Что такое начало отсчета в физике определение
начало отсчета времени
2.2 начало отсчета времени (start of timing): Момент, когда верхняя поверхность калориметра и нижняя поверхность нагревательного цилиндра находятся на расстоянии в пределах 10 мм друг от друга.
2.2 начало отсчета времени (start of timing): Момент, когда верхняя поверхность калориметра и нижняя поверхность нагревательного цилиндра находятся на расстоянии 10 мм друг от друга.
Полезное
Смотреть что такое «начало отсчета времени» в других словарях:
начало отсчета времени — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN time zerozero time referencetime originreference time … Справочник технического переводчика
начало отсчета времени, t0 — 3.4 начало отсчета времени, t0 (time zero, t0): Расчетная нулевая точка, определяемая по кривой увеличения объема проскока газа в единицу времени. Примечание Более подробная информация приведена в ИСО 11155 2. Источник … Словарь-справочник терминов нормативно-технической документации
начало отсчета времени — laiko atskaitos pradžia statusas T sritis automatika atitikmenys: angl. reference time; time origin; time zero vok. Bezugszeitpunkt, m rus. начало отсчета времени, n pranc. origine de temps, f … Automatikos terminų žodynas
синхронизация времени — [ГОСТ Р МЭК 60870 5 103 2005] Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п. [Новости… … Справочник технического переводчика
выдержка времени — (в реле времени) [Интент] Параллельные тексты EN RU The timing period T starts on energization. At the end of the timing period T, the output R closes. Closing of the control contact C makes the output R open. Opening of control contact C… … Справочник технического переводчика
ГОСТ ИСО 8601-2001: Система стандартов по информации, библиотечному и издательскому делу. Представление дат и времени. Общие требования — Терминология ГОСТ ИСО 8601 2001: Система стандартов по информации, библиотечному и издательскому делу. Представление дат и времени. Общие требования оригинал документа: 2.30 век (в григорианском календаре): Календарный год, номер которого кратен… … Словарь-справочник терминов нормативно-технической документации
Колесо Времени (Кастанеда) — У этого термина существуют и другие значения, см. Колесо времени. «Колесо Времени» (англ. The Wheel of Time) книга Карлоса Кастанеды, представляющая собой собрание главнейших афоризмов и высказываний из восьми его прежних книг, описывающих… … Википедия
время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник … Словарь-справочник терминов нормативно-технической документации
Лоренц-преобразование — Преобразованиями Лоренца в физике, в частности в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно временные координаты (x,y,z,t) каждого события при переходе от одной инерциальной системы… … Википедия
Лоренца преобразования — Преобразованиями Лоренца в физике, в частности в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно временные координаты (x,y,z,t) каждого события при переходе от одной инерциальной системы… … Википедия
Система отсчёта в физике — что это, определение и виды
Определение понятия система отсчёта в физике и механике включает в себя совокупность, которая состоит из тела отсчёта, системы координат, а также времени. Именно по отношению к этим параметрам изучается движение материальной точки или же состояние её равновесия.
С точки зрения современной физики, всякое движение можно признать относительным. Таким образом, любое движение тела можно рассматривать исключительно по отношению к другому материальному объекту или же совокупности таких объектов. Например, мы не можем указать, каков характер движения Луны в общем, но может определить её перемещение относительно Солнца, Земли, Звёзд, других планет и пр.
В ряде случаев подобная закономерность бывает связана не с единой материальной точкой, а с множеством базовых точек отсчёта. Эти базовые тела отсчёта могут задавать совокупность координат.
Это интересно: первый закон Ньютона формула и примеры.
Основные составляющие
Основными составляющими любой системы отсчёта в механике можно считать следующие компоненты:
Для того чтобы решить конкретную задачу, необходимо определить наиболее подходящую для этого сетку координат и структуру. Идеальные часы в каждой из них потребуются лишь одни. В этом случае начало, тело отсчёта и векторы координатных осей можно выбирать произвольно.
Это интересно: формула всемирного тяготения определение закона.
Основные свойства
Эти структуры в физике и геометрии имеют ряд существенных различий. К физическим свойствам, которые учитываются при построении и решении задачи, относятся изотропность и однородность.
Под однородностью в физике принято понимать тождественность всех точек в пространстве. Этот фактор имеет в физике немаловажное значение. Во всех точках Земли и Солнечной системы в целом законы Ньютона в физики действуют абсолютно идентично. Благодаря этому начало отсчёта может быть размещено в любой удобной точке. И если исследователь поворачивает сетку координат вокруг начальной точки, при этом никакие другие параметры задачи не будут изменяться. Все направления, которые начинаются от этой точки, имеют абсолютно тождественные свойства. Такая закономерность называется изотропностью пространства.
Это интересно: энтропия это что такое, где применяется термин?
Виды систем отсчёта
Существует несколько видов — подвижные и неподвижные, инерциальные и неинерциальные.
Если такая совокупность координат и времени требуется для проведения кинематических исследований, в этом случае все подобные структуры являются равноправными. Если же речь идёт о решении динамических задач, предпочтение отдаётся инерциальным разновидностям – в них движение имеет более простые характеристики.
Инерциальные системы отсчёта
Инерциальными называют такие совокупности, в которых физическое тело сохраняет состояние покоя или продолжает равномерно передвигаться, если на него не воздействуют внешние силы или суммарное воздействие этих сил равняется нулю. В этом случае на тело действует инерция, что и даёт название системе.
Одна и та же совокупность в одном случае может считаться инерциальной, а в другом будет признана неинерциальной. Это происходит в тех случаях, когда погрешность в результате неинерциальности слишком ничтожна и ею можно свободно пренебречь.
Неинерциальные системы отсчёта
Неинерциальные разновидности наравне с инерциальными связываются с планетой Земля. Учитывая космические масштабы, считать Землю инерциальной совокупностью можно весьма грубо и приблизительно.
Отличительной чертой неинерциальной системы является то, что она перемещается по отношению к инерциальной с некоторым ускорением. В этом случае законы Ньютона могут утратить свою силу и требуют введения дополнительных переменных. Без этих переменных описание такой совокупности будет недостоверным.
Проще всего рассматривать неинерциальную систему на примере. Такая характеристика движения характерна для всех тел, которые имеют сложную траекторию движения. Наиболее ярким примером такой системы можно считать вращение планет, в том числе и Земли.
Движение в неинерциальных системах отсчёта впервые изучено Коперником. Именно он доказал, что движение с участием нескольких сил может быть весьма сложным. До этого считалось, что движение Земли относится к инерциальным и описывалось оно законами Ньютона.
Что такое начало отсчета в физике определение
СИСТЕМА ОТСЧЕТА В ФИЗИКЕ
Проблема, указанная в этом заглавии, уходит своими корнями в греческую древность. Она прошла три стадии развития: геометрическую, простиравшуюся до XVII столетия; динамическую, которая после победы волновой теории света (около 1800 г.) распространилась на всю физику, и, наконец, эпоху теории относительности Эйнштейна, начавшуюся в 1905 г.
В геометрическую эпоху вопрос о системе отсчета был непосредственно связан с вопросом о положении и движении тела. С самого начала было ясно, что оба эти понятия без задания чего-то, по отношению к чему они могут быть определены, теряют смысл. Аристотель (384-322 до н. э.) и вслед за ним вся схоластика относили положение тела к окружающей его материальной субстанции. Шел спор о том, касается ли эта субстанция тел непосредственно или допустимы конечные расстояния. При таком толковании были неразрешимы спорные вопросы, как, например, движется ли при наличии ветра корабль, стоящий на якоре, поскольку вода и воздух вблизи него постоянно обновляются, или же он покоится, так как с берега движение не констатируется. Более важным для физики было то, что согласно воззрениям Клавдия Птоломея (он жил во II столетии н. э. в Александрии) сфера неподвижных звезд, как наиболее отдаленная от окружающих Землю сфер, вообще не имеет положения. За ней нет ничего, что ее окружало бы, нет даже
пространства. Несмотря на это, она должна была, согласно учению Птоломея, иметь движение, а именно суточное вращение вокруг Земли.
Вполне понятно, что требование простоты, больше апеллирующее к чувству, чем к критическому разуму, не смогло убедить многих современников и потомков Коперника. Кроме того, представление о том, что все человечество находится в постоянном круговороте, не замечая этого, вовсе не было простым и к тому же в то время физически не было обосновано. Нельзя поэтому считать ни отсталостью, ни трусостью то, что
издатель великого труда Коперника «De revolutioni-bus» *) нюрнбергский ученый Осиандер, наблюдавший за печатанием книги вместо автора, охарактеризовал в предисловии систему Коперника как простую «гипотезу», оправданную благодаря своему соответствию с наблюдениями, но не являющуюся на этом основании истинной.
Страстная борьба, которая развернулась вокруг этой системы, меньше всего связана с недостаточностью причинного физического обоснования ее, как это было всегда в «геометрическую» эпоху. Надо добавить к этому, что представители церкви, как католической, так и протестантской, например доктор Мартин Лютер, не признавали движение Земли как противоречащее библии. Они повторяли при этом, собственно, только те обвинения, из-за которых уже в III столетии до н. э. пострадал, как «безбожник», Аристарх из Самоса, первый защитник подобной системы. Очень характерен факт, что от Аристарха до Эйнштейна ни одна физическая теория не смогла так всколыхнуть широкие круги общественности, как теория, касавшаяся привычных взглядов на пространство и время. Осуждение Галилея также относилось не к геометрическим основам системы Коперника и не к галилеевским астрономическим открытиям, а к «Диалогам о двух главных системах мира», в которых подробно и иногда остроумно опровергались динамические аргументы против движения Земли.
Коперник сам не принимал участия в борьбе вокруг его системы. Он воздерживался до 1543 г. от опубликования начатой еще в 1507 г. книги. Только на смертном одре он увидел некоторые части ее в печати. Но намного раньше, вероятно в 1514 г., он послал своим друзьям нечто вроде предварительного резюме сочинения, позднее названного «Commentariolus». Около 1880 г. оно появилось в Венской библиотеке
*) В названии «De revolutionibus orbium coelestium» оба последних слова являются дополнением издателя.
после долгого забвения. Оттуда мы берем следующие предложения *).
1) Нет одного общего центра для всех небесных орбит или сфер.
2) Центр Земли не есть центр мира, а только центр тяжести и центр орбиты Луны.
3) Все орбиты окружают Солнце, как будто оно находится в их центре; поэтому центр мира лежит вблизи Солнца.
Очевидно, для того, чтобы избежать возражения, что в течение года должен меняться вид неба неподвижных звезд вследствие вращения Земли, дальше следует:
4) Отношение расстояния между Солнцем и Землей к высоте неба неподвижных звезд гораздо меньше, чем отношение радиуса Земли к ее расстоянию от Солнца. Это расстояние незначительно по сравнению с высотой неба неподвижных звезд.
5) Все движения, которые констатируются в небе, не существуют реально, а только представляются таковыми с Земли. Земля с принадлежащими ей элементами совершает суточное вращение вокруг ее неподвижных полюсов. При этом небо неподвижных звезд, как наиболее удаленное, остается неподвижным.
6) Видимое движение Солнца не присуще ему самому, а является следствием вращения Земли по ее орбите вокруг Солнца, как это свойственно всем планетам. Итак, Земля подвержена многим движениям.
7) То, что кажется у блуждающих звезд движением взад и вперед, не является на самом деле таковым, но связано с движением Земли. Последнее само по себе является достаточным для объяснения многочисленных и многообразных явлений, которые наблюдаются на небе.
Все это кажется нам вполне ясным и недвусмысленным. И все же подобная система представляла для
*) Цитируется по немецкому переводу д-ра Ф. Россмана, Naturwissenschaften 34, 65, 1947.
Коперника еще большие трудности. Как иначе можно объяснить, что он впоследствии приписал Земле, кроме ее суточного и годового движения, еще третье движение, при котором земная ось изменяет свое положение по отношению к Солнцу в течение года, что дает возможность объяснить изменение времен года? Однако достаточно того, что ось Земли сохраняет свое положение по отношению к небу неподвижных звезд (если применять терминологию Коперника)! Это заблуждение несколько напоминает поднявшийся во времена Ньютона спор о том, имеет ли собственное вращение Луна, поскольку мы всегда видим только одну ее сторону. Те, которые не могли вполне освободиться от геоцентрической точки зрения, отрицали это вращение. А у Коперника, вероятно, играло аналогичную роль определенное предпочтение в отношении Солнца.
Как бы то ни было, мы обязаны Копернику указанием на систему отсчета, начало которой находится в центре тяжести нашей солнечной системы, а оси ориентированы по небу неподвижных звезд. Физика относит к этой системе отсчета каждое место и каждое движение, если не даны дальнейшие уточнения. Три координаты, которыми определяется точка, согласно аналитической геометрии Декарта (1596-1650) тоже относятся к этой системе во всех случаях, когда нет дополнительных определений. Без Коперника не были бы установлены законы Кеплера и теория тяготения. Можно согласиться с тем, что его обоснование теории несовершенно, но не может только что родившаяся наука быть хорошо обоснованной. И величие ее основателей обнаруживается как раз в том, что они интуитивно уловили истину.
Иоганн Кеплер (1571-1630) способствовал укреплению системы Коперника. Действительно, на почве этой системы выросли его три закона движения планет, благодаря которым стали возможными более точные астрономические вычисления. Вряд ли эти законы смогли бы возникнуть на основе системы Птоло-мея. Но для более глубокого обоснования системы
Коперника Кеплер имел мало значения; его аргументы исходили из точки зрения простоты и красоты, которая не чужда была и Копернику. Кеплер, повидимому, не имел ясного понимания значения динамических открытий своего современника Галилея, астрономическими открытиями которого он восхищался. Но в борьбе Коперника и Птоломея основное значение имели именно эти динамические открытия. Уже тогда противники Коперника приводили динамические аргументы. Можно встретить у них, например, такое возражение: в силу суточного вращения Земли все предметы, которые не очень крепко связаны с ее поверхностью, должны быть отброшены в мировое пространство и, двигаясь вокруг Солнца, оставаться позади Земли. Лишь новая динамика могла с успехом опровергнуть такое возражение. Частично решение было дано Галилео Галилеем (1564-1642), затем окончательно Исааком Ньютоном (1643-1727).
что об этом можно говорить только приближенным образом, так как, строго говоря, свободно падающее тело вследствие вращения Земли отклоняется от вертикали. Даже теперь еще физика позволяет себе при обсуждении большинства опытов то же самое приближение, значение которого вполне известно. И в то же время Галилей не переставал опровергать динамические возражения против учения Коперника на основе полученных им новых результатов. Но лишь благодаря работе Ньютона стало совершенно ясно, что движение планет можно понять динамически только на основе системы отсчета Коперника.
Вопрос о системе отсчета был разрешен, таким образом, только практически, но не принципиально. Каковы физические основы преимущества системы отсчета Коперника над другими системами отсчета, например над системой, связанной с Землей? Ньютон, который вполне понимал трудность этого вопроса, искал помощи в допущении наряду с «абсолютным» временем также «абсолютного» пространства, которое давало верную систему отсчета. Но вместе с Людвигом Ланге (1863-1936) *) оба понятия надо охарактеризовать как не подлежащие восприятию, «призрачные»; несмотря на это, они еще и теперь продолжают существовать во многих головах.
Сомнительность этой идеи побуждала к размышлению всех великих философов эпохи Ньютона, например Лейбница и Канта. Лишь в 1886 г. было произнесено освобождающее слово Ланге в его работе «Историческое развитие понятия движения». Он пишет: «Физика определяет свою систему отсчета соответственно той функции, которую последняя должна выполнять,
*) Краткую биографию Людвига Ланге дал М. Лауэ в Naturwissenschaften 35, 193 (1948).
и, следовательно, исходит из той же точки зрения, которая лежит в основе определения времени». Ланге резюмирует результат своего рассуждения в двух определениях и двух теоремах *):
Определение I. Инерциальной системой называется любая координатная система, по отношению к которой траектории трех материальных точек, выходящих из одного пункта пространства и затем предоставленных самим себе, прямолинейны (точки не должны лежать на одной прямой).
Теорема I. Прямолинейной по отношению к инерциальной системе является также траектория любой четвертой, самой себе предоставленной точки.
Определение И. Инерциальной шкалой времени называется любая шкала времени, по отношению к которой свободная материальная точка проходит в своем движении по инерции в равные промежутки времени равные расстояния.
Теорема П. По отношению к инерциальной шкале времени любая материальная точка, движущаяся по инерции, в равные промежутки времени проходит равные расстояния.
Конечно, нельзя из наблюдения движения материальных точек, не подверженных действию силы, сделать вывод о том, что система Коперника является инерциальной системой. Полноценным доказательством являются вычисление путей планет на основе содержащей закон инерции механики и достигнутое таким путем согласие с опытом. Мы уже упоминали в главе 1, что для достижения этого соответствия с опытом надо сделать некоторые небольшие поправки к обычно упо-
*) Мы цитируем по работе Ланге в Philosophische Studien 3, 539 (1885-1886).
требляемой шкале времени, которые переводят ее в инерциальную шкалу времени.
Таким образом, через 350 лет после Коперника мы находим, наконец, у Людвига Ланге определенное завершение линии развития, исходившей из учения Коперника.
Вышеуказанными определениями исключаются многие другие мыслимые системы отсчета, например любая система, которая вращается с постоянной скоростью по отношению к астрономической системе отсчета. Тело, покоящееся в подобной системе, будет испытывать, как указал еще Ньютон, центробежную силу, не содержащуюся в уравнениях движения. Эта сила фактически является лишь другим выражением стремления к прямолинейному движению по отношению к инерциальной системе. Для связанной с Землей, следовательно, вращающейся системы отсчета эта центробежная сила проявляется, например, в сплющивании Земли. Вращение плоскости колебания маятника в произведенном в 1851 г. опыте Фуко (1819-1868) также, несомненно, указывает на вращение Земли, т. е. на неоправданность земной системы отсчета. Вторым доказательством является установка вращающегося компаса в северно-южном направлении (в 1925 г. Майкельсон доказал то же самое посредством опыта с интерференцией света).
Но динамика дает возможность вывести из одной инерциальной системы другие. Равноправными являются все системы отсчета, которые по отношению к ней перемещаются с постоянной скоростью. Это было хорошо известно Ньютону; еще Галилей в своей защите учения Коперника против распространенных возражений ссылался на то, что в закрытом пространстве внутри движущегося корабля никаким механическим опытом нельзя обнаружить движение корабля.
Координаты, определяющие положение материальной точки в любой из инерциальных систем,
Однако долгое время предполагали, что преимущество какой-либо системы будет возможно установить другими экспериментами и наблюдениями, а именно теми, в которых изучаются физические действия, распространяющиеся с конечной скоростью; ведь скорости в различных инерциальных системах различны. Эта мысль была важна прежде всего для оптики. Любая теория, которая считала эфир носителем света (сюда относится и электронная теория; гл. 4 и 5), должна была рассматривать систему отсчета, в которой эфир находится в покое, как предпочтительную перед всеми другими системами. Поэтому такая система отсчета определялась как абсолютная. Всегда неявно принималось, что это будет инерциальная система в смысле механики.
В самом деле, открытая в 1728 г. Дж. Брэдли (гл. 4) аберрация звезд допускает простое объяснение, заключающееся в том, что свет в астрономической системе отсчета распространяется по всем направлениям с одной и той же скоростью, измеренной Олафом
Опыт Физо долгое время рассматривался как поразительное доказательство существования эфира, проникающего все тела, но не принимающего участия в их движении. Только так можно было понять этот коэффициент Френеля. Теория относительности опровергла этот аргумент. Она доказала, что рассматривавшееся как само собой разумеющееся сложение или вычитание скоростей неправомерно при данных условиях. Таким образом, история опыта Физо является поучительным примером того, какую большую роль в объяснении каждого опыта играют элементы теории; их нельзя даже отделить от него. И если потом теории меняются, то опыт превращается из поразительного доказательства для одной теории в такой же сильный аргумент для противоположной теории.
Но старое представление об аддитивности скоростей света и тел, впрочем, все же сохранилось. Христиан Допплер (1803-1853) на основании волновой теории вывел в 1842 г. заключение, что приближение источника света к наблюдателю увеличивает наблюдаемую частоту, отдаление уменьшает ее. Трудный для
СИСТЕМА ОТСЧЕТА
— совокупность системы координат и часов, связанныхс телом, по отношению к к-рому изучается движение (или равновесие) к.-л. Кинематика. Выбор С. о. зависит от целейисследования и, вообще говоря, произволен. При кинематич. исследованияхвсе С. о. равноправны. В задачах динамики также могут использоваться любыепроизвольно движущиеся С. о. Однако во многих случаях преимуществ. рольиграют инерциальные системы отсчёта, по отношению к к-рым дифференц.
Смотреть что такое СИСТЕМА ОТСЧЕТА в других словарях:
СИСТЕМА ОТСЧЕТА
СИСТЕМА ОТСЧЕ́ТА (в ф и з и к е) – система тел, по отношению к к-рой определяются положения исследуемого тела (или места событий) и отмечаются момен. смотреть
СИСТЕМА ОТСЧЕТА
СИСТЕМА ОТСЧЕТА
СИСТЕМА ОТСЧЕТА в механике, совокупность системы координат и синхронизированных часов, связанных с телом, по отношению к которому изучается движение (или равновесие) каких-нибудь других материальных точек или тел. В задачах динамики преимущественную роль играют инерциальные системы отсчета.
СИСТЕМА ОТСЧЕТА
В механике — материальная система, по отношению к которой определяется положение тела в соответствующий момент времени. С системой отсчета может быть связана система координат в том смысле, что постоянными значениями пространственных координат будут обладать точки, неподвижные в данной системе отсчета. смотреть
СИСТЕМА ОТСЧЕТА
СИСТЕМА ОТСЧЕТА
СИСТЕМА ОТСЧЕТА
система координат, связанная с твердым телом, по отношению к которому определяются положения других тел в разные моменты времени. Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006. смотреть
СИСТЕМА ОТСЧЕТА
base, reference frame, frame, reference system* * *frame of reference
СИСТЕМА ОТСЧЕТА
Внешний контекст, в котором происходит определенное событие и, следовательно, интерпретируется или оценивается. См. фрейм (2).
СИСТЕМА ОТСЧЕТА
1) <radio> frame2) frame of reference
СИСТЕМА ОТСЧЕТА
system of reference* * *frame of reference
СИСТЕМА ОТСЧЕТА
frame of reference, reference frame, (напр. углов режущего инструмента) reference system
СИСТЕМА ОТСЧЕТА
reference system, reference frame, frame of reference