Что такое наибольший общий делитель двух натуральных чисел

Наибольший общий делитель (НОД), свойства и формулы

Что такое наибольший общий делитель двух натуральных чисел. Смотреть фото Что такое наибольший общий делитель двух натуральных чисел. Смотреть картинку Что такое наибольший общий делитель двух натуральных чисел. Картинка про Что такое наибольший общий делитель двух натуральных чисел. Фото Что такое наибольший общий делитель двух натуральных чисел

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие наибольшего общего делителя

Начнем с самого начала и вспомним, что такое общий делитель. У целого числа может быть несколько делителей. А сейчас нам особенно интересно, как обращаться с делителями сразу нескольких целых чисел.

Делитель натурального числа — это такое натуральное число, которое делит данное число без остатка. Если у натурального числа больше двух делителей, его называют составным.

Если b — делитель целого числа a, которое не равно нулю, то модуль числа b не может быть больше модуля числа a. Значит любое число, не равное 0, имеет конечное число делителей.

Наибольшим общим делителем двух чисел a и b называется наибольшее число, на которое a и b делятся без остатка. Для записи может использоваться аббревиатура НОД. Для двух чисел можно записать вот так: НОД (a, b).

Проверить результаты вычислений можно с помощью онлайн-калькулятора НОД и НОК.

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Взаимно простые числа — это натуральные числа, у которых только один общий делитель — единица. Их НОД равен 1.

Помимо НОД есть еще и НОК, что расшифровывается, как наименьшее общее кратное и означает наименьшее число, которое делится на каждое из исходных чисел без остатка.

Еще один пример. Рассчитаем НОД для 28 и 64.

Д (64) = 2 * 2 * 2 * 2 * 2 * 2

НОД (28; 64) = 2 * 2 = 4

Ответ: НОД (28; 64) = 4

Оформить поиск НОД можно в строчку, как мы сделали выше или в столбик, как на картинке.

Свойства наибольшего общего делителя

У наибольшего общего делителя есть ряд определенных свойств. Опишем их в виде теорем и сразу приведем доказательства.

Важно! Все свойства НОД будем формулировать для положительных целых чисел, при этом будем рассматривать делители только больше нуля.

Свойство 1. Наибольший общий делитель чисел а и b равен наибольшему общему делителю чисел b и а, то есть НОД (a, b) = НОД (b, a). Перемена мест чисел не влияет на конечный результат.

Доказывать свойство не имеет смысла, так как оно напрямую исходит из самого определения НОД.

Свойство 2. Если а делится на b, то множество общих делителей чисел а и b совпадает со множеством делителей числа b, поэтому НОД (a, b) = b.

Доказательство

Любой общий делитель чисел а и b является делителем каждого из этих чисел, в том числе и числа b. Так как а кратно b, то любой делитель числа b является делителем и числа а, благодаря свойствам делимости. Из этого следует, что любой делитель числа b является общим делителем чисел а и b.

Значит, если а делится на b, то совокупность делителей чисел а и b совпадает с совокупностью делителей одного числа b. А так как наибольшим делителем числа b является само число b, то наибольший общий делитель чисела и b также равен b, то есть НОД (а, b) = b.

В частности, если a = b, то НОД (a, b) = НОД (a, a) = НОД (b, b) = a = b.

Доказанное свойство наибольшего делителя можно использовать, чтобы найти НОД двух чисел, когда одно из них делится на другое. При этом НОД равен одному из этих чисел, на которое делится другое число.

Свойство 3. Если a = bq + c, где а, b, с и q — целые числа, то множество общих делителей чисел а и b совпадает со множеством общих делителей чисел b и с. Равенство НОД (a, b) = НОД (b, c) справедливо.

Доказательство

Существует равенство a = bq + c, значит всякий общий делитель чисел а и b делит также и с, исходя из свойств делимости. По этой же причине, всякий общий делитель чисел b и с делит а. Поэтому совокупность общих делителей чисел а и b совпадает с совокупностью общих делителей чисел b и c.

Поэтому должны совпадать и наибольшие из этих общих делителей, и равенство НОД (a, b) = НОД (b, c) можно считать справедливым.

Свойство 4. Если m — любое натуральное число, то НОД (mа, mb) = m * НОД(а, b).

Доказательство

Если умножить на m обе стороны каждого из равенств алгоритма Евклида, то получим, что НОД (mа, mb)= mr, где r — это НОД (а, b). На этом свойстве наибольшего общего делителя основан поиск НОД с помощью разложения на простые множители.

Свойство 5. Пусть р — любой общий делитель чисел а и b, тогда НОД (а : p, b : p) = НОД (а, b) : p. А именно, если p = НОД (a, b) имеем НОД (a : НОД (a, b), b: НОД (a, b)) = 1, то есть, числа a : НОД (a, b) и b : НОД (a, b) — взаимно простые.

Так как a = p(a : p) и b = p(b : p), и в силу предыдущего свойства, мы можем записать цепочку равенств вида НОД (a, b) = НОД (p(a : p), p(b : p)) = p * НОД (a : p, b : p), откуда и следует доказываемое равенство.

Способы нахождения наибольшего общего делителя

Найти наибольший общий делитель можно двумя способами. Рассмотрим оба, чтобы при решении задач выбирать самую оптимальную последовательность действий.

1. Разложение на множители

Чтобы найти НОД нескольких чисел, достаточно разложить их на простые множители и перемножить между собой общие множители для всех чисел.

Пример 1. Найти НОД (84, 90).

Ответ: НОД (84, 90) = 6.

Пример 2. Найти НОД (15, 28).

Ответ: НОД (15, 28) = 1.

Пример 3. Найти НОД для 24 и 18.

Ответ: НОД (24, 18) = 6

2. Алгоритм Евклида

Способ Евклида помогает найти НОД через последовательное деление. Сначала посмотрим, как работает этот способ с двумя числами, а затем применим его к трем и более.

Алгоритм Евклида заключается в следующем: если большее из двух чисел делится на меньшее — наименьшее число и будет их наибольшим общим делителем. Использовать метод Евклида можно легко по формуле нахождения наибольшего общего делителя.

Формула НОД: НОД (a, b) = НОД (b, с), где с — остаток от деления a на b.

Пример 1. Найти НОД для 24 и 8.

Так как 24 делится на 8 и 8 тоже делится на 8, значит, 8 — общий делитель этих чисел. Этот делитель является наибольшим, потому что 8 не может делиться ни на какое число, большее его самого. Поэтому: НОД (24, 8) = 8.

В остальных случаях для нахождения наибольшего общего делителя двух чисел нужно соблюдать такой порядок действий:

Пример 2. Найти наибольший общий делитель чисел 140 и 96:

Последний делитель равен 4 — это значит: НОД (140, 96) = 4.

Ответ: НОД (140, 96) = 4

Пошаговое деление можно записать столбиком:

Что такое наибольший общий делитель двух натуральных чисел. Смотреть фото Что такое наибольший общий делитель двух натуральных чисел. Смотреть картинку Что такое наибольший общий делитель двух натуральных чисел. Картинка про Что такое наибольший общий делитель двух натуральных чисел. Фото Что такое наибольший общий делитель двух натуральных чисел

Чтобы найти наибольший общий делитель трех и более чисел, делаем в такой последовательности:

Знакомство с темой наибольшего общего делителя начинается в 5 классе с теории и закрепляется в 6 классе на практике. В этой статье мы узнали все основные определения, свойства и их доказательства, а также как найти НОД.

Источник

Как находить наибольший общий делитель (НОД) двух чисел

Одной из задач, вызывающих проблему у современных школьников, привыкших к месту и не к месту использовать калькуляторы, встроенные в гаджеты, является нахождение наибольшего общего делителя (НОД) двух и более чисел.

Невозможно решить никакую математическую задачу, если неизвестно, о чём собственно спрашивают. Для этого нужно знать, что означает то или иное выражение, используемое в математике.

Общие понятия и определения

Необходимо знать:

В математике приняты следующие записи:

Что такое наибольший общий делитель двух натуральных чисел. Смотреть фото Что такое наибольший общий делитель двух натуральных чисел. Смотреть картинку Что такое наибольший общий делитель двух натуральных чисел. Картинка про Что такое наибольший общий делитель двух натуральных чисел. Фото Что такое наибольший общий делитель двух натуральных чисел

Различные способы найти НОД

Проще всего ответить на вопрос как найти НОД в том случае, когда меньшее число является делителем большего. Оно и будет в подобном случае наибольшим общим делителем.

Например, НОД (15;45) = 15, НОД (48;24) = 24.

Но такие случаи в математике являются весьма редкими, поэтому для того, чтобы находить НОД используются более сложные приёмы, хотя проверять этот вариант перед началом работы все же весьма рекомендуется.

Способ разложения на простые сомножители

Если необходимо найти НОД двух или более различных чисел, достаточно разложить каждое из них на простые сомножители, а затем произвести процесс умножения тех из них, которые имеются в каждом из чисел.

Пример 1

Рассмотрим, как находить НОД 36 и 90:

НОД (36;90) = 1*2*3*3 = 18.

Теперь посмотрим как находить то же самое в случае трёх чисел, возьмём для примера 54; 162; 42.

Как разложить 36 мы уже знаем, разберёмся с остальными:

Таким образом, НОД (36;162;42) = 1*2*3 = 6.

Следует заметить, что единицу в разложении писать совершенно необязательно.

Рассмотрим способ, как просто раскладывать на простые множители, для этого слева запишем необходимую нам цифру, а справа станем писать простые делители.

Разделять колонки можно, как знаком деления, так и простой вертикальной чертой.

Что такое наибольший общий делитель двух натуральных чисел. Смотреть фото Что такое наибольший общий делитель двух натуральных чисел. Смотреть картинку Что такое наибольший общий делитель двух натуральных чисел. Картинка про Что такое наибольший общий делитель двух натуральных чисел. Фото Что такое наибольший общий делитель двух натуральных чисел

Евклидов способ

Этот вариант известен человечеству ещё со времён древнегреческой цивилизации, он во многом проще, и приписывается великому математику Евклиду, хотя весьма похожие алгоритмы применялись и ранее. Этот способ заключается в использовании следующего алгоритма, мы делим большее число с остатком на меньшее. Затем наш делитель делим на остаток и продолжаем так действовать по кругу пока не произойдёт деление нацело. Последнее значение и окажется искомым наибольшим общим делителем.

Приведём пример использования данного алгоритма:

попробуем выяснить какой НОД у 816 и 252:

Итак, по завершении нашего процесса мы получили НОД (816;252) = 12.

Действия при необходимости определения НОД если задано более двух значений

Мы уже разобрались, что делать в случае, когда имеется два различных числа, теперь научимся действовать, если их имеется 3 и более.

При всей кажущейся сложности, данная задача проблем у нас уже не вызовет. Сейчас мы выбираем два любые числа и определяем искомое для них значение. Следующим шагом отыскиваем НОД у полученного результата и третьего из заданных значений. Затем снова действуем по уже известному нам принципу для четвёртого пятого и так далее.

Заключение

Итак, при кажущейся большой сложности поставленной перед нами изначально задачи, на самом деле все просто, главное уметь выполнять безошибочно процесс делений и придерживаться любого из двух описанных выше алгоритмов.

Видео

С помощью видео вы сможете узнать, как найти наибольший общий делитель.

Источник

Нахождение наибольшего общего делителя

В данной статье мы рассмотрим определение наибольшего общего делителя, научимся его находить для двух или нескольких чисел, а также разберем практические примеры для закрепления изложенного материала.

Определение наибольшего общего делителя

Если у числа больше двух делителей, его называют составным.

В отличие от кратных, количество делителей числа ограничено.

Общий делитель двух натуральных чисел – это такое число, на которое оба этих числа делятся без остатка.

Наибольший общий делитель двух натуральных чисел – наибольшее число из общих делителей данных чисел. Обозначается как НОД.

Например, НОД (12, 24) – это наибольший общий делитель чисел 12 и 24.

Нахождение НОД

Чтобы найти наибольший общий делитель, можно применить один из способов ниже.

Для двух (или небольших) чисел

Пример
Найдем наибольший делитель чисел 18 и 30.

Таким образом, НОД (18, 30) = 6.

Для нескольких (или больших) чисел

Этот метод обычно применяется, если приходится иметь дело с большим числами, или нужно найти НОД для нескольких чисел.

Пример
Найдем НОД (16, 24, 40).

Решение
Разложим эти числа на простые множители.

Что такое наибольший общий делитель двух натуральных чисел. Смотреть фото Что такое наибольший общий делитель двух натуральных чисел. Смотреть картинку Что такое наибольший общий делитель двух натуральных чисел. Картинка про Что такое наибольший общий делитель двух натуральных чисел. Фото Что такое наибольший общий делитель двух натуральных чисел

Для всех трех чисел одинаковыми являются три множителя – это три двойки.

Следовательно, НОД (16, 24, 40) = 2 ⋅ 2 ⋅ 2 = 8.

Источник

Нахождение НОД по алгоритму Евклида и с помощью разложения на простые множители

Рассмотрим два основных метода нахождения НОД двумя основными способами: с использованием алгоритма Евклида и путем разложения на простые множители. Применим оба метода для двух, трех и большего количества чисел.

Алгоритм Евклида для нахождения НОД

Алгоритм Евклида позволяет с легкостью вычислить наибольший общий делитель для двух положительных чисел. Формулировки и доказательство алгоритма Евклида мы привели в разделе «Наибольший общий делитель: определитель, примеры».

Суть алгоритма заключается в том, чтобы последовательно проводить деление с остатком, в ходе которого получается ряд равенств вида:

Решение

Решение

Решение

Нахождение НОД с помощью разложения чисел на простые множители

Для того, чтобы найти наибольший общий делитель двух чисел методом разложения на множители, необходимо перемножить все простые множители, которые получаются при разложении этих двух чисел и являются для них общими.

Решение

Найдем все простые множители чисел 72 и 96 :

72 36 18 9 3 1 2 2 2 3 3

96 48 24 12 6 3 1 2 2 2 2 2 3

Нахождение НОД трех и большего количества чисел

Решение

А теперь давайте рассмотрим еще один способ вычисления НОД для тех и большего количества чисел. Мы можем найти НОД, перемножив все общие простые множители чисел.

Решение

Нахождение НОД отрицательных чисел

Если нам приходится иметь дело с отрицательными числами, то для нахождения наибольшего общего делителя мы можем воспользоваться модулями этих чисел. Мы можем так поступить, зная свойство чисел с противоположными знаками: числа n и — n имеют одинаковые делители.

Решение

Решение

Источник

Вычисление НОД — ошибка, которой не замечают

Что такое НОД, все знают еще со школы. Для тех, кто подзабыл, напомню: НОД — наибольший общий делитель, делящий два целых числа без остатка. Например, НОД чисел 100 и 45 равен 5, а НОД чисел 17 и 7 равен 1. Существует несколько различных алгоритмов поиска этого числа. Однако, несмотря на то, что это достаточно простые алгоритмы, часто совершают одну маленькую, но очень существенную ошибку.

Алгоритмы вычисления НОД

Естественно, чаще всего пишут первый вариант — он легко запоминается, быстро пишется и достаточно быстро работает.

Претесты

Реализации корректно работают на таких тестах:

Естественно, они будут работать и на подобных тестах, где в качестве аргументов выступают целые неотрицательные числа. Но что, если…

Первые тесты с подвохом

… если заменить одно из чисел нулем? Например так:

Классический алгоритм Евклида (№3) уже попадает в бесконечный цикл.

Копаем глубже

Согласно определению, НОД может быть определен для любых двух целых чисел. Так почему бы не попробовать тесты, где одно из чисел — отрицательное:

Все становится еще интереснее. Первые две реализации выдают в качестве ответа -5. Третий алгоритм снова попадает в бесконечный цикл. Вместе с ним в бесконечном цикле оказывается пятый алгоритм. Четвертый падает по StackOverFlow — скорее всего тоже попадает в бесконечный цикл.
Но ведь ответ -5 — неправильный. По определению НОД — наибольший общий делитель. А таковым является число 5. Ведь и первое, и второе число делятся без остатка на 5. Значит и первые две реализации не дают верный ответ.

Почему решения №№3-5 попадают в бесконечный цикл?

Алгоритм Евклида попадает в цикл из-за бесконечного увеличения аргументов, если один из них отрицательный. Действительно, если посмотреть на эти строки, то можно заметить, что при отрицательном a (или b) операция вычитания заменяется сложением.

Аналогичное происходит в четвертом и пятом алгоритме:

В ситуации, когда a или b равны 0, то происходит бесконечное вычитание нуля, которое никаким образом не меняет значения аргументов.

Так что же не так?

Все эти алгоритмы корректны для входных данных, когда оба числа a и b — целые неотрицательные числа. Но вспомним еще раз — НОД существует для любых двух целых чисел.

Что же делать?

В качестве аргументов в функцию можно передавать абсолютное значение чисел, тогда ответ будет корректен:

Второй способ решения задачи — возвращать абсолютное значение ответа:

Второй вариант гораздо предпочтительнее: будет производиться меньше лишних вычислений, чем в первом варианте.

Итоги

Мы рассмотрели пять различных вариантов вычисления наибольшего общего делителя. Для каждого из них мы указали входные данные, на которых ответ существует, но решение «падает», а также способ решения проблемы.
Такие небольшие ошибки чаще всего допускаются по причине того, что не замечают «скользкие» места решения какой-то задачи. Часть из них отлавливается в процессе тестирования, а часть остается незамеченной.
В ситуации с вычислением НОД почти все реализации приведены с ошибкой. В Сети я нашел лишь парочку корректно работающих решений, остальные идентичны тем, что приведены в начале поста.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *