Что такое наблюдение в физике 7 класс гипотеза
Научные методы изучения природы
На первом уроке физики (Физика – это наука о природе. Физические тела и физические явления), мы изучили, что физика изучает явления неживой природы и из этих явлений физика выделяет более простые, более конкретные физические явления. Мы узнали, что физические явления бывают механические, световые, звуковые, электромагнитные, тепловые.
Откуда же люди узнали, что существуют такие явления? Ответ очевиден: наблюдали. А что значит наблюдали, и как надо наблюдать? Об этом пойдёт речь в этой статье.
Дело в том, что изучение природы не происходит вот просто так: смотришь и уже знаешь физику. Нет. Существуют специальные научные методы изучения природы, с которыми сейчас начнём знакомится.
Научные методы
Что такого особенного в слове научные? Дело в том, что очень часто нам кажется одно, а на самом деле происходит другое. Давайте сейчас проведём такой самообман. На рисунке ниже два одинаковых отрезка.
Два отрезка одинаковой длины.
А сейчас каждый отрезок снабдим разными окончаниями.
Те же два отрезка, но с окончаниями.
А теперь попросим кого-нибудь постороннего сказать, какой из отрезков длиннее. И что? Каждый скажет, что нижний отрезок длиннее. Обман зрения. Следовательно, если вы хотите исследовать природу, если вы хотите изучать физику, то очень часто нельзя верить тому, что вы видите своими глазами. Есть такая поговорка: «Не верь глазам своим», и то, что нельзя верить глазам своим, вы видите прямо сейчас. Два одинаковых отрезка кажутся разными по длине из-за того, что созданы специальные условия для обмана зрения. Поэтому когда речь идёт о научных методах, нужно всегда стараться исключить все условия, при которых возможен обман зрения, при которых можно получить какие-то ложные данные.
Наблюдение
Какие же методы изучения природы мы знаем? Как было сказано ранее, один из таких методов – наблюдение. До Галилея, с глубокой древности, учёные изучающие природу, например, тот же Аристотель, ни каких экспериментов не ставили. Что такое эксперимент мы ещё расскажем в этой статье. Они просто смотрели вокруг и размышляли. То, что они делали, мы называем наблюдения. Чем же отличается наблюдение? Что это такое? Это один из методов исследования природы. Например, мы прекрасно знаем из повседневной жизни, что камень падает быстро, а тополиный пух очень медленно. Аристотель, наблюдая то же самое, говорил, что тяжёлые тела падают быстро, а медленные медленно. Что это? Результат какого исследования? Наблюдения. Так что же такое наблюдение? Аристотель что-то специально делал для своего исследования, создавал какие-то специальные условия? Нет, он просто смотрел. Итак, наблюдение – это исследование явления без создания специальных условий.
Возникает вопрос: а всегда ли лёгкое тело падает медленно, а тяжёлое быстро? Этот вопрос является предположением. На научном языке предположение называется – гипотеза.
Гипотеза
Гипотеза – это тоже этап, один из методов научного исследования природы. Теперь мы высказываем гипотезу, которая обобщает результаты нашего наблюдения за падением камня и тополиного пуха – любое тяжёлое тело всегда падает быстрее лёгкого.
Попробуем теперь проверить эту гипотезу. А что значит проверить? Это что-то сделать, чтобы узнать справедлива наша гипотеза или нет, подтвердить её или опровергнуть. Проверяют гипотезу при помощи эксперимента. Эксперимент отличается от наблюдения тем, что мы проводим исследование в специально созданных условиях.
Эксперимент
Эксперимент – это исследование явления в специально созданных условиях.
А теперь проведём эксперимент. Возьмём два одинаковых листа бумаги. Если их отпустить, то они будут падать одинаково медленно. А теперь мы создадим для нашего эксперимента специальные условия, и состоять они будут в следующем – мы помнём один лист. Очевидно, что вес помятого листа бумаги не изменился. Давайте теперь отпустим эти два листа бумаги. Оказывается, что один и тот же лист бумаги, если он свёрнут в комочек, падает быстрее. А теперь скомканный лист бросим вместе с книгой. В результате они упадут практически одинаково.
Эксперимент показал, что комок бумаги падает быстрее не свёрнутого листа. За экспериментом следует какой-то вывод, гипотеза, которая объясняет результаты эксперимента. Гипотеза – кроме силы тяжести, что-то влияет на скорость падения бумаги, предположительно – воздух.
Вслед за этой гипотезой будет опять эксперимент. Мы что-то предположили, и теперь нужно сразу же это проверить. Эксперимент: проведём падение тела так, чтобы воздух не мешал, то есть исключим влияние воздуха или уменьшим его. Это можно сделать по разному. Например, скомкав лист мы уменьшили влияние воздуха на него при падении. Можно сделать по другому. Можно бросить лист ребром, в этом случае сопротивление воздуха будет меньше и лист также будет падать быстрее.
Галилео Галилей, со своими учениками, он уменьшил влияние воздуха другим способом. На тело действует сила притяжения Земли. Чем массивнее тело, тем больше сила притяжения земли. Если вы хотите, чтобы влияние воздуха, а мы видим, что влияние воздуха при падении тела зависит от площади нижней поверхности тела, так вот, если вы хотите чтобы влияние воздуха было меньше, нам надо взять тела из вещества, которое сильно притягиваются к Земле, то есть которое имеет высокую массу при малых размерах. Например, можно взять чугунное ядро и свинцовую пулю. И вот Галилей бросал с Пизанской башни эти предметы. На самом деле его ученики бросали, а он наблюдал и делал выводы. Но создавая специальные условия, он фактически проводил эксперимент. Мушкетная пуля сравнительно лёгкая, но из-за маленьких размеров воздух на неё практически не влияет. Оказалось, что пуля и ядро падают на землю практически одновременно, хотя пуля лёгкая, а ядро тяжёлое. Галилей уменьшил влияние воздуха вот таким способом, за счёт увеличения вклада сил тяжести.
Ньютон пошёл по другому пути. Ньютон жил позже Галилея. Исаак Ньютон просто напросто выкачивал воздух из трубки в которой падали предметы разной массы: тяжёлые и лёгкие. Он бросал пёрышко и дробинку. Когда в трубке воздух был, то перо немного опустилось, а дробинка за это время упала на дно трубки. Но когда Ньютон откачал воздух, оказалось следующее: как только трубку перевернули и они начали падать, они достигли нижнего края трубки одновременно. Воздуха нет – нечему мешать движению, и поэтому и пёрышко, и дробинка достигают дна одновременно.
Физические законы
Итак, на основании гипотезы, подтверждённой различными экспериментами, мы делаем вывод, который уже можно назвать физическим законом.
Закон свободного падения: все тела падают под действием силы тяжести одинаково. Пока что не будем вдаваться в подробности, что значит «одинаково». Об этом мы поговорим в другой статье очень детально.
С какими мы столкнулись понятиями:
Обратите внимание, что мы периодически возвращались после эксперимента к новой гипотезе и к новому эксперименту, но на всё более высоком уровне. Мы поднимались от незнания к знанию не по прямой, а по спирали. Хотя, с точки зрения математики, правильно назвать её винтовой линией, так как спираль – это плоская кривая.
Теперь давайте вернёмся к закону свободного падения: все тела падают под действием силы тяжести одинаково. А как это одинаково? Как можно описать это на количественном уровне? Для этого существуют физические величины, которые придумывают учёные. Примеры физических величин: метр, килограмм, секунда. Эти физические величины оказываются связанными между собой (например, скорость можно измерить в метрах в секунду) и эти величины описывают явления природы. А то, что связывает различные физические величины называется теорией.
Физическая теория
На основании законов, открытых учёными, строится теория, то есть количественное описание физических явлений. Так что мы можем в список выше добавить пятый пункт: теория.
Так, например, была построена механика. Исаак Ньютон, обобщив законы свободного падения, которые были открыты Галилеем, сумел описать на количественном уровне движение тел под действием силы тяжести. Он открыл закон, который называется «Закон всемирного тяготения». Оказывается, не только лист бумаги, чугунное ядро, свинцовая пуля и другие предметы притягиваются к Земле. Луна также притягивается к Земле. Сравнивая движение Луны и движение яблока, которое бросили, Ньютон установил, что любые два тела притягиваются друг к другу. Два человека, сидящие за партой притягиваются друг к другу, к парте, к учителю.
Открыв этот закон физики построили теорию движения планет. Солнечная система подчиняется закону всемирного тяготения. Более того, на основании особенностей движения планет, были открыты новые планеты. Было предсказано, что за Ураном должна быть ещё одна планета, потому что движение Урана было не совсем таким, как думали астрономы. Эта планета была названа Нептун. Это было сделано, как говорят, на кончике пера.
Но вот беда, оказывается, что теория, которую сейчас называют классической физикой, не всегда могла описать различные физические явления. Оказывается, что если скорость тела приближается к скорости света, то понятная нам механика перестаёт работать. Эйнштейн создаёт теорию относительности, в которой рассматривается движение тел с огромными околосветовыми скоростями. Оказывается, скорость света нельзя превысить. А старая добрая классическая механика является частным случаем этой новой теории относительности.
Далее, пытаясь описать свечение нагретых тел, Макс Планк в 1900 году был вынужден предположить (вынужден, так как ему это предположение не нравилось), что нагретые тела испускают свет не непрерывно, а определёнными порциями. То есть, физические величины могут меняться скачкообразно, что противоречит старой доброй классической физике. Так родилась квантовая механика. Теперь старая добрая классическая физика получалась из квантовой механики как частный случай.
То есть, никогда физики не останутся без работы, потому что проводя всё более сложные и сложные эксперименты, физики открывают явления, которые старая физика не может описать и им приходиться строить новые разделы физики. Квантовая механика, теория относительности, а сейчас существуют и более новые разделы физики, которые описывают микромир, при чём при огромных скоростях движения частиц.
Абсолютного знания не существует. Никогда не наступит такого момента, что мы скажем: «Всё, физика открыта». Кстати, такое мнение существовало в конце 19 века. А потом Планк открывает квантовую механику и квантовую физику.
Чем полезно изучение физики
Изучение физики очень полезно для умственного развития. Зная физику, вы понимаете, как «цепляются шестерёнки» везде. Из 15 нобелевских лауреатов по экономике, 13 заканчивали физические факультеты. Изучая физику, вы в целом научаетесь ориентироваться в мире, который вас окружает.
Итак, чем хорош физик? Тем, что он умеет решать задачи, у которых нет чётко поставленного условия. Та же история и в экономике, та же история и в жизни.
Конспект урока на тему «Что изучает физика? Физические термины, наблюдения и опыты» (7 класс).
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Что изучает физика? Физические термины, наблюдения и опыты.
1 слайд: I. Организационный этап
Великий английский физик-экспериментатор Эрнст Резерфорд как-то пошутил: «Есть только две науки – физика и коллекционирование марок». В ходе этого урока вы узнаете, почему именно физику Резерфорд выделил среди всех других наук, что она изучает, познакомитесь с первыми физическими понятиями: вещество, тело, явление.
II. Изучение нового материала
2 слайд: 1.Сегодня состоится ваше первое знакомство с удивительно интересной наукой – физикой.
Впервые слово «физика» появилось в сочинениях Аристотеля в 4 веке до нашей эры. В переводе с греческого языка слово «фюзис» означает «природа». В русский язык этот термин ввел в XVIII веке Михаил Васильевич Ломоносов.
3 слайд: Физика – это одна из наук о природе. И она имеет тесную связь с такими науками, как астрономия, география, биология, химия и т.д. все эти науки применяют законы физики.
4 слайд: 2.Физика изучает явления природы.
В жизни мы постоянно сталкиваемся с различными изменениями, которые происходят в окружающем нас мире. В физике эти изменения принято называть явлениями.
Каждый вид явлений изучает отдельный раздел физики (механика, электродинамика, оптика, термодинамика, акустика и другие). Эти явления называются физическими.
Физические явления – любые превращения вещества или проявления его свойств, происходящие без изменения состава вещества.
Но эти разделы тесно взаимосвязаны и образуют единую стройную физическую науку, которая позволяет описать и объяснить причины самых разнообразных явлений природы – от образования галактик до процессов внутри атомов – кирпичиков, их которых состоит всё, что мы видим вокруг себя, включая нас самих.
3. Виды физических явлений
5 слайд: Явления могут быть механическими. Например, скатывание шарика по наклонной плоскости.
6 слайд: Все вы видели кипение воды в чайнике, таяние льда. Это – примеры тепловых явлений.
7 слайд: Даже самый обычный мыльный пузырь может стать объектом изучения физики. Радужное переливание красок его стенок – это световые (оптические) явления.
8 слайд: Колебания струн скрипки или гитары, колебания воздуха в духовых музыкальных инструментах порождают звук. Совсем другой звук возникает от волн морского прибоя. Звуковые явления также изучает физика
9 слайд: Существуют электрические явления. Например, при замыкании электрической цепи загорается лампочка.
10 слайд: Явления могут быть магнитными. Возможно, вы знаете, что магниты, поднесенные друг к другу одноименными полюсами, отталкиваются, а поднесенные разноименными полюсами – притягиваются. Также известно, что магниты притягивают предметы, сделанные из одного материала (например, железа), но заметно не действуют на предметы из других материалов (стекла, дерева, пластмассы).
11 слайд: Важно понимать, что явления природы и физические явления – не совсем одно и то же. Как правило, явление природы – это несколько физических явлений, происходящих одновременно.
Например, молния, ударяющая в землю, – это одновременно:
— электрическое явление (между тучей и землей протекает электрический ток),
— магнитное явление (они всегда сопровождают протекание электрического тока),
— тепловое (воздух в канале молнии разогревается до температуры в несколько тысяч градусов),
— световое (вспышка молнии видна за несколько километров),
— звуковое (мощные раскаты грома).
12 слайд: Задача физики состоит в том, чтобы открывать различные закономерности, которые позволяют объяснить и объединить разные физические явления.
Для описания физических явлений используются специальные термины. Мы будем знакомиться с ними постепенно, и очень скоро из этих терминов сложится язык физической науки. С некоторыми из них мы познакомимся прямо сейчас.
14 слайд: В физики каждое из окружающих нас тел принято называть физическим телом или просто телом. Тела можно охарактеризовать по их внешнему виду. Они могут иметь форму и объем. Некоторые тела могут быть одной формы, но разного объема. Другие же, наоборот, одного объема, но разной формы.
Рис. 8. Гайки имеют одинаковую форму, но разный объем, а скрепки, наоборот, обладают одинаковым объемом, но различной формой
Правда, существуют тела, у которых нет формы, – это жидкости. А есть и тела, у которых нет ни формы, ни объема, – это газы. Подробнее об этом мы будем говорить на следующих уроках.
Тела могут состоять из различных веществ. Например, шарик стальной, основу термометра составляет стекло, а на катушку намотана медная проволока.
15 слайд: Обратите внимание на термины, которыми мы пользуемся. Шарик – это физическое тело, сталь, из которой он сделан, – вещество, а скатывание шарика по наклонной плоскости – это физическое явление.
16 слайд: давайте с вами выполним задание, чтобы закрепить понятие данных терминов.
5. Введение. Наблюдения и опыты
Признайтесь, вы когда-нибудь ломали свои игрушки? Конечно же ломали! А почему вы это делали? Позвольте ответить за вас. Вам было неинтересно просто смотреть на свою игрушку. Вам хотелось узнать, «а что будет, если. » А известно ли вам, что именно это непреодолимое желание узнать «а что будет, если. » постоянно испытывают ученые-физики во время любого исследования? Сегодня вы узнаете об основных этапах научного исследования, о том, что такое наблюдения, опыты (эксперименты), что такое гипотеза, что такое теория, и что является целью любого физического исследования.
Человек начал задумываться о физических явлениях очень давно. Наверное, когда в первый раз посмотрел на звездное небо; или, когда в первый раз увидел падение камня; или, когда в его ладони растаяла снежинка; а может быть, когда ему удалось разжечь первый в мире костер. Эти явления на первых порах представлялись чудесными и необъяснимыми, казались проявлениями сверхъестественных сил. Но постепенно человек стал проникать в тайны явлений природы. Как же это происходило?
Самым первым способом изучать природу было наблюдение, когда человек наблюдал за физическими явлениями, происходящими в природе. Что же такое наблюдение?
Наблюдение – это изучение явлений природы без вмешательства в их ход.
Изучать – это не просто смотреть, как происходит явление, но и задумываться, почему оно происходит так, а не иначе.
Например, из наблюдений, вы знаете, что листок бумаги падает медленнее, чем книга. И вы задумываетесь: почему так происходит?
В вашем мозгу возникают различные догадки о причине того, что вы наблюдали. Такие догадки, недоказанные предположения, в науке называются гипотезами. Гипотез может быть несколько. Например, в случае с листком бумаги и книгой, гипотез может быть две.
Гипотеза №1. Листок бумаги падает медленнее, так как он легче, чем книга.
Гипотеза №2. Падению листка бумаги мешает сопротивление воздуха.
Обе гипотезы не могут быть справедливыми. По крайней мере, одна из них ошибочна. Чтобы подтвердить справедливость одной гипотезы и опровергнуть другую, необходимо изучить наблюдаемое явление в специально созданных условиях.
Изучение явления природы в специально созданных условиях называется экспериментом (опытом).
18 слайд: Проведем такой опыт. Возьмем два одинаковых листка бумаги и разместим один листок вертикально, а другой на той же высоте, но горизонтально. Если теперь одновременно отпустить оба листка, то вертикально расположенный лист будет падать намного быстрее горизонтального. Оба листка одинаково притягиваются к земле, но вертикальный листок не испытывает такого сопротивления воздуха, как горизонтальный.
Еще один эксперимент. Положим листок бумаги на книгу, расположим книгу горизонтально и отпустим. Мы увидим, что легкий листок и тяжелая книга будут падать вместе, так как книга заслоняет листок от встречного потока воздуха.
Теперь на основании проведенных опытов мы можем сделать выводы. Оба опыта подтверждают справедливость гипотезы №2 и опровергают гипотезу №1.
Гипотеза, справедливость которой подтверждена опытным путем, превращается в научную теорию , в которой описываются закономерности изучаемого явления.
Научная теория не только объясняет наблюдаемые физические явления.
Главная задача теории – предсказывать результаты еще не проведенных экспериментов.
Изучая падение листка бумаги, мы приходим к удивительному выводу: в безвоздушном пространстве все тела должны падать одинаково.
Более 300 лет тому назад английский ученый Исаак Ньютон поместил в длинную и достаточно широкую стеклянную трубку легчайшее птичье перо и тяжелый кусочек свинца. Если установить трубку вертикально и потом быстро перевернуть, то оба предмета начинают падать. Пока в трубке есть воздух, перо значительно отстает от кусочка свинца. Но когда Ньютон откачал воздух из стеклянной трубки и повторил опыт, оба предмета падали одинаково.
19 слайд: Запишите пожалуйста схему метода научного познания.
Физическая теория всегда сопровождается математическими расчетами. Она позволяет предсказать результаты измерений различных физических величин, которые описывают изучаемое явление. Что такое физическая величина и что такое измерение, вы узнаете на следующем уроке.
20 слайд: посмотрите на портреты известных ученых физиков, с открытиями которых, мы будем с вами знакомится на уроках физики
III. Подведение итогов.
21 слайд: для подведения итогов урока, давайте вспомним термины и понятии, с которыми мы сегодня познакомились.
24 слайд: IV. Домашнее задание.
Страницы работы
Фрагмент текста работы
Наблюдение – метод исследования предметов и явлений объективной действительности в том виде, в каком они существуют в природе. Наблюдаемой называют любую физическую величину, значение которой можно найти экспериментально (измерить).
Гипотеза – вероятное предположение о причине каких-либо явлений, достоверность которого при современном состоянии науки не может быть проверена и доказана.
Эксперимент – изучение того или иного явления в точно учитываемых условиях, когда имеется возможность следить за ходом изменения явления, активно воздействовать на неё.
Опыт – совокупность накопленных знаний.
Механика – наука, изучающая механические движения, т.е. перемещения тел друг относительно друга или изменение форм тела.
Материальная точка – физическое тело, размерами и формой которого можно пренебречь.
Поступательное движение – движение, при котором любая прямая, жёстко связанная с телом, перемещается параллельно самой себе.
Мгновенная скорость (скорость) – характеризует быстроту изменения радиус-вектора перемещения r в момент времени t.
Ускорение – характеризует быстроту изменения скорости в момент времени t.
Тангенциальное ускорение характеризует изменение скорости по модулю.
Нормальное ускорение – по направлению.
Угловая скорость – векторная величина производной от элементарного углового перемещения по времени.
Угловое ускорение – векторная величина, равная первой производной от угловой скорости по времени.
Импульс – векторная мера кол-ва механического движения, которое может быть передано от одного тела к другому при условии, что движение не меняет своей формы.
Механическая система – совокупность тел, выделенных для рассмотрения.
Внутренние силы – силы, с которыми взаимодействуют между собой тела, входящие в рассматриваемую систему.
Внешние силы – действуют со стороны тел, не принадлежащих системе.
Система называется замкнутой или изолированной, если отсутствуют внешние силы
Прямая задача механики – зная силы, найти движение (функции r(t), V(t)).
Обратная задача механики – зная движение тела, найти силы, действующие на него.
Масса (аддитивная величина):
1. Мера инертности при поступательном движении тела (инертная масса)
2. Мера кол-ва вещества в объёме тела
3. Мера гравитационных свойств тел, участвующих в гравитационных взаимодействиях (гравитационная масса)
1. В способности тела сохранять состояние движения
2. В способности тела под действием других тел изменять состояние не скачками, а непрерывно.
3. Сопротивляться изменению состояния своего движения.
Системы отсчёта, по отношению к которым свободная м.т. находится в состоянии относительного покоя или равномерного прямолинейного движения, называются инерциальными (в них выполняется I закон Ньютона).
I закон Ньютона: Если система отсчёта движется относительно инерциальной с ускорением, то она называется неинерциальной.
II закон Ньютона: В инерциальной системе скорость изменения импульса м.т. равна результирующей силе, действующей на неё и совпадает с ней по направлению.
III закон Ньютона: Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.
Абсолютная скорость – скорость м.т. относительно неподвижной системы отсчёта.
Относительная скорость – скорость м.т. относительно подвижной системы отсчёта.
Переносная скорость – скорость подвижной системы отсчёта относительно