Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

РаспрСдСлСния ΠΈ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹

Π—Π°ΠΊΠΎΠ½ распрСдСлСния случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹

Для характСристики вСроятности появлСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π·Π°ΠΊΠΎΠ½Ρ‹ распрСдСлСния вСроятностСй случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹. ΠŸΡ€ΠΈ этом ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π΄Π²Π° Π²ΠΈΠ΄Π° прСдставлСния Π·Π°ΠΊΠΎΠ½ΠΎΠ² распрСдСлСния: ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ.

Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π·Π°ΠΊΠΎΠ½, ΠΈΠ»ΠΈ функция распрСдСлСния вСроятностСй случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ X, называСтся функция, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ для любого x являСтся Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ события, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ случайная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° X ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ значСния, мСньшиС x, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ функция F(x)=P ΠΈΠ»ΠΈ Π΅Ρ‰Ρ‘ ΠΌΠ΅Π΄Π»Π΅Π½Π½Π΅Π΅, Ρ‚ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ матСматичСского оТидания расходится.

Рассмотрим Ρ‚ΠΈΠΏΠΈΡ‡Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»Π΅Π½ΠΈΡŽ матСматичСского оТидания Π½Π° Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… ΠΎΠΏΡ†ΠΈΠΎΠ½Π°Ρ…. Допустим, Π±Ρ€ΠΎΠΊΠ΅Ρ€ Π½Π° Π²Ρ‹ΠΈΠ³Ρ€Ρ‹Ρˆ Π²Ρ‹ΠΏΠ»Π°Ρ‡ΠΈΠ²Π°Π΅Ρ‚ 75% ΠΎΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ставки, Π° Π½Π° ΠΏΡ€ΠΎΠΈΠ³Ρ€Ρ‹Ρˆ Π·Π°Π±ΠΈΡ€Π°Π΅Ρ‚ всю ставку 100%. НайдСм ΠΌΠ°Ρ‚ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ для ΠΌΠ΅Ρ‚ΠΎΠ΄Π° прогнозирования, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΄Π°Π΅Ρ‚ 65% ΡƒΡΠΏΠ΅ΡˆΠ½Ρ‹Ρ… сдСлок.

Π‘ΠΎΠ±ΠΈΡ€Π°Π΅ΠΌ это всё Π² сумму ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ матСматичСского оТидания для дискрСтного распрСдСлСния ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ.

ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ прогнозирования ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… ΠΎΠΏΡ†ΠΈΠΎΠ½Π°Ρ…. Π’Ρ€Π΅ΠΉΠ΄Π΅Ρ€ Π±ΡƒΠ΄Π΅Ρ‚ Π² ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ ΠΏΡ€ΠΈ большом количСствС сдСланных ставок, тСорСтичСски ΠΏΡ€ΠΈ бСсконСчном числС ставок (ΠΈ Ссли Ρƒ Π½Π΅Π³ΠΎ Ρ…Π²Π°Ρ‚ΠΈΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π΄Π΅ΠΏΠΎΠ·ΠΈΡ‚Π° Π½Π° просадки Π² сСрии ΠΏΡ€ΠΎΠΈΠ³Ρ€Ρ‹ΡˆΠ΅ΠΉ).

А Ссли ΠΌΠ΅Ρ‚ΠΎΠ΄ прогнозирования Ρ‚Ρ€Π΅ΠΉΠ΄Π΅Ρ€Π° Π΄Π°Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 65% ΠΏΡ€ΠΈΠ±Ρ‹Π»ΡŒΠ½Ρ‹Ρ… сдСлок?

Π’ этом случаС p=0.55, q=0.45. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ эти Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ матСматичСского оТидания для дискрСтного распрСдСлСния, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΞΌ=-0.0375.

ΠžΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠ°Ρ‚ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ прогнозирования Π½ΠΈ Π² ΠΊΠΎΠ΅ΠΌ случаС нСльзя ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ. Если с Ρ‚Π°ΠΊΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ прогнозирования Ρ‚Ρ€Π΅ΠΉΠ΄Π΅Ρ€ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» ΠΏΡ€ΠΈΠ±Ρ‹Π»ΡŒ Π½Π° ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ сСрии ставок, Ρ‚ΠΎ это простоС случайноС Π²Π΅Π·Π΅Π½ΠΈΠ΅.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° матСматичСского оТидания позволяСт Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΈ ΠΏΡ€ΠΈΠ±Ρ‹Π»ΡŒΠ½Ρ‹Ρ… сдСлок, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° прогнозирования, ΠΈ вывСсти ΠΎΡΠ½ΠΎΠ²Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… ΠΎΠΏΡ†ΠΈΠΎΠ½ΠΎΠ². Основная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… ΠΎΠΏΡ†ΠΈΠΎΠ½ΠΎΠ² соотвСтствуСт Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ матСматичСскому оТиданию.

На ЀорСксС ΠΈ Π½Π° Ρ„ΠΎΠ½Π΄ΠΎΠ²ΠΎΠΉ Π±ΠΈΡ€ΠΆΠ΅ всё вычисляСтся Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ. Π‘ Ρ‚ΠΎΠΉ лишь Ρ€Π°Π·Π½ΠΈΡ†Π΅ΠΉ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ξ± ΠΈ ß ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ€Π΅Π· полоТСния ΠΎΡ€Π΄Π΅Ρ€ΠΎΠ² TakeProfit ΠΈ StopLoss. Π‘ΡƒΡ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ξ± ΠΈ ß, это Π΄ΠΎΠ»ΠΈ ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ ΠΈ ΡƒΠ±Ρ‹Ρ‚ΠΊΠ° ΠΎΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° собствСнных срСдств Ρ‚Ρ€Π΅ΠΉΠ΄Π΅Ρ€Π°, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² сдСлкС.

ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ распрСдСлСния

ΠΠ°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ k-Π³ΠΎ порядка вычисляСтся ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ.

Для дискрСтного распрСдСлСния:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ распрСдСлСния:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

НулСвой Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ всСгда Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ эти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΈ k=0 пСрСходят Π² условия Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²ΠΊΠΈ. А ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ (k=1), это ΠΊΠ°ΠΊ Ρ€Π°Π· ΠΈ Π΅ΡΡ‚ΡŒ матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π³ΠΎΠ²ΠΎΡ€ΠΈΠ»ΠΎΡΡŒ Π²Ρ‹ΡˆΠ΅.

Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ k-Π³ΠΎ порядка вычисляСтся ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ.

Для дискрСтного распрСдСлСния:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ распрСдСлСния:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ‚Π°ΠΊΠΆΠ΅ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ всСгда Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. А ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ всСгда Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ. ΠœΡ‹, ΠΊΠ°ΠΊ Π±Ρ‹, Π΄Π΅Π»Π°Π΅ΠΌ Ρ‚Π°ΠΊΠΎΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ пСрСнос, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚ΠΎΡ‡ΠΊΠ° матСматичСского оТидания ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ ноль.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ основныС свойства

ΠœΡ‹ ΡƒΠΆΠ΅ Π²ΠΈΠ΄Π΅Π»ΠΈ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ Π³Π»Π°Π²Π΅, ΠΊΠ°ΠΊΠΎΠ΅ большоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ‚Π°ΠΊΠΈΠ΅ числовыС характСристики распрСдСлСния, ΠΊΠ°ΠΊ матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ ΠΈ диспСрсия. ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ΠΌ этих понятий ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠΠ°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ порядка Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтслучайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтстСпСни Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Из опрСдСлСния ясно, Ρ‡Ρ‚ΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка совпадаСт с матСматичСским ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для дискрСтных случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ с Π·Π°ΠΊΠΎΠ½ΠΎΠΌ распрСдСлСния Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° порядка Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтвыглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

для Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ с ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Ссли ряд (6.3) ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» (6.4) сходятся Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ.

По этой ссылкС Π²Ρ‹ Π½Π°ΠΉΠ΄Ρ‘Ρ‚Π΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ курс Π»Π΅ΠΊΡ†ΠΈΠΉ ΠΏΠΎ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ вСроятности:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ порядка Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтслучайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтстСпСни отклонСния Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтматСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠœΡ‹ ΡƒΠΆΠ΅ Π²ΠΈΠ΄Π΅Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π° Π²Ρ‚ΠΎΡ€ΠΎΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ совпадаСт с диспСрсиСй случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для дискрСтных случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° порядка Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтвыглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π²Π°ΠΌ Π±ΡƒΠ΄ΡƒΡ‚ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ страницы:

Разлагая Π±ΠΈΠ½ΠΎΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΈ ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ свойствами матСматичСского оТидания, Π½Π΅Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅. НапримСр,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Π° с ΡƒΠΆΠ΅ извСстной Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ для диспСрсии. Аналогично ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²Ρ‹Π²ΠΎΠ΄ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… прСдоставляСтся Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΡŽ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ². Бвойство. Если Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтнСзависимы, Ρ‚ΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΊΡƒΠ±Π° суммы ΠΈ свойство матСматичСского оТидания, ΠΈΠΌΠ΅Π΅ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ умноТСния матСматичСского оТидания для нСзависимых Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка Ρ€Π°Π²Π½Ρ‹ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (6.12) ΠΎΡ‚ΡΡŽΠ΄Π° слСдуСт нСпосрСдствСнно.

Доказанная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° нСпосрСдствСнно обобщаСтся Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ΅ число нСзависимых слагаСмых:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ порядка Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠ΅ свойство выглядит Π±ΠΎΠ»Π΅Π΅ слоТным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ.

Бвойство. Для нСзависимых случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтвыполняСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌΡƒ ΠΈ оставляСтся Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΡŽ. Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ числа нСзависимых слагаСмых Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (6.14) ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Рассмотрим ряд ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² нахоТдСния ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Π²Ρ‹ΡΡˆΠΈΡ… порядков для Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… Π·Π°ΠΊΠΎΠ½ΠΎΠ² распрСдСлСния.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ с Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1:

Найти всС Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π΄ΠΎ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ порядка Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ для случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтраспрСдСлСнной ΠΏΠΎ Π±ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π·Π°ΠΊΠΎΠ½Ρƒ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

РСшСниС:

Π§Ρ‚ΠΎ касаСтся нахоТдСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка, Ρ‚ΠΎ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π°ΠΌ извСстСн:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ (6.13) ΠΈ прСдставлСниСм случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π²ΠΈΠ΄Π΅ суммы ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ² появлСния события Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтиспытании:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ слагаСмого Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ находится нСпосрСдствСнно

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для нахоТдСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ порядка Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ (6.15). Π’Π½Π°Ρ‡Π°Π»Π΅ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ слагаСмого:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для нахоТдСния всСх Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΎΡ‰Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡ‰ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ².

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡ‰Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡ‰Π°Ρ функция ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² позволяСт Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ всС Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ X. Π‘ΠΏΡ€Π°Π²Π΅Π΄Π»ΠΈΠ²Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 6.1. Если случайная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ порядка Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‚ΠΎ производящая функция Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ€Π°Π· Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° ΠΏΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΈ для всСх Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтвыполняСтся ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Если ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² сторонС вопрос ΠΎ диффСрСнцируСмости Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ (6.20) получаСтся Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ (6.19) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ€Π°Π· ΠΏΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ Π² послСднСС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠΎΡ‚ΠΊΡƒΠ΄Π° нСпосрСдствСнно Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ равСнство (6.19).

Бравнивая Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ производящСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² ряд ΠœΠ°ΠΊΠ»ΠΎΡ€Π΅Π½Π° с равСнствами (6.19), ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π΅Π΅ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² ряд с использованиСм Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ²:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2:

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡ‰ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² для случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтраспрСдСлСнной ΠΏΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π·Π°ΠΊΠΎΠ½Ρƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

РСшСниС:

ИмССм ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для вычислСния этого ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° рассмотрим ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ экспонСнты, стоящСй ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°. ИмССм

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ Π² числитСлС послСднСй Π΄Ρ€ΠΎΠ±ΠΈ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΏΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠŸΠΎΡΠ»Π΅ нСбольшого числа тоТдСствСнных ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для характСристичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π΅Ρ‚ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Ρ€Π°Π²Π΅Π½ 1 ΠΊΠ°ΠΊ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ плотности Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‚ΠΎ ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для характСристичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ОсобСнно простой Π²ΠΈΠ΄ ΠΈΠΌΠ΅Π΅Ρ‚ характСристичСская функция стандартного Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ Π½Π°ΠΉΡ‚ΠΈ всС Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ стандартной Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹. ВмСсто Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ (6.22), ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π΅Π΅ Π² ряд ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ с рядом (6.20):

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΈΠΌΠ΅Π΅ΠΌ выраТСния для Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ²:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π›Π΅ΠΊΡ†ΠΈΠΈ:

ΠŸΡ€ΠΈΡΡ‹Π»Π°ΠΉΡ‚Π΅ задания Π² любоС врСмя дня ΠΈ Π½ΠΎΡ‡ΠΈ Π² βž” Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠžΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ сайт Π‘Ρ€ΠΈΠ»ΡŒΡ‘Π½ΠΎΠ²ΠΎΠΉ ΠΠ°Ρ‚Π°Π»ΡŒΠΈ Π’Π°Π»Π΅Ρ€ΡŒΠ΅Π²Π½Ρ‹ прСподаватСля ΠΊΠ°Ρ„Π΅Π΄Ρ€Ρ‹ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠΊΠΈ ΠΈ элСктроники ЕкатСринбургского государствСнного института.

ВсС авторскиС ΠΏΡ€Π°Π²Π° Π½Π° Ρ€Π°Π·ΠΌΠ΅Ρ‰Ρ‘Π½Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ сохранСны Π·Π° правообладатСлями этих ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Π›ΡŽΠ±ΠΎΠ΅ коммСрчСскоС ΠΈ/ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ΅ использованиС ΠΊΡ€ΠΎΠΌΠ΅ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ознакомлСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² сайта natalibrilenova.ru Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½ΠΎ. ΠŸΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΡ ΠΈ распространСниС Ρ€Π°Π·ΠΌΠ΅Ρ‰Ρ‘Π½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π΅ прСслСдуСт Π·Π° собой коммСрчСской ΠΈ/ΠΈΠ»ΠΈ любой Π΄Ρ€ΡƒΠ³ΠΎΠΉ Π²Ρ‹Π³ΠΎΠ΄Ρ‹.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅:

ЧисловыС характСристики случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½:

Как ΠΌΡ‹ ΡƒΠΆΠ΅ выяснили, Π·Π°ΠΊΠΎΠ½ распрСдСлСния ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ ΡΠ»ΡƒΡ‡Π°ΠΉΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ позволяСт Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ вСроятности Π»ΡŽΠ±Ρ‹Ρ… событий, связанных с этой случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ. Однако, Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, Π·Π°ΠΊΠΎΠ½ распрСдСлСния Π½Π΅ всСгда извСстСн, Π°, Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ… практичСских Π·Π°Π΄Π°Ρ‡ совсСм Π½Π΅ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ Π·Π°ΠΊΠΎΠ½ распрСдСлСния. Достаточно Π·Π½Π°Ρ‚ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ числовыС характСристики, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² сТатой, ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ сущСствСнныС Ρ‡Π΅Ρ€Ρ‚Ρ‹ распрСдСлСния.

НапримСр, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π·Π°ΠΊΠΎΠ½Ρ‹ распрСдСлСния Π΄Π²ΡƒΡ… случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ – числа ΠΎΡ‡ΠΊΠΎΠ², Π²Ρ‹Π±ΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… двумя стрСлками, – ΠΈ Π²Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊΠΎΠΉ ΠΈΠ· Π΄Π²ΡƒΡ… стрСлков стрСляСт Π»ΡƒΡ‡ΡˆΠ΅. Однако, Π΄Π°ΠΆΠ΅ Π½Π΅ зная Π·Π°ΠΊΠΎΠ½ΠΎΠ² распрСдСлСния, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π»ΡƒΡ‡ΡˆΠ΅ стрСляСт Ρ‚ΠΎΡ‚, ΠΊΡ‚ΠΎ Π² с Ρ€ Π΅ Π΄ Π½ Π΅ ΠΌ Π²Ρ‹Π±ΠΈΠ²Π°Π΅Ρ‚ большСС количСство ΠΎΡ‡ΠΊΠΎΠ². Π’Π°ΠΊΠΈΠΌ срСдним Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ являСтся матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅.

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΌ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ΠΌ, ΠΈΠ»ΠΈ срСдним Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ, M(X) Π΄ ΠΈ с ΠΊ Ρ€ Π΅ Ρ‚ Π½ ΠΎ ΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ X называСтся сумма ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ всСх Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΈΠΌ вСроятности: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π—Π°ΠΌΠ΅Π½ΠΈΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для дискрСтной случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π·Π½Π°ΠΊ суммирования ΠΏΠΎ всСм Π΅Π΅ значСниям Π·Π½Π°ΠΊΠΎΠΌ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° с бСсконСчными ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ, дискрСтный Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ xi – Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ ΠΌΠ΅Π½ΡΡŽΡ‰ΠΈΠΌΡΡ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Рассмотрим свойства матСматичСского оТидания.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Найти матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Z = 8X – – 5Y + 7, Ссли извСстно, Ρ‡Ρ‚ΠΎ M(X) = 3, M(Y) = 2.

РСшСниС:

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойства 1, 2, 3 матСматичСского оТидания, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ установили, Ρ‡Ρ‚ΠΎ матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ являСтся Π²Π°ΠΆΠ½ΠΎΠΉ числовой характСристикой случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹. Однако ΠΎΠ΄Π½ΠΎ лишь матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π² достаточной стСпСни Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΡΠ»ΡƒΡ‡Π°ΠΉΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ. ВСрнСмся ΠΊ Π·Π°Π΄Π°Ρ‡Π΅ ΠΎ стрСлках. ΠŸΡ€ΠΈ равСнствС срСдних Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ числа Π²Ρ‹Π±ΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ΠΎΡ‡ΠΊΠΎΠ², вопрос ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊΠΎΠΉ ΠΈΠ· стрСлков стрСляСт Π»ΡƒΡ‡ΡˆΠ΅, остаСтся ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ. Однако Π² этом случаС ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π»ΡƒΡ‡ΡˆΠ΅ стрСляСт Ρ‚ΠΎΡ‚ стрСлок, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ отклонСния числа Π²Ρ‹Π±ΠΈΡ‚Ρ‹Ρ… ΠΎΡ‡ΠΊΠΎΠ² ΠΎΡ‚ срСднСго значСния мСньшС.

ΠœΠ΅Ρ€ΠΎΠΉ рассСяния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π²ΠΎΠΊΡ€ΡƒΠ³ Π΅Π΅ матСматичСского оТидания слуТит диспСрсия (слово диспСрсия ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ «рассСяниС).

ДиспСрсия случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: ДиспСрсиСй D(X) случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ называСтся матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π΅Π΅ отклонСния ΠΎΡ‚ матСматичСского оТидания: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для дискрСтной случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ X эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтНа ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ для вычислСния диспСрсии часто ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°. ДиспСрсия Ρ€Π°Π²Π½Π° разности ΠΌΠ΅ΠΆΠ΄Ρƒ матСматичСским ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ Π΅Π΅ матСматичСского оТидания: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтДля дискрСтной случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ X эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтДля Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Рассмотрим свойства диспСрсии.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1

Найти Π΄ΠΈΡΠΏΠ΅Ρ€ΡΠΈΡŽ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Z = 8X – 5Y + 7, Ссли извСстно, Ρ‡Ρ‚ΠΎ D(X) = 1, D(Y) = 2.

РСшСниС:

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойства диспСрсии, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π‘Ρ€Π΅Π΄Π½Π΅Π΅ квадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹

ДиспСрсия D(X) ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Ρ‡Ρ‚ΠΎ Π½Π΅ всСгда ΡƒΠ΄ΠΎΠ±Π½ΠΎ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² качСствС показатСля рассСяния ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΡƒΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: Π‘Ρ€Π΅Π΄Π½ΠΈΠΌ квадратичСским ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ (ΠΈΠ»ΠΈ стандартным ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ) Οƒ(Π₯) случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· Π΅Π΅ диспСрсии: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Бвойства срСднСго квадратичСского отклонСния Π²Ρ‹Ρ‚Π΅ΠΊΠ°ΡŽΡ‚ ΠΈΠ· свойств диспСрсии.

Мода ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½Π°. ΠšΠ²Π°Π½Ρ‚ΠΈΠ»ΠΈ

ΠšΡ€ΠΎΠΌΠ΅ матСматичСского оТидания, диспСрсии ΠΈ срСднСго квадратичСского отклонСния, Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ вСроятностСй примСняСтся Π΅Ρ‰Π΅ ряд числовых характСристик, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΡ… Ρ‚Π΅ ΠΈΠ»ΠΈ ΠΈΠ½Ρ‹Π΅ особСнности распрСдСлСния.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: Модой Мо(Π₯) случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ называСтся Π΅Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСроятноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ (для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ pi ΠΈΠ»ΠΈ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ вСроятности f(x) достигаСт максимума).

Если Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ вСроятности достигаСт максимума Π½Π΅ Π² ΠΎΠ΄Π½ΠΎΠΉ, Π° Π² Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…, распрСдСлСниС называСтся ΠΏΠΎΠ»ΠΈΠΌΠΎΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΌ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: МСдианой МС(Π₯) Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ называСтся Ρ‚Π°ΠΊΠΎΠ΅ Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‚. Π΅. Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ случайная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π₯ ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, мСньшСС ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ ΠΈΠ»ΠΈ большСС Π΅Π΅, ΠΎΠ΄Π½Π° ΠΈ Ρ‚Π° ΠΆΠ΅ ΠΈ Ρ€Π°Π²Π½Π° 1/2. ГСомСтричСски Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ прямая Ρ… = МС(Π₯), проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ с абсциссой, Ρ€Π°Π²Π½ΠΎΠΉ МС(Π₯), Π΄Π΅Π»ΠΈΡ‚ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΏΠΎΠ΄ ΠΊΡ€ΠΈΠ²ΠΎΠΉ распрСдСлСния Π½Π° Π΄Π²Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ части. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ… = МС(Π₯) функция распрСдСлСния Ρ€Π°Π²Π½Π° 1/2.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2

Найти ΠΌΠΎΠ΄Ρƒ, ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ с ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ вСроятности Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

РСшСниС:

ΠšΡ€ΠΈΠ²Π°Ρ распрСдСлСния прСдставлСна Π½Π° рис. 5.1 ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ вСроятности максимальна ΠΏΡ€ΠΈ Ρ…= Мо(Π₯) = 1. ΠœΠ΅Π΄ΠΈΠ°Π½Ρƒ МС(Π₯) = Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΈΠ· условия Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΈΠ»ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΡ‚ΠΊΡƒΠ΄Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Наряду с ΠΌΠΎΠ΄ΠΎΠΉ ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ для описания случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ понятиС квантиля.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: ΠšΠ²Π°Π½Ρ‚ΠΈΠ»Π΅ΠΌ уровня q (ΠΈΠ»ΠΈ q-ΠΊΠ²Π°Π½Ρ‚ΠΈΠ»Π΅ΠΌ) называСтся Ρ‚Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ…q случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ функция Π΅Π΅ распрСдСлСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Ρ€Π°Π²Π½ΠΎΠ΅ q, Ρ‚. Π΅. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–3

По Π΄Π°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° 5.3 Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ²Π°Π½Ρ‚ΠΈΠ»ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

РСшСниС:

Находим Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ распрСдСлСния Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. АсиммСтрия ΠΈ эксцСсс

Π‘Ρ€Π΅Π΄ΠΈ числовых характСристик случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ особоС мСсто Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ – Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: ΠΠ°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ k-Π³ΠΎ порядка случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ называСтся матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ k-ΠΎΠΉ стСпСни этой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтДля дискрСтной случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтДля Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ k-Π³ΠΎ порядка случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ называСтся матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ k-ΠΎΠΉ стСпСни отклонСния случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ ΠΎΡ‚ Π΅Π΅ матСматичСского оТидания: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для дискрСтной случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтНСтрудно Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ k = 1 ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯ Π΅ΡΡ‚ΡŒ Π΅Π΅ матСматичСскоС ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΏΡ€ΠΈ k = 2 Π²Ρ‚ΠΎΡ€ΠΎΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ – диспСрсия Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

Π’.Π΅. ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ срСднСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ распрСдСлСния случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯; Π²Ρ‚ΠΎΡ€ΠΎΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ – ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ рассСяния распрСдСлСния Π₯ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ матСматичСского оТидания. Для Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ³ΠΎ описания распрСдСлСния слуТат ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ‹ΡΡˆΠΈΡ… порядков.

Π’Ρ€Π΅Ρ‚ΠΈΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΞΌ3 слуТит для характСристики ассимСтрии (Ρ‚.Π΅. ΡΠΊΠΎΡˆΠ΅Π½Π½ΠΎΡΡ‚ΠΈ ) распрСдСлСния. Он ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΊΡƒΠ±Π° случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π±Π΅Π·Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Π΅Π΅ дСлят Π½Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚, Π³Π΄Π΅ Οƒ – срСднСС квадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π₯.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° А называСтся коэффициСнтом асиммСтрии случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ момСнтЕсли распрСдСлСниС симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ матСматичСского оТидания, Ρ‚ΠΎ коэффициСнт асиммСтрии Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ А = 0.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚

На рис. 5.2 ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π΄Π²Π΅ ΠΊΡ€ΠΈΠ²Ρ‹Π΅ распрСдСлСния 1 ΠΈ 2. ΠšΡ€ΠΈΠ²Π°Ρ 1 ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ (ΠΏΡ€Π°Π²ΠΎΡΡ‚ΠΎΡ€ΠΎΠ½Π½ΡŽΡŽ) Π°ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ (А > 0), Π° кривая 2 – ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ (Π»Π΅Π²ΠΎΡΡ‚ΠΎΡ€ΠΎΠ½Π½ΡŽΡŽ) Π°ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ (А

ΠŸΡ€ΠΈ ΠΊΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π»ΡŽΠ±Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² с сайта evkova.org ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Π° активная ссылка Π½Π° сайт www.evkova.org

Π‘Π°ΠΉΡ‚ создан ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ Π½Π° нСкоммСрчСской основС для Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ образования ΠΌΠΎΠ»ΠΎΠ΄Π΅ΠΆΠΈ

Π‘Π°ΠΉΡ‚ ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ, поддСрТиваСтся ΠΈ управляСтся ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ

Whatsapp ΠΈ Π»ΠΎΠ³ΠΎΡ‚ΠΈΠΏ whatsapp ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΠ²Π°Ρ€Π½Ρ‹ΠΌΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Ρ†ΠΈΠΈ WhatsApp LLC.

CΠ°ΠΉΡ‚ носит ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… условиях Π½Π΅ являСтся ΠΏΡƒΠ±Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΎΡ„Π΅Ρ€Ρ‚ΠΎΠΉ, которая опрСдСляСтся полоТСниями ΡΡ‚Π°Ρ‚ΡŒΠΈ 437 ГраТданского кодСкса Π Π€. Анна Π•Π²ΠΊΠΎΠ²Π° Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½ΠΈΠΊΠ°ΠΊΠΈΡ… услуг.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *