Что такое назначение телескопа формула
Помогите с таблицей по астрономии, пожалуйста
1.назначение- определение:
Назначение телескопа. Телескопы бывают самыми разными – оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения ИСЗ), радиотелескопы, инфракрасные, нейтринные, рентгеновские.
1.назначение формулы:
Устройство телескопа-рефрактора Для таких условий проницающую силу можно определить по формуле.
2.разрешающая способность определение : телескопа теоретически ограничена тем, что вследствие дифракции света на краю объектива изображение даже точечного источника представляет собой кружок конечного размера.
2.разрешающая способность формула : Разрешающая способность телескопа — наименьший угол между такими двумя близкими звездами, когда они уже видны как две, а не сливаются зрительно в одну. Проще говоря, под разрешающей способностью можно понимать «чёткость» изображения (да простят меня профессионалы-оптики.
3. угловой диаметр дифракционного диска определение:Из-за явления дифракции на краях объектива звезды видны в телескоп в виде дифракционных дисков, окруженных несколькими кольцами убывающей интенсивности.
3.угловой диаметр дифракционного диска формула :Угловой диаметр дифракционного диска:
где l — длина световой волны и D — диаметр объектива
4.увеличение телескопа определение: мы можем менять кратностьувеличения телескопа.
4. увеличение телескопа формула :Кратность увеличения = F/f, где F — фокусное расстояние объектива, f — фокусное расстояние окуляра. Фокусное расстояние телескопа (F) — мы изменить не можем, но имея сменные окуляры с разным фокусным расстоянием (f)
Формулы для расчёта телескопа
Основные формулы, показывающие на что примерно способен телескоп.
Не забывайте только, что это теория, на деле всё сильно зависит от качества изделия, правильности настройки и состояния атмосферы.
Кратность или увеличение телескопа (Г)
Максимальное увеличение (Г max)
Светосила
Светосила телескопа определяется в виде отношения D:F. Если не особо заморачиваться, то чем меньше это отношение, тем лучше телескоп подходит для наблюдения галактик и туманностей (например 1:5). А более длиннофокусный телескоп с соотношением вроде 1:12 лучше подходит для наблюдения Луны.
Разрешающая способность (b)
Из сказанного выше видно, что в обычных условиях минимальная разрешающая способность в 1″ достигается при апертуре 150мм у рефлекторов и около 125мм у планетников-рефракторов. Более апертуристые телескопы дают более чёткое изображение только в теории, ну или высоко в горах, где чистая атмосфера, либо в те редкие дни, когда «с погодой везёт».
Однако, не забывайте, что чем больше телескоп, тем ярче изображение, тем виднее более тусклые детали и объекты. Поэтому, с точки зрения обычного наблюдателя, изображение у больших телескопов всё равно оказывается лучше, чем у маленьких.
Вдобавок, в короткие промежутки времени атмосфера над вами может успокоиться настолько, что большой телескоп покажет картинку более чёткую, чем при том самом пределе в 1″, а вот маленький телескоп упрётся в это ограничение и будет очень обидно.
Так что, нет особого смысла ограничиваться 150-ю миллиметрами 😉
Предельная звёздная величина (m)
Приведу для справки таблицу соответствия апертуры телескопа D и предельной звёздной величины:
D, мм | m | D, мм | m |
---|---|---|---|
32 | 9,6 | 132 | 12.7 |
50 | 10,6 | 150 | 13 |
60 | 11 | 200 | 13,6 |
70 | 11,3 | 250 | 14,1 |
80 | 11,6 | 300 | 14,5 |
90 | 11,9 | 350 | 14,8 |
114 | 12,4 | 400 | 15,1 |
125 | 12,6 | 500 | 15,6 |
Выходной зрачок
Поле зрения телескопа
Поле зрения телескопа = поле зрения окуляра / Г
Поле зрения окуляра указано в его паспорте, а увеличение Г телескопа с данным окуляром мы уже знаем как расчитать: Г=F/f.
Чем полезно знание поля зрения телескопа?
Чем больше поле зрения телескопа, тем больший кусок неба виден, но тем мельче объекты.
Зная какое поле (угол) захватит ваш телескоп при заданном увеличении, и зная уговые размеры искомого объекта, можно прикинуть какую часть поля зрения займёт этот объект, то есть прикинуть общий вид того, что вы увидите в окуляре.
Если вы ищете объект не по координатам, а по картам, то полезно сделать из проволоки колечки, которые соответствуют на карте угловым полям зрения ваших окуляров в составе данного телескопа. Тогда гораздо легче ориентироваться: двигая телескоп от звезды к звезде и одновременно перемещая колечко на карте, вы легко можете сверять оба изображения.
Теперь, когда примерно ясна взаимосвязь характеристик телескопа, можно другими глазами посмотреть на то, что можно увидеть в телескопы разных размеров.
Владимир, 19 июля 2020 г.
Владимир, юмор оценил, разработками шпионского оборудования не занимаюсь 🙂
Николай, 19 July, 2020
Как решить эту задачу,не понимаю.
Фотоаппаратом с фокусным расстоянием объектива 9 см фотографировали далекие предметы на максимально близком для данного аппарата расстоянии 81 см. Определить, на сколько при этом пришлось выдвинуть вперед объектив.
Матвей, 25 июня 2020 г.
В таком виде я тоже условие не понимаю. Но, если предположить, что в задаче пропущено, что сначала просто фоткали далёкие предметы, а потом на максимально близком для данного фотоаппарата, то это похоже на задачу на формулу тонкой линзы:
1/f2 = 1/F-1/d2 = 1/9-1/81 = 9/81-1/81 = 8/81;
f2 = 81/8 = 10.125 см
f2-f1= 10.125-9 = 1.125см
Если что, я не виноват 🙂
Николай, 26 June, 2020
Как определить (по какой формуле) диапазон телескопа, если он необходим для наблюдения за звездами с атмосферной температурой, например, 10000:К?
Елена, 22 мая 2020 г.
Николай, 26 May, 2020
Максим, 30 апреля 2020 г.
Николай, 12 May, 2020
А мой телескоп наверное самый такой простой. Levenhuk Skyline 76*700AZ очень обидно то,что я могу посмотреть только окружность звезды я середина её тёмная. почему?ответьте если можно.
Татьяна, 16 февраля 2020 г.
Николай, 16 February, 2020
Елена Александровна, 16 августа 2019 г.
Николай, 16 August, 2019
Большое спасибо за статью и другие статьи вашего сайта, очень понятно и подробно, спасибо.
Александр, 16 августа 2019 г.
Пожалуйста. Спрашивайте, если что 🙂
Николай, 16 August, 2019
Замечательная статья. Благодарю. Celestron 120/1000 OMNI
Андрей, 24 ноября 2018 г.
Очень интересно и подробно всё описано. Для меня это очень нужная статья, т.к. недавно начал заниматься астрономией. Мой телескоп: Sturman HQ1400150EQ. Спасибо вам большое!
Виктор, 9 ноября 2018 г.
Что такое назначение телескопа формула
К оптическим телескопам относят, прежде всего, рефракторы и рефлекторы.
Самый большой рефрактор в мире, который находится в Йеркской обсерватории в США, имеет линзу диаметром в 1 м. Линза с большим диаметром была бы слишком тяжела и сложна в изготовлении.
Основным элементом рефлектора является зеркало – отражающая поверхность сферической, параболической или гиперболической формы. Обычно оно делается из стеклянной или кварцевой заготовки круглой формы и затем покрывается отражающим покрытием (тонкий слой серебра или алюминия). Точность изготовления поверхности зеркала, т.е. максимально допустимые отклонения от заданной формы, зависит от длины волны света, на которой будет работать зеркало. Точность должна быть лучше, чем /8. К примеру, зеркало, работающее в видимом свете (длина волны = 0,5 микрона), должно быть изготовлено с точностью 0,06 мкм (0,00006 мм).
Важнейшими характеристиками телескопа (помимо его оптической схемы, диаметра объектива и фокусного расстояния) являются проницающая сила, разрешающая способность, относительное отверстие и угловое увеличение.
Проницающая сила телескоп а характеризуется предельной звездной величиной самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле:
где – диаметр объектива в миллиметрах.
| ||||||||||||
Таблица 2.2.2.1 |
Разрешающая способность – минимальный угол между двумя звездами, видимыми раздельно. Если невооруженным глазом можно различить две звезды с угловым расстоянием не менее 2′, то телескоп позволяет уменьшить этот предел в Γ раз. Ограничение на предельное увеличение накладывает явление дифракции – огибание световыми волнами краев объектива. Из-за дифракции вместо изображения точки получаются кольца. Угловой размер центрального пятна (теоретическое угловое разрешение)
|
Разрешающая способность может вычисляться по формуле:
|
где – разрешение в секундах, – диаметр объектива в миллиметрах.
Относительное отверстие – отношения диаметра к фокусному расстоянию :
|
У телескопов для визуальных наблюдений типичное значение относительного отверстия 1/10 и меньше. У современных телескопов она равна 1/4 и больше.
Угловое увеличение (или просто увеличение) показывает, во сколько раз угол, под которым виден объект при наблюдении в телескоп, больше, чем при наблюдении глазом. Увеличение равно отношению фокусных расстояний объектива и окуляра:
Назначение телескопа
Хроматическая аберрация создает радужный ореол вокруг звезды. Хроматическая аберрация характерна для всех преломляющих оптических приборов. Возникает из-за того, что коэффициент
Назначение телескопа
Математика и статистика
Другие материалы по предмету
Телескопы бывают самыми разными оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения ИСЗ), радиотелескопы, инфракрасные, нейтринные, рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи:
1) создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.)
2) собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.
Оптические телескопы типы и устройство.
Параллельные лучи света (например, от звезды) падают на объектив. Объектив строит изображение в фокальной плоскости. Лучи света, параллельные главной оптической оси, собираются в фокусе F, лежащем на этой оси. Другие пучки света собираются вблизи фокуса выше или ниже. Это изображение с помощью окуляра рассматривает наблюдатель. Диаметры входного и выходного пучков сильно различаются (входной имеет диаметр объектива, а выходной диаметр изображения объектива, построенного окуляром). В правильно настроенном телескопе весь свет, собранный объективом, попадает в зрачок наблюдателя.
При этом выигрыш пропорционален квадрату отношения диаметров объектива и зрачка. Для крупных телескопов эта величина составляет десятки тысяч раз. Так решается одна из основных задач телескопа собрать больше света от наблюдаемых объектов. Если речь идет о фотографическом телескопе астрографе, то в нем увеличивается освещенность фотопластинки. Вторая задача телескопа увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать угол характеризуется увеличением телескопа. Оно равно отношению фокусных расстояний объектива F и окуляра f. Первый телескоп появился в начале XVII века. История телескопа. Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем. Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение. Он позволил сделать целую серию замечательных открытий (фазы Венеры, горы на Луне, спутники Юпитера, пятна на Солнце, звезды в Млечном Пути). Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы. Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения.
Телескопы Галилея (Музей истории науки, Флоренция). Два телескопа укреплены на музейной подставке, В центре виньетки разбитый объектив от первого телескопа Галилея.
Телескоп Гевелия. Телескоп Гевелия имел длину 50 м и подвешивался системой канатов на столбе. Телескоп Озу имел длину 98 метров. При этом он не имел трубы, объектив располагался на столбе на расстоянии почти 100 метров от окуляра, который наблюдатель держал в руках (так называемый воздушный телескоп). Наблюдать с таким телескопом было очень неудобно. Озу не сделал ни одного открытия. Христиан Гюйгенс, наблюдая в 64-метровый воздушный телескоп, открыл кольцо Сатурна и его спутник Титан, а также заметил полосы на диске Юпитера. Другой крупный астроном того времени, Жан Кассини, с помощью воздушных телескопов открыл еще четыре спутника Сатурна (Япет, Рея, Диона, Тефия), щель в кольце Сатурна (щель Кассини), «моря» и полярные шапки на Марсе. В 1663 году Грегори создал новую схему телескопа-рефлектора. Грегори первым предложил использовать в телескопе вместо линзы зеркало. Основная аберрация линзовых объективов хроматическая полностью отсутствует в зеркальном телескопе.
Первый в мире телескоп-рефлектор.
Первый телескоп-рефлектор был построен Исааком Ньютоном в 1668 году. Схема, по которой он был построен, получила название «схема Ньютона». Длина телескопа составляла 15 см.
Телескоп ШмидтаКассергена (см. изображение справа) очень популярен среди астрономов-любителей. 1672 году Кассегрен предложил схему двухзеркальной системы, вскоре ставшую наиболее популярной. Первое зеркало было параболическим, второе имело форму выпуклого гиперболоида и располагалось перед фокусом первого. В настоящее время практически все телескопы являются зеркальными. Сначала зеркала делали из металлических заготовок. Сейчас их изготавливают из стекла, а затем наносят на поверхность тонкий слой серебра (используется в основном любителями) или алюминия, который напыляется в вакууме.
Телескоп им. Кека совместный проект Калифорнийского технологического института и Калифорнийского университета. Самый большой в мире зеркальный телескоп им. Кека имеет диаметр 10 м и находится на Гавайских островах. В России на Кавказе работает телескоп БТА размером 6 м.
К оптическим телескопам относят, прежде всего, рефракторы и рефлекторы. Главная часть простейшего рефрактора объектив двояковыпуклая линза, установленная в передней части телескопа. Объектив собирает излучение. Чем больше размеры объектива D, тем больше собирает излучения телескоп, тем более слабые источники могут быть обнаружены им. Чтобы избежать хроматической аберрации, линзовые объективы делают составными. Однако в случаях, когда требуется свести к минимуму рассеяние в системе, приходится использовать и одиночную линзу. Расстояние от объектива до главного фокуса называется главным фокусным расстоянием F. Самый большой рефрактор в мире, который находится в Йеркской обсерватории в США, имеет линзу диаметром в 1 м. Линза с большим диаметром была бы слишком тяжела и сложна в изготовлении.
Рефрактор Йеркской обсерватории в США.
Основным элементом рефлектора является зеркало отражающая поверхность сферической, параболической или гиперболической формы. Обычно оно делается из стеклянной или кварцевой заготовки круглой формы и затем покрывается отражающим покрытием (тонкий слой серебра или алюминия). Точность изготовления поверхности зеркала, т.е. максимально допустимые отклонения от заданной формы, зависит от длины волны света, на которой будет работать зеркало. Точность должна быть лучше, чем λ/8. К примеру, зеркало, работающее в видимом свете (длина волны λ = 0,5 микрона), должно быть изготовлено с точностью 0,06 мкм (0,00006 мм). Обращенная к глазу наблюдателя оптическая система называется окуляром. В простейшем случае окуляр может состоять только из одной положительной линзы (в этом случае мы получим сильно искаженное хроматической аберрацией изображение). Важнейшими характеристиками телескопа (помимо его оптической схемы, диаметра объектива и фокусного расстояния) являются проницающая сила, разрешающая способность, относительное отверстие и угловое увеличение. Проницающая сила телескопа характеризуется предельной звездной величиной m самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле: m = 2,1 + 5 lgD, где D диаметр объектива в миллиметрах.
Диаметр объектива, ммПредельная звездная величина
Разрешающая способность минимальный угол между двумя звездами, видимыми раздельно. Если невооруженным глазом можно различить две звезды с угловым расстоянием не менее 2′, то телескоп позволяет уменьшить этот предел в Γ раз. Ограничение на предельное увеличение накладывает явление дифракции огибание световыми волнами краев объектива. Из-за дифракции вместо изображения точки получаются кольца. Для видимых длин волн при λ = 550 нм на телескопе с диаметром D = 1 м теоретическое угловое разрешение будет равно δ = 0,1″. Практически угловое разрешение больших телескопов ограничивается атмосферным дрожанием. При фотографических наблюдениях разрешающая способность всегда ограничена земной атмосферой и погрешностями гидирования и не бывает лучше 0,3″. При наблюдениях глазом из-за того, что можно попытаться поймать момент, когда атмосфера относительно спокойна (достаточно нескольких секунд), разрешающая способность у телескопов с диаметром D, большим 2 м, может быть близка к теоретической. Хорошим считается телескоп, собирающий более 50 % излучения в кружке 0,5″.
У телескопов для визуальных наблюдений типичное значение относительного отверстия 1/10 и меньше. У современных телескопов она равна 1/4 и больше. Часто вместо относительного отверстия используется понятие светосилы, равной (D/F)2. Светосила характеризует освещенность, создаваемую объективом в фокальной плоскости.
Относительным фокусным расстоянием телескопа (обозначается перевернутой буквой А) называется величина, обратная относительному отверстию: = F / D. В фотографии эта величина часто называется диафрагмой. Угловое увеличение (или просто увеличение) показывает, во сколько раз угол, под которым виден объект при наблюдении в телескоп, больше, чем при наблюдении глазом. Увеличение равно отношению фокусных расстояний объектива и окуляра: Γ = Fоб / fок. Искажение изображения, вызванное недостатками оптической системы, называется аберрацией. Аберрации оптических систем бывают физические и геометрические. Физическая аберрация хроматическая. Геометрические аберрации сферическая, кома, астигматизм, кривизна поля и дисторсия.
Хроматическая аберрация создает радужный ореол вокруг звезды. Хроматическая аберрация характерна для всех преломляющих оптических приборов. Возникает из-за того, что коэффициент преломления среды зависит от длины волны света. Синие лучи отклоняются линзой сильнее красных, и поэтому положения фокусов для лучей разных длин волн не совпадают. В ре
Разрешающая способность телескопа
Под разрешающей способностью телескопа понимают минимальный различимый угол между двумя зрительными линиями, проведенными к двум точкам – например, к находящимся вблизи друг от друга звездам. Когда два объекта, расположенные в 5 угловых секундах углового расстояния друг от друга, с трудом видны в телескоп одновременно, считается, что показатель его разрешающей способности составляет пять угловых секунд. Увеличение разрешающей способности телескопа позволяет получить более детальную картину небесного тела при наблюдении.
Согласно критерию Рэлея, возможность разделения двух близко расположенных друг к другу объектов исчезает, когда угловое расстояние между ними имеет значение меньше менее 2,5 х 105λ/D. В этой формуле D обозначает ширину линзы объектива, а λ – длину световой волны.
Например, телескоп-рефлектор с шириной линзы в 100 миллиметров дает возможность воспринимать отдельно звезды, угловое расстояние между которыми равно одной секунде дуги.
В реальности вычисляемая по этой формуле разрешающая способность недоступна телескопам, у которых диаметр объектива превышает полметра. На практике она будет несколько ниже, вследствие рассеивания света в атмосфере. А для телескопа «Хаббл», который находится за пределами атмосферы, не существует атмосферных помех. Потому (а еще благодаря линзе диаметром 2,4 метра) с его помощью можно достичь теоретического значения разрешений, а именно 0,04 угловой секунды. В итоге телескоп Хаббла, с его разрешающей способностью, выдает заметно более подробную картинку, чем устройства аналогичной величины, находящиеся на земной поверхности.
При выборе телескопа для наблюдений стоит определиться с необходимой вам разрешающей способностью. Логично, что чем выше разрешающая способность, тем больше деталей вы сможете увидеть. Выбирайте соответствующий телескоп, богатый ассортимент которых представлен на страницах нашего магазина.
Как известно, по оптической модели телескопы делятся на три крупных класса – рефлекторы, рефракторы и катадиоптрики (зеркально-линзовые).
Рефлекторы, имеющие диагональное зеркало, при прочих равных характеристиках отличаются невысокой разрешающей способностью в сравнении с рефракторами. Их преимущество – невысокая цена. Но если вы планируете внимательно рассмотреть поверхность Луны, увидеть структуру объектов глубокого космоса, разделить двойные звезды, стоит отдать предпочтение телескопам-рефракторам. Малое рассеивание света и отсутствие центрального экранирования позволяют существенно увеличить разрешающую способность телескопа и получить максимально четкое изображение!
4glaza.ru
Декабрь 2017
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Другие обзоры и статьи о телескопах и астрономии:
Обзоры оптической техники и аксессуаров:
Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:
Все об основах астрономии и «космических» объектах: