Что такое неколлинеарные векторы в геометрии 9 класс
Определение вектора
В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.
Для начала дадим определение:
Вектор – это направленный отрезок прямой.
Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.
Нулевой вектор
Под нулевым вектором 0 → будем понимать любую точку плоскости или пространства.
Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.
Длина вектора
Под длиной вектора A B → понимается число, большее либо равное 0, и равное длине отрезка АВ.
Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин «длина вектора». Очевидно, что длина нулевого вектора принимает значение ноль.
Коллинеарность векторов
Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными.
Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными.
Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.
Коллиниарные векторы в свою очередь тоже можно разделить на два класса: сонаправленные и противоположно направленные.
Направление векторов
Считается, что нулевой вектор является сонаправленым к любым другим векторам.
Равные и противоположные векторы
Равными называются сонаправленные вектора, у которых длины равны.
Противопожными называются противоположно направленные вектора, у которых их длины равны.
Введенные выше понятия позволяют нам рассматривать векторы без привязки к конкретным точкам. Иначе говоря, можно заменить вектор равным ему вектором, отложенным от любой точки.
Углы между векторами
Угол φ = ∠ A O B называется углом между векторами a → = O A → и b → = O B → .
Очевидно, что угол между сонаправленными векторами равен нулю градусам (или нулю радиан), так как сонаправленные векторы лежат на одной или на параллельных прямых и имеют одинаковое направление, а угол между противоположно направленными векторами равен 180 градусам (или π радиан), так как противоположно направленные векторы лежат на одной или на параллельных прямых, но имеют противоположные направления.
Перпендикулярными называются два вектора, угол между которыми равен 90 градусам (или π 2 радиан).
Что такое неколлинеарные векторы в геометрии 9 класс
Сформулируем ряд базовых определений.
Три вектора в пространстве называются компланарными, если они лежат в одной плоскости или на параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны.
то есть модуль вектора равен корню квадратному из суммы квадратов его координат.
Обозначим углы между вектором и осями координат через α, β, γ соответственно. Косинусы этих углов называются для вектора направляющими, и для них выполняется соотношение:
Верность данного равенства можно показать с помощью свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем пункте 4.
Пусть в трехмерном пространстве заданы векторы своими координатами. Имеют место следующие операции над ними: линейные (сложение, вычитание, умножение на число и проектирование вектора на ось или другой вектор); не линейные – различные произведения векторов (скалярное, векторное, смешанное).
1. Сложение двух векторов производится покоординатно, то есть если
Геометрически два вектора складываются по двум правилам:
а) правило треугольника – результирующий вектор суммы двух векторов соединяет начало первого из них с концом второго при условии, что начало второго совпадает с концом первого вектора; для суммы векторов – результирующий вектор суммы соединяет начало первого из них с концом последнего вектора-слагаемого при условии, что начало последующего слагаемого совпадает с концом предыдущего;
б) правило параллелограмма (для двух векторов) – параллелограмм строится на векторах-слагаемых как на сторонах, приведенных к одному началу; диагональ параллелограмма исходящая из их общего начала, является суммой векторов.
Геометрически два вектора складываются по уже упомянутому правилу параллелограмма с учетом того, что разностью векторов является диагональ, соединяющая концы векторов, причем результирующий вектор направлен из конца вычитаемого в конец уменьшаемого вектора.
При λ>0 – вектор сонаправлен
; λ
противоположно направлен
; | λ|> 1 – длина вектора
увеличивается в λ раз; | λ| 1 – длина вектора
уменьшается в λ раз.
4. Пусть в пространстве задана направленная прямая (ось l ), вектор задан координатами конца и начала. Обозначим проекции точек A и B на ось l соответственно через A ’ и B ’.
Рассмотрим некоторые основные свойства проекций:
1) проекция вектора на ось l равна произведению модуля вектора
на косинус угла между вектором и осью, то есть
;
2.) проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол – прямой;
3) проекция суммы нескольких векторов на одну и ту же ось равна сумме проекций на эту ось.
Сформулируем определения и теоремы о произведениях векторов, представляющих нелинейные операции над векторами.
5. Скалярным произведением векторов
и
называется число (скаляр), равное произведению длин этих векторов на косинус угла φ между ними, то есть
Теорема 2.2. Необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения
Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть
Отсюда следует условие перпендикулярности ненулевых векторов и
:
С помощью скалярного произведения векторов находят работу постоянной силы на прямолинейном участке пути.
Решение. Вычислим модули векторов и их скалярное произведение по теореме (2.3):
Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых на производство одной тонны творога, заданы в таблице 2.2 (руб.).
Какова общая цена этих ресурсов, затрачиваемых на изготовление одной тонны творога?
Примечание. Действия с векторами, осуществленные в примере 2.10, можно выполнить на персональном компьютере. Для нахождения скалярного произведения векторов в MS Excel используют функцию СУММПРОИЗВ( ), где в качестве аргументов указываются адреса диапазонов элементов матриц, сумму произведений которых необходимо найти. В MathCAD скалярное произведение двух векторов выполняется при помощи соответствующего оператора панели инструментов Matrix
Решение. Находим вектор перемещения, вычитая из координат его конца координаты начала
Угол φ между и
находим по формуле (2.29), то есть
– перпендикулярен векторам
и
;
– векторы образуют правую тройку (рис. 2.15).
Примечание. Определитель (2.25) раскладывается по свойству 7 определителей
Следствие 1. Необходимым и достаточным условием коллинеарности двух векторов является пропорциональность их соответствующих координат
Следствие 2. Векторные произведения единичных орт равны
Следствие 3. Векторный квадрат любого вектора равен нулю
Также с помощью векторного произведения можно определить момент силы относительно точки и линейную скорость вращения.
— перпендикулярен плоскости, проходящей через точки O , A , B ;
Следовательно, момент силы относительно точки O представляет собой векторное произведение
Решение. Найдем векторное произведение заданных векторов по формуле (2.32).
Теорема 2.6. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения
Теорема 2.7. Если три вектора заданы своими координатами, то их смешанное произведение представляет собой определитель третьего порядка, составленный из координат векторов- сомножителей соответственно, то есть
Объем треугольной пирамиды, построенной на этих же векторах, равен
Решение. Найдем координаты векторов
По формуле (2.36) объем пирамиды, построенной на векторах равен
(единиц объема)
Рассмотрим очень важный вопрос о разложении вектора по базису. Приведем следующие определения.
получим выражение вектора через остальные векторы
Линейно независимыми называют векторы, если равенство (2.37) выполняется только тогда, когда все
Базисом n – мерного пространства En называют любую совокупность линейно независимых векторов n – мерного пространства.
Произвольный вектор n – мерного пространства можно представить в виде линейной комбинации векторов базиса таким образом:
Линейное пространство называется конечномерным и имеет размерность n , если в этом пространстве существует система из n линейно независимых векторов (базис) такая, что каждое ее расширение приводит к линейной зависимости системы.
§ 1. Понятие вектора
Эта глава посвящена разработке векторного аппарата геометрии. С помощью векторов можно доказывать теоремы и решать геометрические задачи. Примеры такого применения векторов приведены в данной главе. Но изучение векторов полезно ещё и потому, что они широко используются в физике для описания различных физических величин, таких, например, как скорость, ускорение, сила.
Многие физические величины, например сила, перемещение материальной точки, скорость, характеризуются не только своим числовым значением, но и направлением в пространстве. Такие физические величины называются векторными величинами (или коротко векторами).
Рассмотрим пример. Пусть на тело действует сила в 8 Н. На рисунке силу изображают отрезком со стрелкой (рис. 240). Стрелка указывает направление силы, а длина отрезка соответствует в выбранном масштабе числовому значению силы. Так, на рисунке 240 сила в 1 Н изображена отрезком длиной 0,6 см, поэтому сила в 8 Н изображена отрезком длиной 4,8 см.
Отвлекаясь от конкретных свойств физических векторных величин, мы приходим к геометрическому понятию вектора.
Рассмотрим произвольный отрезок. Его концы называются также граничными точками отрезка.
На отрезке можно указать два направления: от одной граничной точки к другой и наоборот.
Чтобы выбрать одно из этих направлений, одну граничную точку отрезка назовём началом отрезка, а другую — концом отрезка и будем считать, что отрезок направлен от начала к концу.
Отрезок, для которого указано, какая из его граничных точек считается началом, а какая — концом, называется направленным отрезком или вектором. |
На рисунках вектор изображается отрезком со стрелкой, показывающей направление вектора. Векторы обозначают двумя заглавными латинскими буквами со стрелкой над ними, например . Первая буква обозначает начало вектора, вторая — конец (рис. 242).
На рисунке 243, а изображены векторы точки А, С, Е — начала этих векторов, а В, D, F — их концы. Векторы часто обозначают и одной строчной латинской буквой со стрелкой над ней:
(рис. 243, б).
Для дальнейшего целесообразно условиться, что любая точка плоскости также является вектором. В этом случае вектор называется нулевым. Начало нулевого вектора совпадает с его концом. На рисунке такой вектор изображается одной точкой. Если, например, точка, изображающая нулевой вектор, обозначена буквой М, то данный нулевой вектор можно обозначить так: (рис. 243, а). Нулевой вектор обозначается также символом
На рисунке 243 векторы
ненулевые, а вектор
нулевой.
Длиной или модулем ненулевого вектора называется длина отрезка АВ. Длина вектора
(вектора
) обозначается так:
. Длина нулевого вектора считается равной нулю:
Длины векторов, изображённых на рисунках 243, а и 243, 6, таковы:
(каждая клетка на рисунке 243 имеет сторону, равную единице измерения отрезков).
Равенство векторов
Прежде чем дать определение равных векторов, обратимся к примеру. Рассмотрим движение тела, при котором все его точки движутся с одной и той же скоростью и в одном и том же направлении.
Скорость каждой точки М тела является векторной величиной, поэтому её можно изобразить направленным отрезком, начало которого совпадает с точкой М (рис. 244). Так как все точки тела движутся с одной и той же скоростью, то все направленные отрезки, изображающие скорости этих точек, имеют одно и то же направление и длины их равны.
Этот пример подсказывает нам, как определить равенство векторов.
Предварительно введём понятие коллинеарных векторов.
Ненулевые векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых; нулевой вектор считается коллинеарным любому вектору.
На рисунке 245 векторы (вектор
нулевой) коллинеарны, а векторы
а также
не коллинеарны.
Сонаправленность векторов и
обозначается следующим образом:
Если же векторы
и
противоположно направлены, то это обозначают так:
На рисунке 245 изображены как сонаправленные, так и противоположно направленные векторы:
Начало нулевого вектора совпадает с его концом, поэтому нулевой вектор не имеет какого-либо определённого направления. Иначе говоря, любое направление можно считать направлением нулевого вектора. Условимся считать, что нулевой вектор сонаправлен с любым вектором. Таким образом, на рисунке 245 и т. д.
Ненулевые коллинеарные векторы обладают свойствами, которые проиллюстрированы на рисунке 246, а — в.
Дадим теперь определение равных векторов.
Векторы называются равными, если они сонаправлены и их длины равны. |
Таким образом, векторы и
равны, если
. Равенство векторов
и
обозначается так:
Откладывание вектора от данной точки
Если точка А — начало вектора , то говорят, что вектор
отложен от точки А (рис. 247). Докажем следующее утверждение:
от любой точки М можно отложить вектор, равный данному вектору , и притом только один.
В самом деле, если — нулевой вектор, то искомым вектором является вектор
. Допустим, что вектор
ненулевой, а точки А и B — его начало и конец. Проведём через точку M прямую р, параллельную АВ (рис. 248; если M — точка прямой АВ, то в качестве прямой р возьмём саму прямую АВ). На прямой р отложим отрезки MN и MN’, равные отрезку АВ, и выберем из векторов
тот, который сонаправлен с вектором
(на рисунке 248 вектор
). Этот вектор и является искомым вектором, равным вектору
. Из построения следует, что такой вектор только один.
Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой. Так обозначены, например, равные векторы скорости различных точек на рисунке 244. Иногда про такие векторы говорят, что это один и тот же вектор, но отложенный от разных точек.
Практические задания
738. Отметьте точки А, В и С, не лежащие на одной прямой. Начертите все ненулевые векторы, начало и конец которых совпадают с какими-то двумя из этих точек. Выпишите все полученные векторы и укажите начало и конец каждого вектора.
739. Выбрав подходящий масштаб, начертите векторы, изображающие полёт самолёта сначала на 300 км на юг от города А до В, а потом на 500 км на восток от города В до С. Затем начертите вектор который изображает перемещение из начальной точки в конечную.
740. Начертите векторы так, чтобы:
а) были коллинеарны и
б) были коллинеарны,
были не
коллинеарны и
741. Начертите два неколлинеарных вектора и
. Изобразите несколько векторов: а) сонаправленных с вектором
; б) сонаправленных с вектором
; в) противоположно направленных вектору
; г) противоположно направленных вектору
.
742. Начертите два вектора: а) имеющие равные длины и неколинеарные; б) имеющие равные длины и сонаправленные; в) имеющие равные длины и противоположно направленные. В каком случае полученные векторы равны?
743. Начертите ненулевой вектор и отметьте на плоскости три точки А, В и С. Отложите от точек А, В и С векторы, равные
.
Задачи
744. Какие из следующих величин являются векторными: скорость, масса, сила, время, температура, длина, площадь, работа?
745. В прямоугольнике ABCD АВ = 3 см, ВС = 4 см, М — середина стороны АВ. Найдите длины векторов
746. Основание AD прямоугольной трапеции ABCD с прямым углом А равно 12 см, АВ = 5 см, ∠D = 45°. Найдите длины векторов
747. Выпишите пары коллинеарных векторов, которые определяются сторонами: а) параллелограмма MNPQ; б) трапеции ABCD с основаниями AD и ВС; в) треугольника FGH. Укажите среди них пары сонаправленных и противоположно направленных векторов.
748. Диагонали параллелограмма ABCD пересекаются в точке О. Равны ли векторы: а) ; б)
; в)
; г)
? Ответ обоснуйте.
749 Точки S и Т являются серединами боковых сторон MN и LK равнобедренной трапеции MNLK. Равны ли векторы: а) ; б)
; в)
; г)
; д)
.
750. Докажите, что если векторы равны, то середины отрезков AD и ВС совпадают. Докажите обратное утверждение: если середины отрезков AD и ВС совпадают, то
751. Определите вид четырёхугольника ABCD, если: и
а векторы
не коллинеарны.
752. Верно ли утверждение: а) если ; б) если
то
и
коллинеарны; в) если
то
г) если
то
д) если
Ответы к задачам
745.
746.
748. а) да; б) нет; в) да; г) нет.
749. а) нет; б) да; в) нет; г) нет; д) да.
751. а) ромб; б) трапеция.
752. а) да; б) да; в) нет; г) нет; д) да.
1 Нетрудно дать и точное определение этих понятий. Например, два ненулевых вектора, лежащие на параллельных прямых, называются сонаправленными (противоположно направленными), если их концы лежат по одну сторону (по разные стороны) от прямой, проходящей через начала. Как сформулировать аналогичное определение для ненулевых векторов, лежащих на одной прямой?