Что такое нагрузочная способность

Нагрузочная способность силовых трансформаторов

При выборе мощности трансформаторов нельзя руководствоваться только их номинальной мощностью, так как в реальных условиях температура охлаждающей среды, условия установки трансформатора могут быть отличными от принятых. Нагрузка трансформатора меняется в течение суток, и если мощность выбрать по максимальной нагрузке, то в периоды спада ее трансформатор будет не загружен, т.е. недоиспользована его мощность. Опыт эксплуатации показывает, что трансформатор может работать часть суток с перегрузкой, если в другую часть суток его нагрузка меньше номинальной. Критерием различных режимов является износ изоляции трансформатора.

Нагрузочная способность трансформатора

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Рис.1. Построение двухступенчатого графика по
суточному графику нагрузки трансформатора

Допустимые систематические нагрузки

Допустимые систематические нагрузки трансформатора больше его номинальной мощности возможны за счет неравномерности нагрузки в течение суток. На рис.1 изображен суточный график нагрузки, из которого видно, что в ночные, утренние и дневные часы трансформатор недогружен, а во время вечернего максимума перегружен. При недогрузке износ изоляции мал, а во время перегрузки значительно увеличивается. Максимально допустимая систематическая нагрузка определяется при условии, что наибольшая температура обмотки +140°С, наибольшая температура масла в верхних слоях +95°С и износ изоляции за время максимальной нагрузки такой же, как при работе трансформатора при постоянной номинальной нагрузке, когда температура наиболее нагретой точки не превышает +98°С (ГОСТ 14209-85). Для подсчета допустимой систематической нагрузки действительный график преобразуется в двухступенчатый (см. рис.1).

Коэффициент начальной нагрузки эквивалентного графика определяется по выражению

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Коэффициент максимальной нагрузки в интервале h=Δh1+Δh2+. +Δhp.

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Таблица 1

Допустимые аварийные перегрузки трансформаторов при
выборе их номинальной мощности для промышленных подстанций
при предшествующей нагрузке, не превышающей 0,8
(по ГОСТ 14209-85)

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Точный расчет максимально допустимых нагрузок и аварийных перегрузок, а также износ витковой изоляции производится на ЭВМ по вспомогательным схемам, приведенным в ГОСТ 14209-85.

Анализируя приведенные в ГОСТ 14209-85 таблицы допустимых аварийных перегрузок, можно сделать вывод, что трансформаторы с системами охлаждения М, Д, ДЦ и Ц при первоначальной нагрузке не более 0.9Sном допускают перегрузку на 40% в течение 6ч при температуре охлаждающего воздуха не более +20°С и 30% в течение 4ч при температуре охлаждающего воздуха +30°С.

Источник

Нагрузочная способность

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Технические параметры логических элементов.

Технические параметры бывают статические и динамические.

n – нагрузочная способность – максимальное количество элементов, которые можно подключить к выходу элемента без нарушения его работоспособности.

m – коэффициент объединения по входу – количество входов ЛЭ.

Uл – логический перепад.

U 1 и U 0 определяются из передаточной характеристики.

Р – статическая мощность.

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Нагрузочная способность – максимальное количество элементов, которые можно подключить к выходу элемента без нарушения его работоспособности.

Нагрузочная способность определяется замерами приборов и вычислениями.

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Худший случай для инвертора в отношении нагрузочной способности является случай, когда на выходе логическая единица.

Источник

Несущая способность

Максимально допустимая вертикальная, горизонтальная или иная внешняя, внутренняя нагрузка, которую способны принять без потери функциональных свойств конструктивные элементы здания: стены, фундамент, кровля, перекрытия, колонны, балки, столбы – это несущая способность. Во время эксплуатации на объект воздействует множество негативных внешних факторов, которые часто снижают прочностные параметры сооружения и его устойчивость, качественные и количественные характеристики материала. Все это может отрицательно отразиться на несущей способности здания.

Несущий каркас здания состоит из ключевых конструктивных элементов: грунтов и фундамента, кровли, стен, перекрытий, балок, колонн, иногда фасада. Он может быть выполнен из разных материалов, свойства которых также влияют на прочностные показатели, устойчивость к внешним и внутренним нагрузкам.

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Для чего необходимо оценивать несущую способность здания и отдельных конструкций? Данный показатель рассчитывают в ходе комплексного обследования объекта и для изучения возможности его перепрофилирования, перепланировки. Несущая способность здания оценивается перед установкой тяжеловесного оборудования, для понимания остаточного ресурса и сейсмостойкости сооружения. Этот вид изысканий также проводят при реконструкции объекта: перед установкой арт-конструкций или надстройкой дополнительного этажа.

Исчерпание несущей способности конструкции – такое состояние элемента, когда при наличии внешних нагрузок напряжение на некоторых участках приближается к предельному. Часто оно выражается в виде отклонений, прогибов, трещин и других повреждений, деформаций.

Определение несущей способности

Несущую способность закладывают еще на стадии проектирования с учетом предполагаемых функций объекта, назначения каркаса. Но со временем показатель может меняться из-за воздействия внешних и внутренних негативных факторов.

На несущую способность влияет ряд условий: наличие жесткого армирующего звена, характер взаимодействия материалов, разгружающее действие отдельных элементов, состояние раствора или иного контактного слоя.

Определение несущей способности – комплекс исследовательских, аналитических и измерительных мероприятий. Изыскания начинаются с изучения проектно-технической документации. На подготовительном этапе специалисту предстоит ознакомиться с материалами несущего каркаса здания, характером сопряжения конструкций, способом опирания, внешними и внутренними нагрузками, агрессивными факторами среды, которые могут негативно воздействовать на техническое состояние сооружений.

После изучения теоретической части специалисты приступают к визуальному осмотру и проведению необходимых измерений:

На завершающем этапе все результаты измерений и визуального осмотра анализируются, вносятся в компьютерную программу для проведения расчетов.

Несущая способность зданий и сооружений

Существуют разные способы оценки несущей способности. Некоторые из них универсальные и подходят для объектов любого функционального профиля, другие применимы только к определенной категории сооружений.

Одна из методик оценки несущей способности позволяет достаточно точно определить остаточный ресурсный потенциал конструктивных элементов. Она подразумевает учет всех негативных факторов, которые могут вызвать износ сооружения: атмосферных осадков, перепадов температуры и влажности, ветра, особенностей рельефа, интенсивной или небрежной эксплуатации, коррозии, эрозии.

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Проверка несущей способности традиционными способами используется уже достаточно давно. Стандартные методы подразумевают создание вибрационных динамических и механических импульсных воздействий определенной интенсивности и силы. Их направляют на отдельные элементы здания через грунт и фундамент. Для регистрации изменений на исследуемый объект устанавливают специальные датчики. После проведения испытаний полученные результаты обрабатывают в специальной компьютерной программе, которая позволяет рассчитать, чему равна текущая несущая способность зданий и сооружений.

Одна из особенностей методики оценки возможных дополнительных нагрузок: необходимо учитывать давление не только на один участок, но и на всю армированную конструкцию. Специалист должен выполнить пространственный расчет, который охватывает все взаимосвязанные элементы. Конструктивная оценка предполагает учет нагрузок дополнительного воздействия, временных, динамических, естественных и постоянных факторов. Такой комплексный подход считается наиболее полным и достоверным. Методика позволяет увидеть фактическую картину и спрогнозировать возможность увеличения нагрузки на здание без негативных последствий.

Несущая способность кирпичной кладки

Простенки кладки из кирпича выполняют роль несущих элементов сооружения. Прочностные показатели конструкции могут со временем снижаться из-за влияния внешних негативных факторов.

Для определения фактической несущей способности специалисты измеряют, рассчитывают и изучают следующие показатели:

Прочность кладки можно определить методами неразрушающего контроля. После получения необходимых вводных данных несущую способность рассчитывают по формуле. Она требуют применения некоторых коэффициентов – длительной нагрузки и продольного изгиба.

Оценка несущей способности бетонных и железобетонных конструкций

Для определения несущей способности конструктивных элементов из бетона и железобетона, которые имеют нормальное по отношению к продольной оси сечение, применяют методику предельного равновесия по нормативной документации. В этом случае руководствуются следующими упрощающими принципами:

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Для повышения прочностных характеристик в конструктивные элементы включают вкладыши из цементного бетона или другого низкодеформируемого материала, внутри которого расположены металлические элементы.

Особенности расчета несущей способности фундамента

Для грунта и фундамента максимально допустимую нагрузку исследуют в единой связке. Для укрепления слабого основания потребуются сваи. На грунте с плотной и устойчивой структурой можно использовать колонны или ленточный фундамент для стен. Для выбора оптимального варианта необходимо изучить в лаборатории физико-химические параметры почвы в данной местности.

Несущая способность фундамента во многом зависит от количественных и качественных свойств материала, наличия дефектов, арматуры, соответствия фактических и проектных данных. Любые негативные изменения в состоянии основания здания через некоторое время отразятся на стенах, перекрытиях и других верхних конструктивных элементах.

Изучение несущей способности основания требуется в следующих случаях:

Несущая способность фундамента должна предотвращать вероятность сдвигов и обеспечивать высокую устойчивость и прочность оснований здания.

Несущая способность сваи указывает, какую нагрузку она способна выдержать при максимально допустимом уровне деформации грунта. Задача специалиста на стадии проектирования – рассчитать оптимальное число элементов.

Для оценки показателя используют два основных метода: уровень сопротивления по боковой поверхности и уровень сопротивления грунта под острием. Оптимальный вариант определяют исходя из характеристик почвы.

Особенности определения несущей способности вертикальных и горизонтальных конструктивных элементов

К перекрытиям относятся плиты, диски и балки. Они взаимосвязаны и объединены для выполнения единой функции. Перекрытие – это конструктивный элемент, расположенный между этажами. Он опирается на балку.

Различают два типа несущих частей здания:

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

Балки – важный опорный элемент в зданиях с колоннами. Для их изготовления используют бетон. В старых домах встречаются балки из деревянных лагов, железных элементов и асфальтобетона. В этом случае специалист должен изучить состав балки, выяснить фактическую несущую способность, и насколько она изменилась со временем.

При проектировании инженеры должны закладывать несущую способность с некоторым запасом. Это помогает минимизировать вероятность перегрузки, но не отменяет необходимость в регулярных технических обследованиях здания.

К вертикальных несущим конструкция относятся столбы и колонны, имеющие отдельный фундамент, который по форме напоминает подстаканник. Чем больше нагрузка и площадь объекта, тем глубже должны быть заложены опорные элементы. Колонны обычно изготавливают из монолита или железобетона. Распространенный материал для возведения столбов – кирпич и камень. Эта вертикальная несущая конструкция встречается в старых малоэтажных домах.

Несущая способность кровли и фасада

Основная нагрузка на кровлю – это снег, ветер и другие погодные факторы. Если на стадии проектирования кровлю не планировалось эксплуатировать, то ее несущая способность снаружи будет ниже, чем с внутренней стороны.

Фасад может быть несущим и не несущим элементом сооружения. Его навешивают на колонны или устанавливают на отдельный элемент. В последнем случае фасад называют самонесущим.

Несущая способность объекта – изменяющаяся во времени величина. С увеличением срока эксплуатации и при воздействии агрессивных внешних факторов прочностные характеристики и устойчивость сооружения снижается. Предотвратить аварии и другие нежелательные ситуации на объекте поможет регулярное экспертное обследование.

Компания «Департамент» предлагает услуги по диагностике и определению несущей способности здания. Специалисты используют современное оборудование и методы неразрушающего контроля, которые позволяют максимально быстро получить достоверные результаты. Узнать подробности, стоимость и задать вопросы можно представителю компании «Департамент» по телефону или электронной почте.

Источник

5.3.7. Нагрузочная способность трансформаторов

5.3.7. Нагрузочная способность трансформаторов

Нагрузочной способностью трансформаторов называется совокупность допустимых нагрузок и перегрузок трансформатора. Исходным режимом для определения нагрузочной способности является номинальный режим работы трансформатора на основном ответвлении при номинальных условиях места установки и охлаждающей среды, определяемых соответствующим стандартом или техническими условиями.

Допустимым режимом нагрузки называется режим продолжительной нагрузки трансформатора, при котором расчетный износ изоляции обмоток от нагрева не превышает износа, соответствующего номинальному режиму работы. Перегрузочным считается такой режим, при котором расчетный износ изоляции превосходит износ, соответствующий номинальному режиму работы.

Стандартами установлены предельно допустимые температуры трансформаторов. Они основаны на длительном опыте эксплуатации трансформаторов и предусматривают непрерывную работу трансформатора при его номинальной мощности и предписанных окружающих условиях в течение установленного срока службы (20–25 лет).

Основанием для ограниченных во времени нагрузок работы трансформатора, в том числе и выше номинальной, является неполная нагрузка трансформатора в период, предшествующий допустимой нагрузке, и пониженная температура охлаждающей среды (воздуха или воды).

ГОСТ 14209—97 (МЭК 354—91) «Нагрузочная способность трансформаторов (и автотрансформаторов)» (далее — стандарт) и технические условия (ТУ) на трансформаторы и АТ содержат рекомендации о предельных допустимых нагрузках.

Так, в указанном стандарте приведены допустимые аварийные перегрузки для трансформаторов классов напряжения до 110 кВ включительно в зависимости от предшествующей нагрузки и температуры охлаждающего воздуха во время перегрузки. Для предшествующей нагрузки не более 0,8 номинального значения мощности трансформатора и температуры охлаждающего воздуха во время перегрузки t = 0 и 20 °C для трансформаторов классов напряжения до 110 кВ включительно допустимые аварийные перегрузки трансформаторов характеризуются данными табл. 5.12.

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность

В соответствии с ТУ № 3411-001-498-90-270-2005, согласованными с ФСК ЕЭС России, АТ в зависимости от предшествующей нагрузки 0,7 номинального значения мощности и температуры охлаждающего воздуха во время перегрузки t = 25 °C допускают следующие кратности и длительности аварийных перегрузок:

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

2.2. Обслуживание силовых трансформаторов и автотрансформаторов

2.2. Обслуживание силовых трансформаторов и автотрансформаторов 2.2.1. Термины и определения Трансформаторы и реакторы являются одним из наиболее массовых типов продукции электромашиностроительных заводов и самым распространенным видом электрооборудования на

2.2.3. Допустимые перегрузки трансформаторов и автотрансформаторов

2.2.3. Допустимые перегрузки трансформаторов и автотрансформаторов Допустимые перегрузки трансформаторов и автотрансформаторов (далее — трансформаторов) в нормальных режимах работы определяются старением изоляции его обмоток — бумаги. Старение изоляции приводит к

2.4. Параллельная работа трансформаторов

2.4. Параллельная работа трансформаторов Параллельная работа трансформаторов (автотрансформаторов) разрешается при следующих условиях:группы соединения обмоток одинаковы. Параллельная работа трансформаторов, принадлежащих к разным группам соединения обмоток,

2.10. Повреждения при работе трансформаторов

2.10. Повреждения при работе трансформаторов В процессе эксплуатации могут возникнуть неполадки в работе трансформаторов, с одними из которых трансформаторы могут длительно оставаться в работе, а при других требуется немедленный вывод их из работы.Причинами повреждений

5.1. Обслуживание трансформаторов тока

5.1. Обслуживание трансформаторов тока Трансформатор тока (ТТ) — это измерительный элемент, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно него по фазе на угол,

5.2. Обслуживание трансформаторов напряжения

5.2. Обслуживание трансформаторов напряжения Трансформатор напряжения (ТН) — это измерительный трансформатор, в котором при нормальных условиях применения вторичное напряжение практически пропорционально первичному напряжению и при правильном включении сдвинуто

8.10. Газовая защита трансформаторов

8.10. Газовая защита трансформаторов Газовая защита применяется для защиты от повреждений, возникающих внутри масляного бака трансформатора, сопровождающихся выделением газов и интенсивным перемещением масла из бака в расширитель.Газовая защита — одна из немногих

8.13. Автоматическое повторное включение линий, шин и трансформаторов

8.13. Автоматическое повторное включение линий, шин и трансформаторов АПВ является одним из средств РЗиА, направленным на повышение надежности электроснабжения, и заключается в автоматическом включении отключенного с помощью аварийной автоматики или по ошибке участка

11.8. Действия персонала при аварийном отключении трансформаторов

11.8. Действия персонала при аварийном отключении трансформаторов Отключение защитой одного трансформатора при их раздельной работе на стороне НН и при отсутствии или отказе АВР приводит к прекращению электроснабжения соответствующей группы потребителей.В такой

5.3.2. Схемы и группы соединения обмоток трансформаторов

5.3.2. Схемы и группы соединения обмоток трансформаторов Схемы соединения обмоток трехфазного трансформатора обозначают в виде дроби, в числителе которой ставят обозначение схемы соединения обмотки ВН, а в знаменателе — обмотки НН. При наличии третьей обмотки СН

5.3.3. Параллельная работа трансформаторов

5.3.3. Параллельная работа трансформаторов Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении не менее чем двух основных обмоток одного из них с таким же числом основных обмоток другого трансформатора (других

5.3.6. Регулирование напряжения трансформаторов

5.3.6. Регулирование напряжения трансформаторов В соответствии с ГОСТ 11677—85 и стандартами на трансформаторы различных классов напряжений и диапазонов мощностей большинство силовых трансформаторов выполняются с регулированием напряжения, которое может осуществляться

5.3.8. Технические данные трансформаторов

5.3.8. Технические данные трансформаторов Классификация трансформаторов отечественного производства по габаритам приведена в табл. 5.13.Таблица 5.13 Окончание табл.

5.3.9. Мощности и напряжения КЗ трансформаторов

5.3.9. Мощности и напряжения КЗ трансформаторов Мощности и напряжения КЗ трансформаторов и АТ 220–750 кВ установлены в ГОСТ 17544—85 и отражают сложившуюся в 60–70 гг. прошлого столетия ситуацию с развитием энергетики СССР и потребности в силовых трансформаторах в условиях

2.6. Дифференциальные защиты трансформаторов

2.6. Дифференциальные защиты трансформаторов Принцип действия дифференциальных защит основан на пофазном сравнении токов параллельно установленных защищаемых объектов (поперечные дифференциальные защиты) или токов до и после защищаемого объекта (продольные

3.4.1. Защита трансформаторов Т4, Т5, Т6

3.4.1. Защита трансформаторов Т4, Т5, Т6 Трансформаторы 10/0,4 кВ мощностью до 0,63 МВ-А подключаются к электрической сети через предохранители. Предохранители для трансформаторов выбираются по следующим условиям:номинальное напряжение предохранителя должно соответствовать

Источник

Нагрузочная способность

Влияние нагрузки трансформатора на износ изоляции. Под нагрузочной способностью трансформатора понимается способность трансформатора работать с нагрузкой выше номинальной при определенных условиях эксплуатации (величина предшествующей и последующей нагрузки, температура охлаждающей среды, допустимая температура отдельных частей трансформатора).
Срок службы трансформатора определяется износом изоляции под влиянием прежде всего температуры при изменяющихся значениях нагрузки, напряжения и условиях охлаждения. К концу срока службы изоляция полностью изнашивается и трансформатор находится под постоянной угрозой аварии. Расчетный срок службы трансформатора при номинальном режиме нагрузки составляет 20. 40 лет. При этом за номинальную температуру θ н наиболее нагретой точки обмотки масляных трансформаторов (класс нагревостойкости А) в соответствии с рекомендациями Международной электротехнической комиссии (МЭК) принята температура 98 °С. Разница в номинальных температурах (классу нагревостойкости А соответствует длительно допустимая температура 105 °С) объясняется тем, что для системы изоляции из нескольких однородных изоляционных материалов одного класса длительно допустимая температура принимается меньше, чем для однородной изоляции. При расчете срока службы изоляции класса А принято, что он уменьшается в два раза при увеличении температуры на 6 °С от номинальной («правило шести градусов»).
МЭК рекомендует оценивать срок службы изоляции класса А по формуле:

или относительным износом изоляции:

Что такое нагрузочная способность. Смотреть фото Что такое нагрузочная способность. Смотреть картинку Что такое нагрузочная способность. Картинка про Что такое нагрузочная способность. Фото Что такое нагрузочная способность
Рис. 12.1. Преобразование графика нагрузки трансформатора:

Если К2 превышает 1,5 то необходимо заменять тр-тор на более мощный.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *