Что такое наследование ооп

ООП. Часть 5. Наследование и ещё немного полиморфизма

Вы всё время пользуетесь результатами наследования, даже если не знаете этого. Рассказываем, как меньше дублировать код и что общего у всех классов.

Что такое наследование ооп. Смотреть фото Что такое наследование ооп. Смотреть картинку Что такое наследование ооп. Картинка про Что такое наследование ооп. Фото Что такое наследование ооп

Что такое наследование ооп. Смотреть фото Что такое наследование ооп. Смотреть картинку Что такое наследование ооп. Картинка про Что такое наследование ооп. Фото Что такое наследование ооп

Вот мы и подобрались к последнему столпу объектно-ориентированного программирования — наследованию. С его помощью можно создавать классы с общим функционалом, не копируя каждый раз одни и те же поля и методы.

Все статьи про ООП

Что такое наследование ооп. Смотреть фото Что такое наследование ооп. Смотреть картинку Что такое наследование ооп. Картинка про Что такое наследование ооп. Фото Что такое наследование ооп

Пишет о программировании, в свободное время создает игры. Мечтает открыть свою студию и выпускать ламповые RPG.

Как наследовать класс

Для начала создадим класс, от которого будем наследовать. Обычно его называют базовым или родительским:

Этот класс (Vehicle) представляет собой транспортное средство, но пока у него есть только слишком общие свойства (название, координаты и скорость) и поведение (перемещение). Нам может понадобиться реализовать класс, который тоже относится к транспортным средствам, но более конкретным. Например, это будет автомобиль (Car).

Если мы хотим, чтобы класс Car наследовал поля и методы класса Vehicle, то при его объявлении после названия нужно поставить двоеточие и имя родительского класса:

Теперь объекты класса Car обладают всеми полями и методами класса Vehicle:

Что такое наследование ооп. Смотреть фото Что такое наследование ооп. Смотреть картинку Что такое наследование ооп. Картинка про Что такое наследование ооп. Фото Что такое наследование ооп

Внимание! Наследовать можно только от одного класса.

Добавление новых полей и методов

Чтобы добавить в дочерний класс новое поле или метод, нужно просто объявить их:

Теперь объекты этого класса могут использовать как метод Move (), так и метод Beep (). То же самое касается и полей.

Наследование конструкторов

Допустим, у родительского класса есть конструктор, который принимает один аргумент:

Все дочерние классы должны вызывать его в своих конструкторах, передавая аргумент того же типа. Для этого используется ключевое слово base:

В скобках после base указывается аргумент, который нужно передать в родительский класс. При этом повторно описывать логику присваивания name не нужно.

Если вы не хотите ничего вызывать, то просто создайте в наследуемом классе пустой конструктор.

Переопределение методов

Часто бывает нужно, чтобы какой-то метод в дочернем классе работал немного иначе, чем в родительском. Например, в методе Move () для класса Car можно прописать условие, которое будет проверять, не кончилось ли топливо. Точно так же может появиться необходимость переопределить свойство.

Методы и свойства, которые можно переопределить, называются виртуальными. В родительском классе для них указывается модификатор virtual:

А в дочернем для переопределения используется модификатор override:

Таким образом можно определить разную логику для разных классов. Это тоже можно считать полиморфизмом.

Наследование от класса Object

Несмотря на то что наследовать можно только от одного класса, существует также и класс Object, который является родительским для всех остальных. У него есть четыре метода:

Хеш — результат преобразования данных, который используется в криптографии.

Любой из них также может быть переопределён или перегружен. Например, метод Equals () можно использовать, чтобы он проверял, равны ли поля объектов:

В данном случае это именно перегрузка, потому что ни один из вариантов метода Equals () не принимал объект класса Car. Отсюда следует, что переопределить можно только метод с такими же принимаемыми аргументами.

Особенности наследования

Есть несколько особенностей, которые нужно знать при работе с наследованием:

Чтобы лучше это усвоить, стоит попробовать поработать с каждой особенностью на практике и немного поэкспериментировать.

Домашнее задание

Создайте несколько классов персонажей: например, воин, лучник и маг.

Каждый из них должен быть родительским для нескольких других классов допустим, воин будет базовым классом для рыцаря и берсеркера.

У всех персонажей должен быть метод Attack (), при вызове которого у разных персонажей будут выводиться различные сообщения. Например, если атаковать будет маг, то мы должны увидеть сообщение, что он запустил огненный шар.

Заключение

С помощью наследования можно создавать множество полезных классов с общим поведением и свойствами, при этом не дублируя код. Однако это ещё не всё, что можно использовать, — в следующей статье вы узнаете про интерфейсы и абстрактные классы.

А чтобы на практике узнать, как используется ООП со всеми его особенностями, записывайтесь на курс «C#-разработчик с 0 до PRO». Вы попробуете разрабатывать на C# сайты и десктопные приложения, выжимая максимум из объектно-ориентированного программирования.

Источник

Что такое наследование ооп

ООП – парадигма программирования, в которой основными концепциями являются понятия объектов и классов. В центре ООП находится понятие объекта. Объект — это сущность, которой можно посылать сообщения, и которая может на них реагировать, используя свои данные. Объект — это экземпляр класса. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией. Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности — для этого требуется наличие наследования. Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм; то есть возможность объектов с одинаковой спецификацией иметь различную реализацию. Первым языком программирования, в котором были предложены принципы объектной ориентированности, была Симула. В момент своего появления (в 1967 году), этот язык программирования предложил поистине революционные идеи: объекты, классы, виртуальные методы и др., однако это всё не было воспринято современниками как нечто грандиозное. Тем не менее, большинство концепций были развиты Аланом Кэйем и Дэном Ингаллсом в языке Smalltalk. Именно он стал первым широко распространённым объектно-ориентированным языком программирования. (C#, C++, Java, Ruby, PHP, Perl, Python). ООП дает возможность создавать расширяемые системы (extensible systems). Это одно из самых значительных достоинств ООП и именно оно отличает данный подход от традиционных методов программирования. Расширяемость (extensibility) означает, что существующую систему можно заставить работать с новыми компонентами, причем без внесения в нее каких-либо изменений. Компоненты могут быть добавлены на этапе выполнения. Smalltalk — объектно-ориентированный язык программирования с динамической типизацией, разработанный в Xerox PARC Аланом Кэйем, Дэном Ингаллсом, Тедом Кэглером, Адель Голдберг, и другими в 1970-х годах. Язык был представлен как Smalltalk-80. Smalltalk оказал большое влияние на развитие многих других языков, таких как: Objective-C, Actor, Java, Groovy и Ruby. Многие идеи 1980-х и 1990-х по написанию программ появились в сообществе Smalltalk. К ним можно отнести рефакторинг, шаблоны проектирования (применительно к ПО), карты «класс — обязанности — взаимодействие» и экстремальное программирование в целом. Си — язык программирования, разработанный в 1969—1973 годах сотрудниками Bell Labs Кеном Томпсоном и Деннисом Ритчи как развитие языка Би. Благодаря близости по скорости выполнения программ, написанных на Си, к языку ассемблера, этот язык получил широкое применение при создании системного программного обеспечения и прикладное программное обеспечение для решения широко круга задач. Язык программирования Си оказал существенное влияние на развитие индустрии программного обеспечения, а его синтаксис стал основой для таких языков программирования как C++, C# и Java.

Основные понятия ООП: абстракция, инкапсуляция, наследование, полиморфизм.

Абстракция – это придание объекту характеристик, которые чётко определяют его концептуальные границы, отличая от всех других объектов. Основная идея состоит в том, чтобы отделить способ использования составных объектов данных от деталей их реализации в виде более простых объектов, подобно тому, как функциональная абстракция разделяет способ использования функции и деталей её реализации в терминах более примитивных функций, таким образом, данные обрабатываются функцией высокого уровня с помощью вызова функций низкого уровня. (Пример: говорить о предметах, не упоминая материалы, из которых они сделаны). Абстракция позволяет задействовать концепцию, игнорируя ее некоторые детали и работая с разными деталями на разных уровнях. Имея дело с составным объектом, вы имеете дело с абстракцией. Если вы рассматриваете объект как «дом», а не как комбинацию стекла, древесины и гвоздей, вы прибегаете к абстракции. Если вы рассматриваете множество домов как «город», вы прибегаете к другой абстракции. Базовые классы представляют собой абстракции, позволяющие концентрироваться на общих атрибутах производных классов и игнорировать детали конкретных классов при работе с базовым классом. Удачный интерфейс класса — это абстракция, позволяющая сосредоточиться на интерфейсе, не беспокоясь о внутренних механизмах работы класса. Мы используем абстракции на каждом шагу. Если б, открывая или закрывая дверь, вы должны были иметь дело с отдельными волокнами древесины, молекулами лака и стали, вы вряд ли смогли бы войти в дом или выйти из него. Абстракция — один из главных способов борьбы со сложностью реального мира. Слой абстрагирования (или уровень абстракции) — это способ уйти от деталей реализации конкретного множества функций.

Что такое наследование ооп. Смотреть фото Что такое наследование ооп. Смотреть картинку Что такое наследование ооп. Картинка про Что такое наследование ооп. Фото Что такое наследование ооп

Инкапсуляция – скрытие методов и переменных от других методов или переменных или других частей программы. Сокрытие реализации целесообразно применять в следующих целях:

Когда абстракция нас покидает, на помощь приходит инкапсуляция. Абстракция говорит: «Вы можете рассмотреть объект с общей точки зрения». Инкапсуляция добавляет: «Более того, вы не можете рассмотреть объект с иной точки зрения». Продолжим нашу аналогию: инкапсуляция позволяет вам смотреть на дом, но не дает подойти достаточно близко, чтобы узнать, из чего сделана дверь. Инкапсуляция позволяет вам знать о существовании двери, о том, открыта она или заперта, но при этом вы не можете узнать, из чего она сделана (из дерева, стекловолокна, стали или другого материала), и уж никак не сможете рассмотреть отдельные волокна древесины.

Что такое наследование ооп. Смотреть фото Что такое наследование ооп. Смотреть картинку Что такое наследование ооп. Картинка про Что такое наследование ооп. Фото Что такое наследование ооп

(Абстрактный класс белым цветом)

Как имитировать множественное наследование?

Полиморфизм – возможность объектов с одинаковой спецификацией иметь различную реализацию (использование одного имени для решения двух или более схожих, но технически разных задач). Если функция описывает разные реализации (возможно, с различным поведением) для ограниченного набора явно заданных типов и их комбинаций, это называется ситуативным полиморфизмом (ad hoc polymorphism). Ситуативный полиморфизм поддерживается во многих языках посредством перегрузки функций и методов. Если же код написан отвлеченно от конкретного типа данных и потому может свободно использоваться с любыми новыми типами, имеет место параметрический полиморфизм. Некоторые языки совмещают различные формы полиморфизма, порой сложным образом, что формирует самобытную идеологию в них и влияет на применяемые методологии декомпозиции задач. Например, в Smalltalk любой класс способен принять сообщения любого типа, и либо обработать его самостоятельно (в том числе посредством интроспекции), либо ретранслировать другому классу — таким образом, несмотря на широкое использование перегрузки функций, формально любая операция является неограниченно полиморфной и может применяться к данным любого типа.

Другие понятия ООП

Конструктор

В объектно-ориентированном программировании конструктор класса (от англ. constructor, иногда сокращают ctor) — специальный блок инструкций, вызываемый при создании объекта. Конструктор схож с методом, но отличается от метода тем, что не имеет явным образом определённого типа возвращаемых данных, не наследуется, и обычно имеет различные правила для рассматриваемых модификаторов. Конструкторы часто выделяются наличием одинакового имени с именем класса, в котором объявляется. Их задача — инициализировать члены объекта и определить инвариант класса, сообщив в случае некорректности инварианта. Корректно написанный конструктор оставит объект в «правильном» состоянии. Неизменяемые объекты тоже должны быть проинициализированы конструктором. В большинстве языков конструктор может быть перегружен, что позволяет использовать несколько конструкторов в одном классе, причём каждый конструктор может иметь различные параметры.

Деструктор

Вызывается при уничтожении объекта. Он обычно используется для освобождения памяти.

Виртуальный метод

В объектно-ориентированном программировании метод (функция) класса, который может быть переопределён в классах-наследниках так, что конкретная реализация метода для вызова будет определяться во время исполнения. Таким образом, программисту не обязательно знать точный тип объекта для работы с ним через виртуальные методы: достаточно лишь знать, что объект принадлежит классу или наследнику класса, в котором метод объявлен. Виртуальные методы — один из важнейших приёмов реализации полиморфизма. Они позволяют создавать общий код, который может работать как с объектами базового класса, так и с объектами любого его класса-наследника. При этом базовый класс определяет способ работы с объектами и любые его наследники могут предоставлять конкретную реализацию этого способа. В некоторых языках программирования, например в Java, нет понятия виртуального метода, данное понятие следует применять лишь для языков, в которых методы родительского класса не могут быть переопределены по умолчанию, а только с помощью некоторых вспомогательных ключевых слов. В некоторых же (как, например, в Python), все методы — виртуальные. Базовый класс может и не предоставлять реализации виртуального метода, а только декларировать его существование. Такие методы без реализации называются «чистыми виртуальными» (перевод англ. pure virtual) или абстрактными. Класс, содержащий хотя бы один такой метод, тоже будет абстрактным. Объект такого класса создать нельзя (в некоторых языках допускается, но вызов абстрактного метода приведёт к ошибке). Наследники абстрактного класса должны предоставить реализацию для всех его абстрактных методов, иначе они, в свою очередь, будут абстрактными классами. Для каждого класса, имеющего хотя бы один виртуальный метод, создаётся таблица виртуальных методов. Каждый объект хранит указатель на таблицу своего класса. Для вызова виртуального метода используется такой механизм: из объекта берётся указатель на соответствующую таблицу виртуальных методов, а из неё, по фиксированному смещению, — указатель на реализацию метода, используемого для данного класса. При использовании множественного наследования ситуация несколько усложняется за счёт того, что таблица виртуальных методов становится нелинейной. Принцип единственной обязанности (Single responsibility principle) обозначает, что каждый объект должен иметь одну обязанность и эта обязанность должна быть полностью инкапсулирована в класс. Все его сервисы должны быть направлены исключительно на обеспечение этой обязанности.

В чем плюсы и минусы ООП?

Общие положения

Полиморфизм

Инкапсуляция

Наследование

Источник

Принципы объектно-ориентированного программирования

Привет, Хабр! Меня зовут Владислав Родин. В настоящее время я являюсь руководителем курса «Архитектор высоких нагрузок» в OTUS, а также преподаю на курсах, посвященных архитектуре ПО.

Специально к старту занятий в новом потоке курса «Архитектура и шаблоны проектирования» я подготовил еще один авторский материал.

Введение

Когда речь заходит о классических паттернах проектирования, нельзя не вспомнить о самом объектно-ориентированном программировании. Ведь паттерны GoF являются паттернами именно объектно-ориентированного программирования. В функциональном же программировании есть свои собственные паттерны.

Вообще устроено все следующим образом: есть само объектно-ориентированное программирование. У него есть принципы. Из принципов объектно-ориентированного программирования следуют разобранные нам шаблоны GRASP (как вариант — SOLID принципы), из которых, в свою очередь, следуют шаблоны GoF. Из них же следует ряд интересных вещей, например, enterprise паттерны.

Объектно-ориентированная парадигма

Определение гласит, что «Объектно-ориентированное программирование – это парадигма программирования, в которой основной концепцией является понятие объекта, который отождествляется с предметной областью.»

Таким образом, система представляется в виде набора объектов предметной области, которые взаимодействуют между собой некоторым образом. Каждый объект обладает тремя cоставляющими: идентичность (identity), состояние (state) и поведение (behaviour).

Состояние объекта — это набор всех его полей и их значений.

Поведение объекта — это набор всех методов класса объекта.

Идентичность объекта — это то, что отличает один объект класса от другого объекта класса. С точки зрения Java, именно по идентичности определяется метод equals.

Принципы объектно-ориентированного программирования

Объектно-ориентированное программирование обладает рядом принципов. Представление об их количестве расходится. Кто-то утверждает, что их три (старая школа программистов), кто-то, что их четыре (новая школа программистов):

Инкапсуляция

Вопреки мнению многих собеседующихся (а иногда и собеседуемых), инкапсуляция это не «когда все поля приватные». Инкапсуляция является фундаментальнейшим принципом проектирования ПО, ее следы наблюдаются на только на уровне микро-, но и на уровне макропроектирования.

Научное определение гласит, что «Инкапсуляция – это принцип, согласно которому любой класс и в более широком смысле – любая часть системы должны рассматриваться как «черный ящик»: пользователь класса или подсистемы должен видеть только интерфейс (т.е. список декларируемых свойств и методов) и не вникать во внутреннюю реализацию.»

Таким образом, получается, что если класс A обращается к полям класса B напрямую, это приводит не к тому, что «нарушается информационная безопасность», а к тому, что класс A завязывается на внутренне устройство класса B, и попытка изменить внутреннее устройство класса B приведет к изменению класса А. Более того, класс A не просто так работает с полями класса B, он работает по некоторой бизнес-логике. То есть логика по работе с состоянием класса В лежит в классе А, и когда мы захотим переиспользовать класс В, это не удастся сделать, ведь без кусочка класса А класс В может быть бесполезным, что приведет к тому, что класс В придется отдавать вместе с классом А. Экстраполируя это на всю систему, получается, что переиспользовать можно будет только всю систему целиком.

Инкапсуляция является самым недооцененным принципом, который, к сожалению, мало кем интерпретируется правильно. Она позволяет минимизировать число связей между классами и подсистемами и, соответственно, упростить независимую реализацию и модификацию классов и подсистем.

Наследование

Наследование — это возможность порождать один класс от другого с сохранением всех свойств и методов класса-предка (суперкласса), добавляя при необходимости новые свойства и
методы.

Наследование является самым переоцененным принципом. Когда-то считалось, что «У идеального программиста дерево наследования уходит в бесконечность и заканчивается абсолютно пустым объектом», потому как когда-то люди не очень хорошо понимали то, что наследование — это способ выразить такое свойство реального мира как иерархичность, а не способ переиспользовать код, отнаследовав машину от холодильника, потому что у обоих предметов есть ручка. Наследования желательно по возможности избегать, потому что наследование является очень сильной связью. Для уменьшения количества уровней наследования рекомендуется строить дерево «снизу-вверх».

Полиморфизм

Полиморфизм — это возможность использовать классы – потомки в контексте, который был предназначен для класса – предка.

За самым садистским определением кроется возможность языка программирования для декомпозиции задачи и рефакторинга if’ов и switch’ей.

Источник

Основные принципы ООП: инкапсуляция, наследование, полиморфизм

Contents

Абстракция [ ]

Абстра́кция — в объектно-ориентированном программировании это придание объекту характеристик, которые отличают его от всех объектов, четко определяя его концептуальные границы. Основная идея состоит в том, чтобы отделить способ использования составных объектов данных от деталей их реализации в виде более простых объектов, подобно тому, как функциональная абстракция разделяет способ использования функции и деталей её реализации в терминах более примитивных функций, таким образом, данные обрабатываются функцией высокого уровня с помощью вызова функций низкого уровня.

Такой подход является основой объектно-ориентированного программирования. Это позволяет работать с объектами, не вдаваясь в особенности их реализации. В каждом конкретном случае применяется тот или иной подход: инкапсуляция, полиморфизм или наследование. Например, при необходимости обратиться к скрытым данным объекта, следует воспользоваться инкапсуляцией, создав, так называемую, функцию доступа или свойство.

Абстракция данных — популярная и в общем неверно определяемая техника программирования. Фундаментальная идея состоит в разделении несущественных деталей реализации подпрограммы и характеристик существенных для корректного ее использования. Такое разделение может быть выражено через специальный «интерфейс», сосредотачивающий описание всех возможных применений программы [1].

С точки зрения теории множеств, процесс представляет собой организацию для группы подмножеств своего множества. См. также Закон обратного отношения между содержанием и объемом понятия.

Инкапсуляция [ ]

Инкапсуляция — свойство программирования, позволяющее пользователю не задумываться о сложности реализации используемого программного компонента (что у него внутри?), а взаимодействовать с ним посредством предоставляемого интерфейса (публичных методов и членов), а также объединить и защитить жизненно важные для компонента данные. При этом пользователю предоставляется только спецификация (интерфейс) объекта.

Пользователь может взаимодействовать с объектом только через этот интерфейс. Реализуется с помощью ключевого слова: public.

Пользователь не может использовать закрытые данные и методы. Реализуется с помощью ключевых слов: private, protected, internal.))

Инкапсуляция — один из четырёх важнейших механизмов объектно-ориентированного программирования (наряду с абстракцией, полиморфизмом и наследованием).

Сокрытие реализации целесообразно применять в следующих случаях:

предельная локализация изменений при необходимости таких изменений,

прогнозируемость изменений (какие изменения в коде надо сделать для заданного изменения функциональности) и прогнозируемость последствий изменений.

Наследование [ ]

Наследование — один из четырёх важнейших механизмов объектно-ориентированного программирования (наряду с инкапсуляцией, полиморфизмом и абстракцией), позволяющий описать новый класс на основе уже существующего (родительского), при этом свойства и функциональность родительского класса заимствуются новым классом.

Другими словами, класс-наследник реализует спецификацию уже существующего класса (базовый класс). Это позволяет обращаться с объектами класса-наследника точно так же, как с объектами базового класса.

Простое наследование: [ ]

Класс, от которого произошло наследование, называется базовым или родительским (англ. base class). Классы, которые произошли от базового, называются потомками, наследниками или производными классами (англ. derived class).

В некоторых языках используются абстрактные классы. Абстрактный класс — это класс, содержащий хотя бы один абстрактный метод, он описан в программе, имеет поля, методы и не может использоваться для непосредственного создания объекта. То есть от абстрактного класса можно только наследовать. Объекты создаются только на основе производных классов, наследованных от абстрактного. Например, абстрактным классом может быть базовый класс «сотрудник вуза», от которого наследуются классы «аспирант», «профессор» и т. д. Так как производные классы имеют общие поля и функции (например, поле «год рождения»), то эти члены класса могут быть описаны в базовом классе. В программе создаются объекты на основе классов «аспирант», «профессор», но нет смысла создавать объект на основе класса «сотрудник вуза».

Множественное наследование [ ]

При множественном наследовании у класса может быть более одного предка. В этом случае класс наследует методы всех предков. Достоинства такого подхода в большей гибкости. Множественное наследование реализовано в C++. Из других языков, предоставляющих эту возможность, можно отметить Python и Эйфель. Множественное наследование поддерживается в языке UML.

Множественное наследование — потенциальный источник ошибок, которые могут возникнуть из-за наличия одинаковых имен методов в предках. В языках, которые позиционируются как наследники C++ (Java, C# и др.), от множественного наследования было решено отказаться в пользу интерфейсов. Практически всегда можно обойтись без использования данного механизма. Однако, если такая необходимость все-таки возникла, то, для разрешения конфликтов использования наследованных методов с одинаковыми именами, возможно, например, применить операцию расширения видимости — «::» — для вызова конкретного метода конкретного родителя.

Попытка решения проблемы наличия одинаковых имен методов в предках была предпринята в языке Эйфель, в котором при описании нового класса необходимо явно указывать импортируемые члены каждого из наследуемых классов и их именование в дочернем классе.

Большинство современных объектно-ориентированных языков программирования (C#, Java, Delphi и др.) поддерживают возможность одновременно наследоваться от класса-предка и реализовать методы нескольких интерфейсов одним и тем же классом. Этот механизм позволяет во многом заменить множественное наследование — методы интерфейсов необходимо переопределять явно, что исключает ошибки при наследовании функциональности одинаковых методов различных классов-предков.

Полиморфизм [ ]

Полиморфи́зм — возможность объектов с одинаковой спецификацией иметь различную реализацию.

Язык программирования поддерживает полиморфизм, если классы с одинаковой спецификацией могут иметь различную реализацию — например, реализация класса может быть изменена в процессе наследования[1].

Кратко смысл полиморфизма можно выразить фразой: «Один интерфейс, множество реализаций».

Полиморфизм — один из четырёх важнейших механизмов объектно-ориентированного программирования (наряду с абстракцией, инкапсуляцией и наследованием).

Полиморфизм позволяет писать более абстрактные программы и повысить коэффициент повторного использования кода. Общие свойства объектов объединяются в систему, которую могут называть по-разному — интерфейс, класс. Общность имеет внешнее и внутреннее выражение:

Формы полиморфизма [ ]

Используя Параметрический полиморфизм можно создавать универсальные базовые типы. В случае параметрического полиморфизма, функция реализуется для всех типов одинаково и таким образом функция реализована для произвольного типа. В параметрическом полиморфизме рассматриваются параметрические методы и типы.

Параметрические метод [ ]

Если полиморфизм включения влияет на наше восприятие объекта, то параметрический полиморфизм влияет на используемые методы, так как можно создавать методы родственных классов, откладывая объявление типов до времени выполнения. Для во избежание написания отдельного метода каждого типа применяется параметрический полиморфизм, при этом тип параметров будет являться таким же параметром, как и операнды.

Параметрические типы. [ ]

Вместо того, чтобы писать класс для каждого конкретного типа следует создать типы, которые будут реализованы во время выполнения программы то есть мы создаем параметрический тип.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *