Что такое натуральные волокна растительного происхождения
Исследование натуральных волокон на гигиенические свойства
Натуральные волокна
Натуральное волокно минерального происхождения: асбест
натуральный волокно минеральный растительный
Натуральные волокна растительного происхождения
Основным веществом, составляющим волокна растительного происхождения, является целлюлоза. Это твердое трудно растворимое вещество, состоит из звеньев С6Н10О5. Помимо целлюлозы в растительных волокнах присутствуют воски, жиры, белковые, красящие вещества и др.
Волокна минерального происхождения
К волокнам минерального происхождения относятся асбесты (наиболее широко используют хризолит-асбест), расщепляя которые получают технические волокна. Перерабатывают их (обычно в смеси с 15-20% хлопка или химических волокон) в пряжу, из которой изготовляют огнезащитные и химически стойкие ткани, фильтры и др. Непрядомое короткое асбестовое волокно используют в производстве композитов (асбопластиков), картонов и др.
Объём мирового производства природных волокон в 1980 г. составил (млн. т/год): хлопок – 14,1, лен – 0,6, джут – 3,0, прочие грубостебельные и жесткие – 1,0, шерсть (мытая) – 1,6, шелк-сырец – 0,05.
Химические волокна
Полиамидные волокна
Полиамидные волокна, во многих отношениях превосходящие по качеству все природные и искусственные волокна, завоевывают все большее и большее признание. К наиболее распространенным полиамидным волокнам, выпускаемым промышленностью, относятся капрон и нейлон. Сравнительно недавно получено полиамидное волокно энант.
Капрон – полиамидное волокно, получаемое из поликапроамида, образующегося при полимеризации капролактама (лактама аминокапроновой кислоты):
Исходный капролактам практически получается двумя путями:
Далее оксим циклогексана в кислой среде (олеум) претерпевает перегруппировку Бекмана, характерную для оксимов многих кетонов. В результате такой перегруппировки происходит разрыв углерод-углеродной связи и расширение цикла; при этом атом азота входит в цикл:
Окисление циклогексана проводят кислородом воздуха в жидкой фазе при 130-140o С и 15-20 кгс / см2 в присутствии катализатора – стеарата марганца. При этом образуются циклогексанон и циклогексанол в соотношении 1:1.
Достоинства и недостатки натуральных волокон.
Достоинства:
— Не накапливают статического электричества (не электролизуются)
— Паропроницаемы
— Воздухопроницаемы
— Гигроскопичны (т.е. хорошо впитывают влагу)
— Имеют высокие теплоизоляционные свойства (не жарко летом, не холодно зимой)
— Престижны и обычно более дороги
Недостатки:
— Легко мнутся
— Плохо держат краску (редко могут быть окрашены в яркие цвета и могут линять при стирке)
— Деформируются при носке и грубой стирке (растягиваются, меняют форму). Могут сесть при неправильной стирке.
— Впитывают влагу (при этом заметно темнеют) и долго сохнут
— Могут пилинговаться (появляются «катышки»), однако это определяется в большей степени особенностями ткани, а не волокна.
Достоинства и недостатки синтетических волокон.
Достоинства:
— Обычно имеют низкую сминаемость
— Позволяют добиться более эффектной выделки и окраски (блеск, глянец, яркие цвета)
— Мало деформируются при носке (локти, колени)
— Мало деформируются после стирки
— Могут быть эластичными, что позволяет подчеркивать фигуру и даже немного «формировать» ее
— Быстро сохнут и не темнеют от влаги
— Меньше линяют и выгорают
Недостатки:
— Синтетика обычно хуже, чем натуральные ткани пропускает влагу и воздух (более низкая паро- и воздухопроницаемость).
— Многие покупатели утверждают, что синтетика вызывает раздражения или аллергию на коже, однако это довольно редкое явление и чаще всего связано с трением жесткой тканью.
— Синтетика электролизуется. Этот недостаток легко исправить с помощью аэрозольных антистатиков или опаласкивателей
— Низкие теплозащитные свойства
Исследование на гигиенические свойства
Качества одежды зависят от многих условий и в первую очередь от свойств ткани. Взаимодействие между кожей ребенка и тканями одежды определяется гигиеническими свойствами ткани: толщиной, массой, воздухо-и паропроницаемостью, гигроскопичностью, влагоёмкостью, гидро- и липофильностью, гидрофобностью, а также теплопроводностью и тд.
Теплопроводность характеризует теплозащитные свойства материалов: чем она ниже, тем теплее материал.
Толщина тканей измеряется в миллиметрах и влияет на теплозащитные свойства ткани ( например, батист-0.1 миллиметра, драп-5 мм, натуральный мех-30-50 мм).В материалах имеющих большую толщину содержится больше воздуха, который обладает низкой теплопроводностью. Следовательно, чем толще материал, тем он теплее.
Масса ткани измеряется в граммах по отношению к единице площади материала (1 кв. м или 1 кв. см) (например, драп-77 г/кв. м, натуральный мех-1000 г/кв. м). Гигиенически оптимальной является ткань с минимальной массой и сохранением всех необходимых ей свойств.
Влагоёмкость – определяет способность тканей впитывать воду при погружении в неё, выражается в %. Свойства ткани сохранять значительную часть пор свободными после увлажнения имеет большое значение, т.к. при этом достигается определенный уровень воздухопроницаемости и меньше изменяется тепловые свойства данного материала.
Гидрофильность – отражает способность ткани быстро и полно впитывать влагу, выражается в % (например, батист, вольта, ситец > 90%, репс с водоотталкивающей пропиткой – около 0%). Высокая гидрофильность должна быть у тканей, непосредственно соприкасающихся с кожными покровами и поглощающих водяные пары с кожи.
Гидрофобность (“несмачиваемость”) – свойство противоположное гидрофильности. Высокая гидрофобность должна быть у ткани, образующих верхний слой одежды и защищающих её от снега, дождя, тумана.
Липофильность– характеризует способность тканей впитывать в себя жир с поверхности кожи, выражается в %. Высокие её свойства являются отрицательным свойством, присущим в основном синтетическим тканям, т.к. капельки жира заполняют воздушные пространства между волокнами и ухудшают тем самым физико-гигиенические свойства материалов.
Характеристикой намокаемости тканей является их водопоглощаемость и капиллярность.
Водопоглощаемость тканей характеризуется количеством поглощенной воды в процентах к массе ткани при непосредственном соприкосновении ее с водой.
Капиллярность тканей характеризуется высотой, на которую поднимается смачивающая жидкость по капиллярам.
Водоупорность ткани зависит от ее структуры и характера отделки. У тканей плотных, а также у сильно уваленных и обработанных водоупорными пропитками водоупорность выше.
К тканям различного назначения предъявляются различные требования воздухопроницаемости. Сорочечно-платьевые и бельевые ткани должны обладать наибольшей воздухопроницаемостью. Ткани для верхней и зимней одежды должны обладать ограниченной воздухопроницаемостью, должны быть ветростойкими и не допускать переохлаждения тела человека в результате проникания чрезмерного количества холодного воздуха в пододежное пространство.
Большое значение для характеристики теплозащитных свойств имеют толщина и плотность ткани. Чем выше эти показатели, тем выше теплозащитные свойства ткани.
Пылеемкость ткани зависит от структуры ткани, вида волокон и характера отделки ткани. Ткани плотные, с гладкой поверхностью загрязняются меньше, чем рыхлые, шероховатые. Больше всего загрязняются шерстяные ткани, потому что волокна шерсти имеют чешуйчатый слой, способствующий скоплению частиц пыли. Хлопчатобумажные ткани также легко загрязняются вследствие извитости волокон хлопка. Шелковые и льняные ткани загрязняются меньше, это объясняется тем, что волокна шелка и льна имеют гладкую поверхность, слабо удерживающую загрязнения. Мало загрязняются также аппретированные ткани.
Электризуемость — это способность материалов накапливать на своей поверхности статическое электричество. При трении текстильных материалов на их поверхности протекают одновременно два процесса: процесс возникновения зарядов статического электричества определенной полярности и процесс рассеивания зарядов. Когда равновесие между этими процессами нарушается, происходит электризация.
Электризуемость текстильных материалов имеет суточные и сезонные колебания, связанные с ионизацией атмосферы. Например, летом электризуемость материалов выше, так как солнечная активность в этот период сильнее. В большинстве случаев электризуемость текстильных материалов представляет собой отрицательное явление: она осложняет технологические процессы производства материалов и изготовления из них швейных изделий. Электризуемость материалов в одежде при ее носке вызывает у человека неприятные ощущения, прилипание изделия к телу, быстрое загрязнение в результате прилипания частиц пыли и т.д. Кроме того, оказывает биологические воздействия на человеческий организм. Однако механизм этих воздействий еще до конца не выяснен. Известно, что положительное электрическое поле на поверхности кожи человека вызывает ряд патологических реакций. Отрицательное электрическое поле оказывает благоприятное воздействие на организм.
Правила при работе с кислотами и щелочами
Используемые для работы концентрированные азотная, серная, соляная кислоты должны храниться в вытяжном шкафу в стеклянной посуде емкостью не более 2 куб. дм. В местах хранения кислот недопустимо нахождение легковоспламеняющихся веществ.
Работа с плавиковой кислотой требует особой осторожности и проводится обязательно в вытяжном шкафу. Хранить плавиковую кислоту необходимо в полиэтиленовой таре.
Переносить бутыли с кислотами разрешается вдвоем и только в корзинах, промежутки в которых заполнены стружкой или соломой. Более мелкие емкости с концентрированными кислотами и щелочами следует переносить в таре, предохраняющей от ожогов (специальные ящики с ручкой).
Концентрированные кислоты, щелочи и другие едкие жидкости следует переливать при помощи специальных сифонов с грушей или других нагнетательных средств.
Для приготовления растворов серной, азотной и других кислот их необходимо приливать в воду тонкой струей при непрерывном помешивании. Для этого используют термостойкую посуду, так как процесс растворения сопровождается сильным разогреванием.
Приливать воду в кислоты запрещается!
Пролитую кислоту следует засыпать песком. После уборки песка место, где была разлита кислота, посыпают известью или содой, а затем промывают водой.
Пролитые концентрированные растворы едкого натра, едкого калия и аммиака можно засыпать как песком, так и древесными опилками, а после их удаления обработать место слабым раствором уксусной кислоты.
Использованную химическую посуду и приборы, содержащие кислоты, щелочи и другие едкие вещества, перед сдачей на мойку необходимо освободить от остатков и обязательно ополоснуть водопроводной водой.
Нанотехнологии
Наноматериалы в текстиле. Текстиль на основе наноматериалов приобретает уникальные по своим показателям водонепроницаемость, грязеотталкивание, теплопроводность, способность проводить электричество и другие свойства.
Наноматериалы могут иметь в своем составе наночастицы, нановолокна и другие добавки. Например, компания Nano-Tex успешно производит ткани, улучшенные с помощью нанотехнологий. Одна из таких тканей обеспечивает абсолютную водонепроницаемость : благодаря изменению молекулярной структуры волокон, капли воды полностью скатываются с полотна, которое при этом «дышит».
Биомиметика в текстиле. В современных нанотехнологих широко используется прием, назвываемый биомиметикой, суть котрого состоит в том, чтобы «подсмотреть» и повторить успешное рещение проблемы, которое использует сама природа. Так были получены ткани-«липучки», принцип действия которых был взят у геккона, сверхпрочные нити и «самоочищающаяся» ткань, секрет которой подсказал цветок лотоса. Ниже мы расскажем подробнее об этих достижениях.
Исследователи повторили этот механизм, нанеся разработанное покрытие на волокна ткани. Для этого ткань обработали специальным связующим полимером (полиглицидилом метакрилатом), который затем покрыли наночастицами серебра, остановив на них свой выбор из-за их противомикробного действия. Далее на поверхности наночастиц был выращен еще один полимерный гидрофобный слой, который отталкивает капли воды, заставляя их катиться по ткани и собирать грязь. Покрытие устойчиво и не разрушается при очистке и механическом воздействии.
Созданная ткань, использующая этот принцип, даже если ее пытаться сильно испачкать, будет отталкивать большинство мокрой грязи. А оставшуюся можно будет легко смыть обычной водой. Использование различных наночастиц в составе нового покрытия, безвердного для окружающей среды, позволит ткани приобрести ряд полезных свойств: от поглощения неприятных запахов до уничтожения микроорганизмов.
Новое запатентованное покрытие пока не имеет официального названия. Его можно нанести практически на любую ткань, включая шелк, полиэфир и хлопок. Однако технологический процесс достаточно сложен и не может быть реализован в промышленности, пока не будет создан простой и надежный принцип обработки ткани в несколько этапов.
Производство нановолокон
Нановолокна можно производить, наполняя традиционные волокнообразующие полимеры отличающимися по конфигурации наночастицами различных веществ или путем выработки ультратонких (диаметром в рамках наноразмеров) волокон.
Наполненные наночастицами волокна начали производить с 1990 года. Такие волокна малоусадочны, имеют пониженную горючесть, повышенную прочность на разрыв и истирание и в зависимости от природы вводимых наночастиц могут приобретать другие защитные свойства, требующиеся человеку.
В качестве наполнителей волокон широко используют углеродные нанотрубки с одной или несколькими стенками. Волокна, наполненные нанотрубками, приобретают уникальные свойства – они в 6 раз прочнее стали и в 100 раз легче ее. Наполнение волокон углеродными наночастицами на 5-20% от массы придает им также сопоставимую с медью электропроводность и химическую устойчивость к действию многих реагентов.
Углеродные нанотрубки используются в качестве армирующих структур, блоков для получения материалов с высокими прочностными свойствами: экранов дисплеев, сенсоров, хранилищ жидкого топлива, воздушных зондов и т.д. Например, при наполнении углеродными нанотрубками поливинилспиртового волокна, получаемого по коагуляционной технологии прядения, оно становится в 120 раз выносливее, чем стальная проволока и в 17 раз легче, чем волокно Кевлар (самое известное и прочное арамидное химволокно, получаемое по традиционной технологии и используемое в бронежилетах). Подобные нановолокна уже сейчас начинают применять для производства взрывозащищающей одежды и одеял, защиты от электромагнитных излучений.
Очень ценные и полезные свойства химические волокна приобретают при наполнении их наночастицами глинозема. Наночастицы глинозема в виде мельчайших хлопьев обеспечивают высокую электро- и теплопроводность, химическую активность, защиту от УФ-излучения, огнезащиту и высокую механическую прочность. У полиамидных волокон, содержащих 5% наночастиц глинозема, на 40% повышается разрывная нагрузка и на 60% – прочность на изгиб. Такие волокна используют в производстве средств защиты от ударов, например защитных касок. Известно, что полипропиленовые волокна очень трудно окрашиваются, что существенно ограничивает область их применения в производстве материалов бытового назначения. Введение 15% наночастиц глинозема в структуру полипропиленовых волокон обеспечивает возможность крашения их различными классами красителей с получением окрасок глубоких тонов.
Интенсивно развиваются исследования и производство синтетических волокон, наполненных наночастицами оксидов металлов: ТiO2, Al2O3, ZnO, MgО. Волокна приобретают следующие свойства:
— фотокаталитическую активность;
— УФ-защиту;
— антимикробные свойства;
— электропроводность;
— грязеотталкивающие свойства;
— фотоокислительную способность в различных химических и биологических условиях.
Еще одним интересным направлением в производстве нановолокон является придание им ячеистой, пористой структуры с наноразмерами пор. При этом достигается резкое снижение удельной массы (получение легких материалов), хорошая теплоизоляция, устойчивость к растрескиванию. Образующиеся нанопоры волокон могут быть заполнены различными жидкими, твердыми и даже газообразными веществами с различным функциональным назначением (медицина, ароматизация текстильных полотен, биологическая защита).
Другой тип нановолокон – ультратонкие волокна, диаметр которых не превышает 100 нм. Эта тонина обеспечивает высокое значение удельной поверхности и, как следствие, высокое удельное содержание функциональных групп. Последнее обеспечивает хорошую сорбционную способность и каталитическую активность материалов из подобных волокон.
В Европе (Англия, Франция), США, Израиле и Японии параллельно идут интенсивные работы по созданию синтетических белковых волокон, имитирующих структуру паутины, имеющей непревзойденные физико-механические свойства. Используя для выработки подобного белка другие продуценты (микроорганизмы, растения), удалось получить полимерные белковые нановолокна толщиной около 100 нм. Мягкий и сверхпрочный «паучий шелк» сможет заменить жесткий и негибкий кевлар в бронежилетах. Области применения «паучьего шелка» разнообразны: это и хирургические нити, и невесомые и чрезвычайно прочные бронежилеты, и легкие удочки, и рыболовные снасти. Пока речь идет о малых партиях, но нанотехнологии развиваются столь бурно и стремительно, что промышленного выпуска изделий, изготовленных из «паучьего шелка», ждать недолго.
Наноматериалы в текстиле Текстиль на основе наноматериалов приобретает уникальные по своим показателям водонепроницаемость, грязеотталкивание, теплопроводность, способность проводить электричество и другие свойства. Наноматериалы могут иметь в своем составе наночастицы, нановолокна и другие добавки. Например, компания Nano-Tex успешно производит ткани, улучшенные с помощью нанотехнологий. Одна из таких тканей обеспечивает абсолютную водонепроницаемость: благодаря изменению молекулярной структуры волокон, капли воды полностью скатываются с полотна, которое при этом «дышит». ПомимоLevi Strauss, ткани использует в своей джинсовой одежде и элементах обуви, в частности, компания Dockers. А американская компания NanoSonic разработала уникальную технологию, позволяющую создавать материалы с невозможными в природе свойствами, в частности, листы полимера, гибкие и упругие, как резина, и проводящие ток, как металл. Новый продукт назвали Metall Rubber – металлизированная резина. Процесс производства Metall Rubber называется электростатической самосборкой. Для его реализации компания даже создала специального робота, ускоряющего создание образцов. Дело в том, что наращивание пластины или какой-либо иной детали из металлического каучука идет буквально по молекулам. Новый материал выдерживает многократное скручивание, нагрев до 200°С и агрессивные химические среды. Компания надеется, что металлический каучук найдет применение в различных областях техники: от аэрокосмической отрасли до электроники, в том числе и в изготовлении текстиля для спецодежды (рис. 1). Из «горячих новинок» текстильного нанорынка следует отметить утеплительный материал Aspen’s Pyrogel AR5401, изготовленный на основе полимерного материала с нанопорами. Благодаря им материал ведет себя как хороший теплоизолятор. Компания Aspen Aerogels в марте 2004 г. начала производство из нового материала утепляющих стелек для обуви. Эти стельки заказывали: команда, выигравшая в 2004 г. марафон к Северному полюсу, одна из канадских лыжных команд и элитное спецподразделение армии США. Отзывы заказчиков о продукте были схожими: это универсальное решение для работы в экстремальных условиях (рис. 2). Новый изолятор сохраняет тепло лучше, чем все существующие современные материалы. По сравнению с ними его тепловые характеристики при одинаковой толщине образцов улучшились с 3 до 20 раз. Не удивительно, что при таких показателях изделия из нового теплоизолятора обладают минимальной материалоемкостью. Так, в армейской обуви слой стелек из Pyrogel AR5401 составил всего 2,5 мм в толщину.
Заключение
Важной составной частью личной гигиены является гигиена одежды.
По выражению Ф. Ф. Эрисмана, одежда является своеобразным кольцом защиты от неблагоприятных природных условий, механических воздействий, предохраняет поверхность тела от загрязнения, избыточного солнечного излучения, других неблагоприятных факторов бытовой и производственной среды.
В настоящее время в понятие пакета одежды входят следующие основные компоненты: белье (1-й слой), костюмы и платья (2-й слой), верхняя одежда (3-й слой).
По назначению и характеру использования различают одежду бытовую, профессиональную (спецодежду), спортивную, военную, больничную, обрядовую и т. д.
Повседневная одежда должна соответствовать следующим основным гигиеническим требованиям:
1) обеспечивать оптимальный пододежный микроклимат и способствовать тепловому комфорту;
2) не затруднять дыхание, кровообращение и движения, не смещать и не сдавливать внутренние органы, не нарушать функций опорно-двигательного аппарата;
3) быть достаточно прочной, легко очищаться от внешних и внутренних загрязнений;
4) не содержать выделяющихся во внешнюю среду токсических химических примесей, не обладать неблагоприятно влияющими на кожу и человеческий организм в целом физическими и химическими свойствами;
5) иметь сравнительно небольшую массу (до 8—10 % массы тела человека).
Важнейшим показателем качества одежды и ее гигиенических свойств является пододежный микроклимат. При температуре окружающей среды 18—22 °С рекомендуются следующие параметры пододежного микроклимата: температура воздуха – 32,5—34,5 °С, относительная влажность – 55—60 %.
Гигиенические свойства одежды зависят от сочетания ряда факторов. Главные из них – вид ткани, характер ее выделки, покрой одежды. Для изготовления ткани используются различные волокна – натуральные, химические искусственные и синтетические. Натуральные волокна могут быть органическими (растительными, животными) и неорганическими. К растительным (целлюлозным) органическим волокнам относятся хлопок, лен, сизаль, джут, пенька и прочие, к органическим волокнам животного происхождения (белковым) – шерсть и шелк. Для изготовления некоторых видов спецодежды могут использоваться неорганические (минеральные) волокна, например асбест.
В последние годы все большее значение приобретают химические волокна, которые также подразделяют на органические и неорганические. Основную группу волокон химического происхождения составляют органические. Они могут быть искусственными и синтетическими. К искусственным волокнам относятся вискозные, ацетатные, триацетатные, казеиновые и т. д. Их получают при химической переработке целлюлозы и других исходных материалов природного происхождения.
Синтетические волокна получают путем химического синтеза из нефти, угля, газа и другого органического сырья. По происхождению и химической структуре выделяют гетероцидные и карбоцидные синтетические волокна. К гетероцидным относятся полиамидные (капрон, нейлон, перлон, ксилон и др.), полиэфирные (лавсан, терилен, дакрон), полиуретановые, к карбицидным – поливинилхлоридные (хлорин, винол), поливинилспиртовые (винилон, куралон), полиакрилнитрильные (нитрон, орлон).
Гигиенические достоинства или недостатки тех или иных тканей прежде всего зависят от физико-химических свойств исходных волокон. Наиболее важное гигиеническое значение из этих свойств имеют воздухо-, паропроницаемость, влагоемкость, гигроскопичность, теплопроводность.
Воздухопроницаемость характеризует способность ткани пропускать через свои поры воздух, от чего зависят вентиляция пододежного пространства, конвекционная отдача тепла с поверхности тела. Воздухопроницаемость ткани зависит от ее структуры, пористости, толщины и степени увлажнения. Воздухопроницаемость тесно связана со способностью ткани поглощать воду. Чем быстрее заполняются влагой поры ткани, тем менее воздухопроводной она становится. При определении степени воздухопроницаемости стандартным считается давление 49 Па (5 мм вод.ст.).
Воздухопроницаемость тканей бытового назначения колеблется от 2 до 60 000 л/м 2 при давлении 1 мм вод.ст. По степени воздухопроницаемости различают ткани ветрозащитные (воздухопроницаемость 3,57—25 л/м 2 ) с малой, средней, высокой и очень высокой воздухопроницаемостью (более 1250,1 л/м 2 ).
Паропроницаемость характеризует способность ткани пропускать через поры водяные пары. Абсолютная паропроницаемость характеризуется количеством водяных паров (мг), проходящих в течение 1 ч через 2 см 2 ткани при температуре 20 °С и относительной влажности 60 %. Относительная паропроницаемость – процентное отношение количества водяных паров, прошедших через ткань, к количеству воды, испарившейся из открытого сосуда. Для различных тканей этот показатель колебания от 15 до 60 %.
Испарение пота с поверхности тела – один из главных способов теплоотдачи. В условиях теплового комфорта с поверхности кожи в течение 1 ч испаряется 40—50 г влаги. Выделение пота более 150 г/ч сопряжено с тепловым дискомфортом. Такой дискомфорт возникает и при давлении пара в пододежном пространстве свыше 2 Гпа. Поэтому хорошаяпаропроницаемость ткани является одним из факторов обеспечения теплового комфорта.
Удаление влаги через одежду возможно путем диффузии водяных паров, испарения с поверхности увлажненной одежды либо испарения конденсата пота из слоев этой одежды. Наиболее предпочтительным путем удаления влаги является диффузия водяных паров (другие пути увеличивают теплопроводность, снижают воздухопроницаемость, уменьшают пористость).
Одним из наиболее важных в гигиеническом отношении свойств ткани является ее гигроскопичность, характеризующая способность волокон ткани поглощать водяные пары их воздуха и с поверхности тела и удерживать их при определенных условиях. Наибольшей гигроскопичностью обладают шерстяные ткани (20 % и более), что позволяет им сохранить высокие теплозащитные свойства даже при увлажнении. Минимальной гигроскопичностью обладают синтетические ткани. Важной характеристикой тканей (особенно используемой для изготовления белья, рубашечно-платьевых изделий, полотенец) является их способность впитывать капельно-жидкую влагу. Оценивают эту способность по капиллярности ткани. Наиболее высокая капиллярность у хлопковых и льняных тканей (110—120 мм/ч и более).
В обычных температурно-влажностных условиях хлопчатобумажные ткани удерживают 7—9 %, льняные – 9—11 %, шерстяные – 12—16 %, ацетатные – 4—5 %, вискозные – 11—13 %, капроновые – 2—4 %, лавсановые – 1 %, хлориновые – менее 0,1 % влаги.
В качестве единицы теплозащитной способности ткани (способность снижать плотность теплового потока) принята величина сlо (от англ. сlothes – «одежда»), которая характеризует теплоизоляцию комнатной одежды, равную 0,18 °С м/ 2 ч/ккал. Одна единица сlо обеспечивает состояние теплового комфорта, если теплообразование спокойно сидящего человека составляет примерно 50 ккал/м 2 ч, а окружающий микроклимат характеризуется температурой воздуха в 21 °С, относительной влажностью 50 %, скоростью движения воздуха 0,1 м/с.
Влажная ткань обладает высокой теплоемкостью и потому значительно быстрее поглощает тепло от тела, способствуя его охлаждению и переохлаждению.
Помимо перечисленных, важное гигиеническое значение имеют такие свойства ткани, как способность пропускать ультрафиолетовое излучение, отражать видимое излучение, время испарения влаги с поверхности тела. Степень прозрачности синтетических тканей для УФ-излучения составляет 70 %, для других тканей эта величина значительно меньше (0,1—0,2 %).
Основным гигиеническим достоинством тканей из натуральных волокон является их высокая гигроскопичность и хорошая воздухопроводность. Именно поэтому хлопчатобумажные и льняные ткани используют для изготовления белья и бельевых изделий. Особенно велики гигиенические достоинства шерстяных тканей – их пористость составляет 75—85 %, у них высокая гигроскопичность.
Вискозные, ацетатные и триацетатные ткани, получаемые путем химической обработки древесной целлюлозы, характеризуются высокой способностью сорбировать на своей поверхности водяные пары, они обладают высокой влагопоглощаемостью. Однако для вискозных тканей характерна длительная испаряемость, что вызывает значительные теплопотери с поверхности кожи и может привести к переохлаждению.
Ацетатные ткани по своим свойствам близки к вискозным. Однако их гигроскопичность и влагоемкость значительно ниже, чем у вискозных, при их носке образуются электростатические заряды.
Особое внимание гигиенистов в последние годы привлекают синтетические ткани. В настоящее время более 50 % видов одежды изготавливаются с их применением. Эти ткани имеют ряд достоинств: они имеют хорошую механическую прочность, устойчивы к истиранию, воздействию химических и биологических факторов, обладают антибактериальными свойствами, эластичностью и т. д. К недостаткам следует отнести низкую гигроскопичность и, как следствие, – пот не впитывается волокнами, а скапливается в воздушных порах, ухудшая воздухообмен и теплозащитные свойства ткани. При высокой температуре окружающей среды создаются условия для перегрева организма, а при низкой – для переохлаждения. Синтетические ткани способности поглощать воду в 20—30 раз меньше, чем шерстяные. Чем выше влагопроницаемость ткани, тем хуже ее теплозащитные свойства. Кроме того, синтетические ткани способны удерживать неприятные запахи, хуже отстирываются, чем натуральные. Возможны деструкция компонентов волокон вследствие их химической нестабильности и миграция соединений хлора и других веществ в окружающую среду и пододежное пространство. Миграция, например, формальдегидсодержащих веществ продолжается в течение нескольких месяцев и способна создавать концентрацию, в несколько раз превышающую ПДК для атмосферного воздуха. Это может привести к кожно-резорбтивному, раздражающему и аллергенному воздействию.
Электростатическое напряжение при ношении одежды из синтетических тканей может быть до 4—5 кВ/см при норме не более 250—300 В/см. Не следует использовать синтетические ткани для белья новорожденных, детей ясельного, дошкольного и младшего школьного возраста. При изготовлении ползунков и колготок допускается добавление не боле 20 % синтетических и ацетатных волоко
Выводы из моей работы
Итак, прочитав различную литературу об истории, видах и свойствах шерсти, я добилась поставленной цели и доказала гипотезу своей исследовательской работы о том, что шерсть овцы имеет не только целебное и оздоровительное свойство, но и является доступным и универсальным материалом в применении даже в домашних условиях.
Овечья шерсть определенно является одним из первых материалов, который человек научился применять себе на пользу.
Можно получить так называемые грубые шерстяные изделия эту в первую очередь всем известные валенки.
Особенно хороши шерстяные вязаные изделия. Они обладают не только красотой привлекательностью, но и сделанные из натуральных шерстяных ниток очень хорошо согревают в холодное время года и легко отводят влагу от тела.
Я рада, что у меня тема проекта очень важна для севременого мира и дляменя. Сама, в домашних условиях, исследовала ткани на гигиенические свойства. В процессе изготовления я пришла к выводу, что любое рукоделие – это кропотливый труд, который требует немало умения, терпения и фантазии. На примере бабушки я поняла, что к любому делу надо относиться добросовестно.
Перспектива дальнейшей деятельности: в будущем я продолжу заниматься своим новым увлечением, и планирую научиться вязать вещи не только для кукол, но и для себя и моих близких. Возможно, сошью стеганое шерстяное одеяло для сестренки. Мне хотелось бы не только самой вязать и делать красивые и полезные вещи, но и научить этому своих подруг.