Что такое начало в геометрии

Что такое геометрия? Наука геометрия

Геометрия является важной частью математики, которую начинают изучать в школах с 7 класса в качестве отдельного предмета. Что такое геометрия? Что она изучает? Какие полезные выводы можно из нее извлечь? Все эти вопросы подробно рассматриваются в статье.

Понятие о геометрии

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии Вам будет интересно: Гудериан Гейнц: биография, личная жизнь, семья, карьера

В ходе своего развития геометрия обзавелась набором понятий, которыми она оперирует с целью решения различных задач. К таким понятиям относятся точка, прямая, плоскость, поверхность, отрезок, окружность, кривая, угол и другие. Основой этой науки являются аксиомы, то есть концепции, связывающие геометрические понятия в рамках утверждений, которые принимаются в качестве истинных. На основании аксиом строятся и доказываются теоремы.

Когда появилась эта наука

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии Вам будет интересно: «Временный» или «временной»: как правильно? Разница между словами

Что такое геометрия с точки зрения истории? Здесь следует сказать, что она является очень древним учением. Так, ее использовали древние вавилоняне при определении периметров и площадей простых фигур (прямоугольников, трапеций и др.). Развита она была и в Древнем Египте. Достаточно вспомнить знаменитые пирамиды, строительство которых было бы невозможно без знания свойств объемных фигур, а также без умения ориентироваться на местности. Отметим, что знаменитое число «пи» (его приблизительное значение), без которого невозможно определить параметры круга, было известно египетским жрецам.

Разрозненные знания о свойствах плоских и объемных тел были собраны в единую науку только во времена Античной Греции благодаря деятельности ее философов. Самым важным трудом, на котором основываются современные геометрические учения, являются «Элементы» Евклида, которые были им составлены приблизительно в 300 году до нашей эры. Около 2000 лет этот трактат являлся основой для каждого ученого, который занимался исследованием пространственных свойств тел.

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

В XVIII веке французский математик и философ Рене Декарт заложил основы так называемой аналитической науки геометрии, которая описывала с помощью численных функций любой пространственный элемент (прямую, плоскость и так далее). С этого времени начинают появляться многие ветви в геометрии, причиной существования которых является пятый постулат в «Элементах» Евклида.

Евклидова геометрия

Что такое геометрия Евклида? Это достаточно стройное учение о пространственных свойствах идеальных объектов (точек, прямых, плоскостей и т.д.), которое основывается на 5 постулатах или аксиомах, изложенных в труде под названием «Элементы». Аксиомы приведены ниже:

Евклидова геометрия составляет основу любого современного школьного курса по этой науке. Более того, именно ею человечество пользуется в ходе своей жизнедеятельности при конструировании зданий и сооружений и при составлении топографических карт. Здесь важно отметить, что набор постулатов в «Элементах» не является полным. Он был расширен немецким математиком Давидом Гильбертом в начале XX века.

Виды евклидовой геометрии

Мы разобрались, что такое геометрия. Рассмотрим, какие ее виды бывают. В рамках классического учения принято выделять два вида этой математической науки:

Неевклидовы геометрии

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Что такое геометрия в ее широком понимании? Помимо привычной нам науки о пространственных свойствах тел, существуют также неевклидовы геометрии, в которых пятый постулат в «Элементах» нарушается. К ним относятся эллиптическая и гиперболическая геометрии, которые были созданы в XIX веке немецким математиком Георгом Риманом и русским ученым Николаем Лобачевским.

Изначально полагали, что неевклидовы геометрии имеют узкую область применения (например, в астрономии при изучении небесной сферы), а само физическое пространство является евклидовым. Ошибочность последнего утверждения показал Альберт Эйнштейн в начале XX века, разработав свою теорию относительности, в которой он обобщил понятия пространства и времени.

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Геометрия в школе

Как было сказано выше, изучение в школе геометрии начинается с 7 класса. При этом школьникам демонстрируют основы планиметрии. Геометрия 9 класса уже включает изучение трехмерных тел, то есть стереометрию.

Главная задача школьного курса состоит в том, чтобы развить у школьников абстрактное мышление и воображение, а также научить их мыслить логически.

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Многие исследования показали, что при изучении этой науки у школьников наблюдаются проблемы с абстрактным мышлением. Когда формулируется для них геометрическая задача, они часто не понимают ее суть. У старшеклассников к проблеме с воображением добавляются трудности понимания математических формул для определения объема и площади поверхности разверстки пространственных фигур. Часто старшеклассники при изучении геометрии 9 класса не знают, какой формулой следует воспользоваться в конкретном случае.

Школьные учебники

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Существует большое количество учебных пособий для обучения школьников этой науке. Одни из них дают только базовые знания, например, учебники Л. С. Атанасяна или А. В. Погорелова. Другие преследуют цель углубленного изучения науки. Здесь можно выделить учебник А. Д. Александрова или полный курс геометрии Бевза Г. П.

Поскольку в последние годы для сдачи всех экзаменов в школе введен единый стандарт ЕГЭ, стали необходимы учебники и решебники, которые позволяют ученику быстро самостоятельно разобраться с необходимой темой. Хорошим примером таких пособий можно назвать геометрию Ершовой А. П., Голобородько В. В.

Любой из названных выше учебников имеет как положительные, так и отрицательные отзывы со стороны учителей, поэтому преподавание в школе геометрии часто осуществляется с использованием нескольких учебников.

Источник

Геометрия

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Знакомство с геометрией

Вот и настал момент прощания с математикой, сопровождающей нас на протяжении долгих шести лет школьной жизни. Но огорчаться не нужно, на смену привычной математике приходят занимательные и интересные разделы этой науки – алгебра и геометрия.

Давайте разберемся, что же такое геометрия, для чего она нужна, где её используют?

В дословном переводе с греческого, геометрия означает землемерие:

Более точное определение утверждает, что наука об отношениях плоскостей, пространств и изучении форм называется геометрией.

Геометрия содержит ряд основных понятий, необходимых для дальнейшего изучения и применения на практике геометрических знаний. Давайте познакомимся с ними поближе.

Основные понятия геометрии

Понятие точки

Фигура, которую невозможно измерить, а для вычислений используется только место её расположения, называется точкой. Такие фигуры обозначают цифрами и буквами латиницы. Если точек много, то обозначения должны быть разными.

Точка — это абстрактный объект, который не имеет измерительных характеристик: ни высоты, ни длины, ни радиуса. В рамках задачи важно только его местоположение

Точка обозначается цифрой или заглавной (большой) латинской буквой. Несколько точек — разными цифрами или разными буквами, чтобы их можно было различать

Читается: точка A, точка B, точка C

Понятие линии

Линия представляет собой массу точек. Линии принято обозначать строчными буквами латиницы.

Источник

Что такое аксиома, теорема и доказательство теоремы

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие аксиомы

Аксиома — это правило, которое считают верным и которое не нужно доказывать. В переводе с греческого «аксиома» значит принятое положение — то есть взяли и договорились, что это истина, с которой не поспоришь.

Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.

Синоним аксиомы — постулат. Антоним — гипотеза.

Основные аксиомы евклидовой геометрии

Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.

А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.

Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:

Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

У этой аксиомы два следствия:

Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:

Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.

На картинке можно увидеть, как это выглядит:

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.

Понятие теоремы

Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.

Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.

Состав теоремы: условие и заключение или следствие.

Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.

Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.

Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.

Примеры следствий из аксиомы о параллельности прямых:

Доказательство теоремы — это процесс обоснования истинности утверждения.

Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.

Способы доказательства геометрических теорем

Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.

Приемы для доказательства в геометрии:

Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.

Прямая и обратная теорема взаимно-обратные. Например:

В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.

Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.

Вот, как выглядит взаимное отношение теорем на примере:

В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.

Записывайся на онлайн обучение по математике для учеников с 1 по 11 классы!

Доказательство через синтез

Рассмотрим пример синтетического способа доказательства.

Теорема: сумма углов треугольника равна двум прямым.

Дан треугольник: ABC. Нужно доказать, что A + B + C = 2d.

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Доказательство:

Проведем прямую DE, так чтобы она была параллельна AC.

Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно, α + B + γ = 2d.

Так как α = A, γ = C, то заменим в предыдущем равенстве углы α и γ равными им углами: A + B + C = 2d. Что и требовалось доказать.

Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, которые лежат по одну сторону прямой. Есть связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною. Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.

Доказательство через анализ

Рассмотрим пример аналитического способа доказательства.

Теорема: диагонали параллелограмма пересекаются пополам.

Дан параллелограмм: ABCD.

Доказательство:

Если диагонали пересекаются пополам, то треугольники AOB и DOC равны.

Равенство же треугольников AOB и DOC вытекает из того, что AB = CD, как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ, как накрест-лежащие углы.

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до уже доказанного предложения.

Теоремы без доказательств

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

где a, b и c — стороны плоского треугольника,

α — угол напротив стороны а.

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Следствия из теоремы косинусов:

Понятия свойств и признаков

У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.

Свойства и признаки — понятия из обычной жизни, которые мы часто используем.

Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.

Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.

Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.

Признак — это то, по чему мы однозначно распознаем объект.

Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.

А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.

Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.

Такие утверждения называют необходимым и достаточным признаком.

Источник

Что такое начало в геометрии

Геометрия — математическая наука о пространственных формах, размерах и соотношениях геометрических объектов (фигур, тел). Слово «гeoметрия» греческого происхождения («geo» — земля, «metreo» — измеряю).

Планиметрия — раздел геометрии,в котором изучают свойства фигур,расположенных в одной плоскости. Слово «планиметрия» происходит от латинского корня «planum» — плоская поверхность и греческого — «metreo» — измеряю.

Стереометрия — раздел геометрии, в котором изучают свойства пространственных тел. Слово «стереометрия» происходит от греческих слов «stereos» — пространственный, «metreo» — измеряю.

Периоды развития геометрии

I период — зарождение геометрии как математической науки, начало которого теряется в глубине столетий, а концом считают V в. до н.э. Этот период характеризуется накоплением фактов и установлением первых зависимостей между геометрическими фигурами. Начался он в Древнем Египте и Вавилоне, в VII в. до н.э. Эти знания были перенесены в Грецию, где постепенно они начали оформляться в четкую систему.

II период — (V в. до н.э. — XVII в. н.э.) — период возникновения и дальнейшего развития геометрии как самостоятельной науки. Около 300 лет до н.э. появились «Начала» Эвклида, в которых гeoметрия была систематизирована. Развитию геометрии способствовали ученые Греции, арабского Востока, Средней Азии, Индии, Китая, средневековой Европы.

III период — (XVII в. — 1826 г.). На этом этапе геометрия как наука рассматривает более общие фигуры и применяет совершенно новые методы. В этот период возникают: аналитическая геoметрия, дифференциальная геомeтрия, проективная геoметрия, начертательная гeометрия.

IV период — (1826 год) начинается с открытия Н. И. Лобачевским неэвклидовой геометрии, которая включает в себя геометрию Эвклида. В направлениях, начертанных выдающимися математиками, развивается современная геомeтрия. Одним из важных разделов современной геометрии является топология.

Источники идей и цитат для конспектов по Геометрии:

(с) Цитаты из вышеуказанных учебных пособий использованы на сайте в незначительных объемах, исключительно в учебных и информационных целях (пп. 1 п. 1 ст. 1274 ГК РФ).

Источник

Геометрия

Что такое начало в геометрии. Смотреть фото Что такое начало в геометрии. Смотреть картинку Что такое начало в геометрии. Картинка про Что такое начало в геометрии. Фото Что такое начало в геометрии

Полезное

Смотреть что такое «Геометрия» в других словарях:

ГЕОМЕТРИЯ — (греч. geometria, от ge земля, и metron мера). Часть математики, имеющая предметом свойства и измерения линий, поверхностей и объемов тел. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГЕОМЕТРИЯ греч. geometria,… … Словарь иностранных слов русского языка

ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, раздел математики, предметом изучения которого являются пространственные отношения и формы. Для большинства людей геометрия ассоциируется только с ГЕОМЕТРИЕЙ ЕВКЛИДА, предметом которой являются плоскости и жесткие геометрические фигуры … Научно-технический энциклопедический словарь

ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, геометрии, мн. нет, жен. (от греч. ge земля и metreo измеряю). Отдел математики, в котором изучаются пространственные формы, их измерение и взаимное расположение. Элементарная геометрия. Аналитическая геометрия (пользующаяся методами… … Толковый словарь Ушакова

ГЕОМЕТРИЯ — (от гео. и. метрия), часть математики, изучающая пространственные формы (например, фигуры и тела), их отношения (например, взаимное расположение) и их обобщения. Зарождение геометрии относится ко 2 му тысячелетию до нашей эры, в… … Современная энциклопедия

ГЕОМЕТРИЯ — ГЕОМЕТРИЯ, и, жен. Раздел математики, изучающий пространственные отношения и формы. | прил. геометрический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

геометрия — сущ., кол во синонимов: 9 • астероид (579) • линиолонгиметрия (2) • линиометрия (2) … Словарь синонимов

геометрия — – правильная форма авто. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь

геометрия — конфигурация геометрическая форма — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы конфигурациягеометрическая форма EN geometry … Справочник технического переводчика

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *