ΡŒ с > 0 ΠΈΠ»ΠΈ с 0:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

БоотвСтствСнно, Ссли с = 0, Ρ‚ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π·Π½Π°Ρ‡ΠΈΡ‚ Π° > 0, ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось Ρƒ Π½ΠΈΠΆΠ΅ нуля, Π·Π½Π°Ρ‡ΠΈΡ‚ с 0. ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅Π΅ΠΌ: Π° > 0, b > 0, с 0)

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ρ‚Π΅Π». ΠΌΠΎΠ±. (495) 642 42 50. Π—Π²ΠΎΠ½ΠΈΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎ 23:00.

Ρ‚Π΅Π». ΠΌΠΎΠ±. 8 (499) 723 68 84. Π—Π²ΠΎΠ½ΠΈΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎ 23:00.

Ρ‚Π΅Π». Π΄ΠΎΠΌ. 8 (925) 642 42 50. Π—Π²ΠΎΠ½ΠΈΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎ 23:00.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π°, Π³Ρ€Π°Ρ„ΠΈΠΊ, Π²Π΅Ρ€ΡˆΠΈΠ½Π°, Π½ΡƒΠ»ΠΈ.

тСория ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ 📈 Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ѐункция Π²ΠΈΠ΄Π° y=ax 2 +bx+c, Π³Π΄Π΅ Π°, b, с – Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числа, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ, Π° β‰  0 число, Ρ… – пСрСмСнная, называСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΈ Π΄Π²Π΅ Π²Π΅Ρ‚Π²ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π»ΠΈΠ±ΠΎ Π²Π²Π΅Ρ€Ρ…, Π»ΠΈΠ±ΠΎ Π²Π½ΠΈΠ· (рис.1). ΠšΡ€Π°ΡΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π° Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ выходят Π²Π΅Ρ‚Π²ΠΈ. Π•Ρ‘ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ – (3; –4). НаправлСниС Π²Π΅Ρ‚Π²Π΅ΠΉ зависит ΠΎΡ‚ значСния коэффициСнта Β«Π°Β», Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, Ссли Β«Π°Β» – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…; Ссли число Β«Π°Β» – ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…. На Π΄Π°Π½Π½ΠΎΠΌ рисункС Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π·Π½Π°Ρ‡ΠΈΡ‚ коэффициСнт Β«Π°Β» Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, которая Π·Π°Π΄Π°Π΅Ρ‚ эту Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ «с» ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ (Ρƒ) Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρƒ. Π’Π°ΠΊ, Π½Π° рисункС β„–1 ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось Ρƒ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (5;0), Π·Π½Π°Ρ‡ΠΈΡ‚ коэффициСнт с=5.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ (Ρ…0; Ρƒ0), Π½Π°Π΄ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

для нахоТдСния Ρƒ0 ΠΌΠΎΠΆΠ½ΠΎ просто ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ…0 Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y0=ax 2 +bx+c вмСсто Ρ….

Рассмотрим это Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1

Найти Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ Ρƒ=2Ρ… 2 – 8Ρ… + 5.

НайдСм, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ коэффициСнты: Π°=2; b= – 8

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΈΡ… Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ вычислим Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ…0:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π² Π·Π°Π΄Π°Π½Π½ΡƒΡŽ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ вмСсто Ρ… подставим Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρƒ0=2 βˆ™ 2 2 – 8 βˆ™ 2 + 5=8 – 16 + 5= –3

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ нашли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: (2; –3).

ЗначСния Ρ…, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ значСния, Ρ€Π°Π²Π½Ρ‹Π΅ Π½ΡƒΠ»ΡŽ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ нулями Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ЗначСния абсцисс (Ρ…) Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρ…, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ нулями Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. На рисункС β„–1 Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρ… ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅: (1;0) ΠΈ (5;0). Π—Π½Π°Ρ‡ΠΈΡ‚, Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – это значСния Ρ…, Ρ€Π°Π²Π½Ρ‹Π΅ 1 ΠΈ 5.

Рассмотрим, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ ΠΏΠΎ рисунку, Π° ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2

Найти Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ=Ρ… 2 +4Ρ… – 5

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ это абсциссы Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρ…, Ρ‚ΠΎ ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ (Ρ…;0), Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρƒ=0. Π—Π½Π°Ρ‡ΠΈΡ‚, вмСсто Ρƒ подставляСм Π½ΡƒΠ»ΡŒ Π² Π½Π°ΡˆΡƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ 0=Ρ… 2 +4Ρ… – 5 ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Ρ€Π΅ΡˆΠΈΠ² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅, ΠΌΡ‹ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ значСния Π½ΡƒΠ»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

D=b 2 – 4ac=4 2 β€” 4 βˆ™ 1 βˆ™ ( βˆ’ 5 ) = 36

Π—Π½Π°Ρ‡ΠΈΡ‚, Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π½Ρ‹ –5 ΠΈ 1

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ ΠΊ заданию ΠΏΠΎ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ Π½ΡƒΠ»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±Π΅Π· Π³Ρ€Π°Ρ„ΠΈΠΊΠ°

Если дискриминант уравнСния ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚, Π½ΡƒΠ»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π½Π΅ пСрСсСкаСт ось Ρ… (Π²Π΅Ρ€ΡˆΠΈΠ½Π° находится Π²Ρ‹ΡˆΠ΅ Π½Π΅Ρ‘, Ссли Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ… ΠΈ Π½ΠΈΠΆΠ΅, Ссли Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·).

Рассмотрим Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ соотвСтствия рисунков ΠΏΠ°Ρ€Π°Π±ΠΎΠ», располоТСнных Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ значСниям Π° ΠΈ с.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–3

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Для выполнСния Π΄Π°Π½Π½ΠΎΠ³ΠΎ задания Π½Π° соотвСтствиС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ сначала ΠΏΠΎΡ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ с Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ, подписав Π½Π° Π½ΠΈΡ…, ΠΊΠ°ΠΊΠΈΠΌΠΈ – ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ коэффициСнты Π° ΠΈ с.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ соотвСтствиС:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–4

Рассмотрим Π΅Ρ‰Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° соотвСтствиС

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ Π΄Π°Π½Π½ΠΎΠΌ Π·Π°Π΄Π°Π½ΠΈΠΈ рассмотрим коэффициСнты Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… ΠΈ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½Π΅ΠΌ ΠΈΡ…: Ρ‚Π°ΠΊ, Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΏΠΎΠ΄ Π±ΡƒΠΊΠ²ΠΎΠΉ А коэффициСнт Π°=-2, Ρ‚.Π΅. ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚, Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·, Π° это Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎΠ΄ Π½ΠΎΠΌΠ΅Ρ€ΠΎΠΌ 2. Π’ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… ΠΏΠΎΠ΄ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ Π‘ ΠΈ Π’ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈ коэффициСнты ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅, Π·Π½Π°Ρ‡ΠΈΡ‚, ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ ΠΏΠΎ рисунку ΠΈΡ… Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π±ΡƒΠ΄Π΅ΠΌ ΡΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ ΠΏΠΎ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ (справа ΠΈΠ»ΠΈ слСва ΠΎΡ‚ оси Ρƒ), Π° ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ…0. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜Ρ‚Π°ΠΊ, Π½Π°ΠΉΠ΄Π΅ΠΌ Ρ…0 для Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Β«Π‘Β»:

Π’ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ…0 ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, Π·Π½Π°Ρ‡ΠΈΡ‚, Π²Π΅Ρ€ΡˆΠΈΠ½Π° располоТСна слСва ΠΎΡ‚ оси Ρƒ, Π° это рисунок 3. Ну ΠΈ ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ привСсти Π² соотвСтствиС Π’ ΠΈ 1.

А) a>0, с >0 Π‘) Π° 0 Π’) Π°>0, с

На рисунках Π² Π·Π°Π΄Π°Π½ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Вспомним, Ρ‡Ρ‚ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ коэффициСнты Π° ΠΈ с: Π° – Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ (a 0 – Π²Π΅Ρ‚Π²ΠΈ Π²Π²Π΅Ρ€Ρ…); коэффициСнт с ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρ… (с >0 – пСрСсСчСниС Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ; с 0, с >0 β€” это Π³Ρ€Π°Ρ„ΠΈΠΊ β„–1

Π‘) Π° 0 β€” это Π³Ρ€Π°Ρ„ΠΈΠΊ β„–3

pазбирался: Π”Π°Π½ΠΈΠΈΠ» Π ΠΎΠΌΠ°Π½ΠΎΠ²ΠΈΡ‡ | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ функциями ΠΈ ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ.

ЀУНКЦИИ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Ρ€Π°Π·Ρƒ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π’. Π­Ρ‚Π° функция СдинствСнная, ΠΈΠΌΠ΅ΡŽΡ‰Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ коэффициСнт ΠΏΡ€ΠΈ Ρ… 2 (здСсь Π°=1, Ρ‚.Π΅. Π°>0). ΠŸΡ€ΠΈ Π°>0 Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π²Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π²Π²Π΅Ρ€Ρ…. Π’Π°ΠΊΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ имССтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ – ΠΏΠΎΠ΄ β„–3. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° коэфициСнт с. Она Ρ€Π°Π²Π΅Π½ 3, Ρ‚.Π΅. с>0. Π­Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΠ΅Ρ€Π΅ΡΠ΅Ρ‡ΡŒ ось ΠžΡƒ Π²Ρ‹ΡˆΠ΅ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π§Ρ‚ΠΎ ΠΈ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΎ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Π’. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ соотвСтствиС: В–3.

Оба Π΄Ρ€ΡƒΠ³ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠ° – 1-ΠΉ ΠΈ 2-ΠΉ – ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ ось ΠžΡƒ Π½ΠΈΠΆΠ΅ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‡Ρ‚ΠΎ соотвСтствуСт Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ с=–3

pазбирался: Π”Π°Π½ΠΈΠΈΠ» Π ΠΎΠΌΠ°Π½ΠΎΠ²ΠΈΡ‡ | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

На рисунках ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΈΠ΄Π°

УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π·Π½Π°ΠΊΠ°ΠΌΠΈ коэффициСнтов a ΠΈ c ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

ΠœΡ‹ вспоминаСм, Π·Π° Ρ‡Ρ‚ΠΎ ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ коэффициСнты a ΠΈ b ΠΏΡ€ΠΈ построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π°

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ a опрСдСляСт Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: Ссли a > 0, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π° Ссли a 0.

Π”Π°Π»Π΅Π΅ ΠΌΡ‹ смотрим, Π½Π° Ρ‡Ρ‚ΠΎ влияСт коэффициСнт c.

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ c ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси x, ΠΈΠ»ΠΈ ΠΆΠ΅ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° сдвиг ΠΏΠΎ оси y, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ:

Ссли c > 0, Ρ‚ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ располоТСна Π²Ρ‹ΡˆΠ΅ оси Ρ…

Из всСго Π²Ρ‹ΡˆΠ΅ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΡ‚Π²Π΅Ρ‚:

pазбирался: Π”Π°Π½ΠΈΠΈΠ» Π ΠΎΠΌΠ°Π½ΠΎΠ²ΠΈΡ‡ | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° свойства ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π·Π½Π°ΡŽΡ‚, ΠΏΠΎΠΆΠ°Π»ΡƒΠΉ, всС. А Π²ΠΎΡ‚ ΠΊΠ°ΠΊ Π΅Π΅ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ, Π³Ρ€Π°ΠΌΠΎΡ‚Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… практичСских Π·Π°Π΄Π°Ρ‡, разбСрСмся Π½ΠΈΠΆΠ΅.

Π‘Π½Π°Ρ‡Π°Π»Π° ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ основныС понятия, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π°Π΅Ρ‚ этому Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρƒ Π°Π»Π³Π΅Π±Ρ€Π° ΠΈ гСомСтрия. Рассмотрим всС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ этого Π³Ρ€Π°Ρ„ΠΈΠΊΠ°.

Π£Π·Π½Π°Π΅ΠΌ всС основныС характСристики этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ПоймСм основы построСния ΠΊΡ€ΠΈΠ²ΠΎΠΉ (гСомСтрия). Научимся Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ, Π΄Ρ€ΡƒΠ³ΠΈΠ΅ основныС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°.

Π£Π·Π½Π°Π΅ΠΌ: ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ строится искомая кривая ΠΏΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ, Π½Π° Ρ‡Ρ‚ΠΎ Π½Π°Π΄ΠΎ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ основноС практичСскоС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ этой ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π² ΠΆΠΈΠ·Π½ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΈ ΠΊΠ°ΠΊ ΠΎΠ½Π° выглядит

АлгСбра: ΠΏΠΎΠ΄ этим Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠΌ понимаСтся Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ГСомСтрия: это кривая Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка, ΠΈΠΌΠ΅ΡŽΡ‰Π°Ρ ряд ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… особСнностСй:

ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

На рисункС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (XOY), экстрСмум, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ вдоль оси абсцисс.

ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π³Π΄Π΅ коэффициСнт p – Ρ„ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ (AF).

Π’ Π°Π»Π³Π΅Π±Ρ€Π΅ ΠΎΠ½ΠΎ Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ ΠΈΠ½Π°Ρ‡Π΅:

y = a x2 + b x + c (ΡƒΠ·Π½Π°Π²Π°Π΅ΠΌΡ‹ΠΉ шаблон: y = x2).

Бвойства ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ѐункция ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ осью симмСтрии ΠΈ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ (экстрСмум). ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния – всС значСния оси абсцисс.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – (-∞, М) ΠΈΠ»ΠΈ (М, +∞) зависит ΠΎΡ‚ направлСния Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ М Ρ‚ΡƒΡ‚ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ Π»ΠΈΠ½ΠΈΠΈ.

Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΡƒΠ΄Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΈΠ· выраТСния, Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π·Π½Π°ΠΊ ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ алгСбраичСского выраТСния. Если Π° Λƒ 0, Ρ‚ΠΎ ΠΎΠ½ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…. Если Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚ – Π²Π½ΠΈΠ·.

Как Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

НахоТдСниС экстрСмума являСтся основным этапом ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ мноТСства практичСских Π·Π°Π΄Π°Ρ‡. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹, Π½ΠΎ Π»ΡƒΡ‡ΡˆΠ΅ это ΡƒΠΌΠ΅Ρ‚ΡŒ Π΄Π΅Π»Π°Ρ‚ΡŒ самому.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΠΆΠ΅ Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ? Π•ΡΡ‚ΡŒ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°. Когда b Π½Π΅ Ρ€Π°Π²Π½ΠΎ 0, Π½Π°Π΄ΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этой Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ нахоТдСния Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€.

Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ функция Ρƒ = 4 * x2 + 16 * x – 25. Найдём Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π‘ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠšΠ»Π°ΡΡΠΈΡ‡Π΅ΡΠΊΠΈΠΉ случай, ΠΊΠΎΠ³Π΄Π° Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = a x2 + b x + c, Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ€Π°Π²Π½Ρ‹ 0, Π° = 1 – Π²Π΅Ρ€ΡˆΠΈΠ½Π° находится Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0, 0).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ осям абсцисс ΠΈΠ»ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ обусловлСно ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² b ΠΈ c соотвСтствСнно. Π‘Π΄Π²ΠΈΠ³ Π»ΠΈΠ½ΠΈΠΈ Π½Π° плоскости Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒΡΡ Ρ€ΠΎΠ²Π½ΠΎ Π½Π° Ρ‚ΠΎ количСство Π΅Π΄ΠΈΠ½ΠΈΡ†, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€.

Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ классичСский Π²ΠΈΠ΄ ΠΊΡ€ΠΈΠ²ΠΎΠΉ сдвинСтся Π½Π° 2 Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΏΠΎ оси абсцисс ΠΈ Π½Π° 3 ΠΏΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Как ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ ΠΏΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ

Школьникам Π²Π°ΠΆΠ½ΠΎ ΡƒΡΠ²ΠΎΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ ΠΏΠΎ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Анализируя выраТСния ΠΈ уравнСния, ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, мСста пСрСсСчСния с ОΠ₯ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ, зная дискриминант (D) Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Для этого Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΈΡ€Π°Π²Π½ΡΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΊ Π½ΡƒΠ»ΡŽ.

НаличиС ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ зависит ΠΎΡ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°:

ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ построСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1.

Π”Π°Π½Π° функция Ρƒ = Ρ…2 5 * Ρ… + 4. НСобходимо ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ. ДСйствуСм ΠΏΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ:

По ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2.

Для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = 3 * Ρ…2 2 * Ρ… 1 Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ. ДСйствуСм ΠΏΠΎ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌΡƒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ:

По ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ.

ДирСктриса, эксцСнтриситСт, фокус ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· каноничСского уравнСния, фокус F ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (p/2, 0).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ЭксцСнтриситСт (константа) = 1.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

ΠœΡ‹ рассмотрСли Ρ‚Π΅ΠΌΡƒ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ школьники Π² срСднСй школС. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅, глядя Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΅Ρ‘ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ, Π² ΠΊΠ°ΠΊΡƒΡŽ сторону Π±ΡƒΠ΄ΡƒΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π΅Ρ‚Π²ΠΈ, Π΅ΡΡ‚ΡŒ Π»ΠΈ смСщСниС ΠΏΠΎ осям, ΠΈ, имСя Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ построСния, смоТСтС Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ Π΅Ρ‘ Π³Ρ€Π°Ρ„ΠΈΠΊ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *