Что такое некроз мозга
Некрозы
Некроз – это патологический процесс, выражающийся в местной гибели ткани в живом организме в результате какого-либо экзо- или эндогенного её повреждения.Некроз не только патологический процесс, но и необходимый компонент нормальной жизнедеятельности клеток и тканей в процессе физиологической регенерации. Такое патологическое состояние крайне опасно для человека, чревато самыми тяжелыми последствиями и требует лечения под наблюдением специалистов.
Когда протекает некроз, лечение будет успешным, если заболевание обнаружено на ранней стадии.
Хирурги Научно-практического центра хирургии владеют множеством методик консервативного, щадящего и функционального лечения некроза, а благодаря их высокой квалификации, могут с точностью определить какая из них наилучшим образом подойдет для максимально эффективного результата.
Причины некроза
· Травмы от удара током
· Воздействие токсинов и некоторых химических веществ
· Аллергические и аутоиммунные реакции
· Бактерицидные и вирусные инфекции
· Развитие инфарктов различной этиологии
· Незаживающие язвы и пролежни
Симптомы некроза:
· Онемение, отсутствие чувствительности
· Наблюдается сначала бледность кожных покровов, затем цвет становится синим, темно-зеленым или черным
· Нарушение дыхательной системы
В зависимости какие изменения происходят в тканях, выделяют две формы некроза:
· Коагуляционный (сухой) некроз – возникает, когда тканевый белок сворачивается, уплотняется, высыхает и преобразуется в творожистую массу.
· Колликвационный (влажный) некроз – проявляется набуханием, размягчением мертвых тканей, образованием массы серого цвета и появлением запаха гнили.
Виды некроза:
· Инфаркт – возникает в результате внезапного прекращения кровоснабжения в очаге ткани или органа
· Секвестр – омертвевший участок костной ткани располагается в секвестральной полости, отделяется от здоровой ткани по причине гнойного процесса
· Гангрена – омертвение кожи, слизистых поверхностей и мышц. Ее развитию предшествует некроз тканей.
· Пролежни – возникают у обездвиженных людей вследствие длительного сдавливания тканей. Это приводит к образованию гнойных язв.
Стадии некротического процесса:
1. Паранекроз – обратимые дистрофические изменения
2. Некробиоз – необратимые дистрофические изменения
Инфаркты и некрозы головного мозга (больших полушарий мозжечка)
Инфаркты и некрозы головного мозга (больших полушарий мозжечка)
Можно различать инфаркты (некрозы) полушарий мозга, мозжечка, базальных ганглиев, зрительных бугров и ствола головного мозга. В данной книге я не рассматриваю ишемические инсульты, возникающие чаще у детей нескольких месяцев и лет жизни, имеющие много общего с инсультами у взрослых, которые дифференцируются на тромботические (обусловлены патологией сосудов, тромбозом синусов и вен, васкулитом и др.), эмболические (связаны с патологией сердца, парадоксальной эмболией, сепсисом, инфарктами плаценты и др.), гемодинамические (при кардиомиопатиях, сужениях магистральных сосудов и др.) и метаболические (при сахарном диабете, гомоцистеинурии, метаболическом ацидозе, болезнях Фабри, Лея и др.). В работе приводятся данные о поражениях головного мозга преимущественно у новорожденных, которые имеют свою специфику, недостаточно изучены и могут быть связаны с родовой травмой.
Инфаркты коры возникают преимущественно у доношенных новорожденных детей. Это связано с активной дифференцировкой, высоким уровнем обмена и лучшим кровоснабжением коры, чем у недоношенных.
Рассматриваемые инфаркты изучены недостаточно, причем при описании отдельных случаев авторы используют разные термины. По-видимому, существуют разные виды инфарктов, что связано как с особенностями их морфологии, так и вызвавших их причин. К. Курвиль выделяет «кортикально-субкортикальное размягчение» полушарий мозга, которое связывает с нарушениями микроциркуляции, асфиксией в родах и вазомоторными нарушениями крупных артерий. Согласно А. Товбину, гипоксия у доношенных детей ведет к стазу-тромбозу вен мягкой мозговой оболочки с последующим развитием ламинарных некрозов и инфарктов субкортикального белого вещества мозга. Рассматривая внутримозговые кровоизлияния, R. L. Friede отмечает существование геморрагических повреждений субкортикального белого вещества и клиновидных геморрагических зон в коре, не связанных с родовой травмой, которые при микроскопическом исследовании имеют вид геморрагических инфарктов. Вместе с тем он описывает инфаркты, возникающие при закупорке артерий и тромбозе синусов и вен, которые обнаруживают и другие авторы (см. ниже).
J. Larroche (1977) выделяет геморрагические инфаркты белого вещества, сочетающиеся с кортикальными некрозами, генез которых связывает с тромбозом артерий, а также геморрагические инфаркты коры и субкортикального белого вещества, возникающие вследствие сдавления мозга субдуральной или субарахноидальной гематомой, тромбоза синусов и вен. Кроме того, в разделе преимущественно ар-териальных ишемических поражений мозга он описывает ишемиче- ские некрозы коры, нередко сочетающиеся с некрозами различных структур серого вещества мозга. Для этого поражения характерны следующие изменения: отек головного мозга, четкая граница между бледной корой и резко застойным субкортикальным белым веществом (эффект «ленты»), более выраженные изменения в глубине борозд. Микроскопически в областях некроза наблюдается уменьшение количества нервных клеток, сморщивание нейронов с пикнозом ядер и ацидофилией цитоплазмы, явления кариорексиса, пролиферация глии и капилляров. Кортикальный некроз может быть ламинарным или пятнистым. Вследствие размягчений коры и субкортикального белого вещества могут развиваться кружевоподобные или сотовидные повреждения, а также склероз коры и улегирия. Ишемические некрозы коры возникают у детей, родившихся в асфиксии и при осложненных родах (длительном втором периоде, наложении акушерских щипцов, выпадении пуповины, затрудненном извлечении головки при тазовых предлежаниях и др.). Подобные поражения наблюдали в эксперименте на плодах обезьян при вызывании у них парциальной асфиксии (при частичной отслойке плаценты, сдавлении брюшной аорты матери, введении окситоцина, вызывании гипотонии матери и др.). В результате поражается или вся кора полушарий мозга, или процесс ограничивается парацентральными либо париетальными областями.
J. Volpe выделяет «парасагиттальные мозговые повреждения», которые он ранее называл «инфарктами водораздела». Эти поражения обнаруживаются у доношенных детей и представляют области двусторонних симметричных некрозов коры и субкортикального белого вещества в пограничных зонах между ветвями передних, средних и задних мозговых артерий, локализующиеся в верхнемедиальных отделах полушарий мозга. Патогенез данных ишемических (иногда геморрагических) инфарктов автор связывает с гипоксией, артериальной гипотонией и нарушениями ауторегуляции мозгового кровообращения. Некоторые исследователи наблюдали некрозы коры и подлежащего белого вещества в параса- гиттальных областях головного мозга новорожденных обезьян, матери которых перенесли (в эксперименте) артериальную гипотонию. В другом исследовании плодов овец подвергали гиповолемии и гипоксии. При этом наблюдались симметричные геморрагические инфаркты преимущественно парасагиттальных областей коры и белого вещества, которые захватывали также базальные ганглии и зрительные бугры.
JI. Рорке инфаркты полушарий мозга называет мозговыми некрозами, считая, что они располагаются в пограничных зонах, между ветвями основных мозговых артерий. Его описания данных поражений в общем соответствуют результатам исследования кортикальных некрозов J. Larroche. Вместе с тем автор различает «хронический кортикальный некроз», к которому относит «кистозные кортикальные инфаркты», «склероз извилин», «микрогирию» и другие изменения.
Инфаркты полушарий мозга могут бьггь обусловлены закупоркой основных ветвей мозговых артерий (чаще всего средних мозговых артерий). Имеются описания лишь отдельных случаев данных поражений. Закупорка артерий возникает при эмболиях, которые могут быть связаны с инфарктами плаценты, катетеризацией сосудов или сердца, отрывом тромбов из пупочной вены или артериального протока. Морфологически инфаркты чаще носят смешанный характер и представляют сочетание ишемического инфаркта коры и геморрагического инфаркта подлежащего белого вещества. Последствиями инфарктов у выживших детей являются кистозная энцефаломаляция, односторонние или двусторонние кистозные полости, порзнцефалия и гидроцефалия.
Имеются также отдельные описания инфарктов полушарий мозга, развивающихся в результате, тромбоза синусов и поверхностных вен головного мозга. Особенностью данных поражений является то, что инфаркты носят геморрагический характер как в коре, так и в субкортикальном белом веществе. Наиболее часто тромбы выявляются в верхнем сагиттальном синусе, причем в средней его части. Тромбоз поверхностных мозговых вен обычно является вторичным по отношению к тромбозу синусов. Инфаркты чаще локализуются в конвекситальных областях полушарий мозга, захватывая кору и подлежащее белое вещество. Генез тромбоза синусов и вен связывают с родовой травмой, нарушениями гемокоагуляции, ДВС-синдромом, инфекционными заболеваниями, осложнениями пункции верхнего сагиттального синуса и др. Последствиями таких инфарктов являются глиозные рубцы, кисты, лобарный склероз и гидроцефалия.
Приведу 3 наблюдения инфарктов полушарий головного мозга у новорожденных детей. В первом случае у новорожденного 5 дней с ДВС-синдромом в поверхностных ветвях всех мозговых артерий двух полушарий мозга обнаруживались многочисленные тромбы. В субкортикальном белом веществе имелись множественные диапедезные кровоизлияния, четко отграниченные от бледной коры и микроскопически часто располагающихся вокруг затромбированных мелких сосудов. Белое вещество находилось в состоянии некроза с распространенным пикнозом и рексисом ядер глиоцитов. Во многих нервных клетках коры определялись кариорексис и ишемические изменения. Во втором случае у новорожденного, умершего через 36 часов от родовой травмы черепа, в различных отделах коры преимущественно в глубине извилин двух полушарий мозга (а также в зрительных буграх) располагались геморрагические инфаркты. Микроскопически в них обнаруживались ишемические изменения многих нейронов. В единичных ветвях поверхностных и базальных вен выявлялись тромбы. Эти инфаркты, по-видимому, были обусловлены не столько тромбозом вен, сколько нарушениями венозного оттока в период затяжных родов при длительном стоянии головки в одной плоскости. В третьем случае у доношенного новорожденного с гемолитической болезнью ишемиче-кий инфаркт коры и подлежащего белого вещества располагался под субпиальной гематомой, которой, вероятно, и был вызван.
С учетом собственных и литературных данных следует дифференцировать инфаркты на 3 вида — белые, геморрагические и смешанные. Белые инфаркты возникают у новорожденных, родившихся в «асфиксии», при осложненных родах (длительном втором периоде, выпадении пуповины, наложении щипцов, затрудненном извлечении головки при тазовом предлежании и др.) и при сдавлении головного мозга. Поэтому данные поражения могут быть связаны с родовой травмой. Для них характерны: отек головного мозга, четкая граница между бледной корой и резко застойным субкортикальным белым веществом (так называемый «эффект ленты»), более выраженные изменения в глубине борозд. Головной мозг имеет характерный вид: извилины резко сглажены за счет их тесного прилегания к внутренней поверхности костей крыши черепа, а борозды сужены и не содержат видимого ликвора; мозг мягкий, хрупкий и легко повреждается при его извлечении из полости черепа. В отдельных случаях тяжелых поражений кора вместо белой становится светло-коричневой с мелкой зернистостью. Наиболее подвержены поражениям парасагиттальные участки коры.
Микроскопически в областях некроза наблюдается уменьшение количества нервных клеток, сморщивание нейронов с пикнозом ядер и ацидофилией цитоплазмы, явления кариорексиса, пролиферация глии и капилляров. Кортикальный некроз может быть ламинарным или пятнистым. Вследствие размягчений коры и субкортикального белого вещества у детей в последующем могут развиваться «круже- воподобные» или «сотовидные» повреждения, а также склероз коры
Смешанные инфаркты представляют собой сочетание белого инфаркта коры и геморрагического инфаркта подлежащего белого вещества. Они могут быть обусловлены закупоркой (тромбоз, эмболия) основных ветвей мозговых артерий (чаще средних). Эмболия артерий может быть связана с инфарктами плаценты, катетеризацией сосудов и сердца, отрывом тромбов из пупочной вены или артериального протока.
Геморрагические инфаркты возникают при нарушении венозного оттока в случаях сдавления вен и синусов в родах, а также при тромбозе синусов и поверхностных вен мозга. Инфаркты локализуются преимущественно в областях конвекситальных поверхностей полушарий мозга.
Приведенные данные об инфарктах коры и субкортикального белого вещества у плодов и новорожденных свидетельствуют о недостаточной изученности этиологии, патогенеза и морфологии этой группы нарушений церебральной гемодинамики. Определенные трудности создаются также в силу терминологической путаницы, возникающей из-за наличия разнообразных терминов, нередко обозначающих одни и те же процессы.
Инфаркты мозжечка встречаются как геморрагические, так и ишемические. К последним относятся прежде всего так называемые «листковые инфаркты», нередко возникающие при субарахноидальных кровоизлияниях полушарий мозжечка, нарушающих питание подлежащей ткани мозга. Инфаркты мозжечка могут быть обширными, захватывающими целое полушарие, или очаговыми, локализующимися в коре. Они часто носят геморрагический характер, располагаются на границе между зонами кровоснабжения верхней и нижней мозжечковых артерий. Патогенез инфарктов мозжечка связан со сдавлением его артерий (например, тенторием в процессе родов), повреждением позвоночных артерий, вклинением миндалин в большое затылочное отверстие и другими причинами.
Инфаркты базальных ганглиев, зрительных бугров и ствола головного мозга. Данные поражения, причем выраженные и макроскопически видимые, встречаются очень редко. При поражениях ствола они чаще обнаруживаются в области основания моста, нижних бугорков четверохолмия и нижних олив. Их патогенез связан с тяжелыми циркуля торными осложнениями в связи с шоком, легочно-сердечной недостаточностью, тромбозом основной артерии и другими причинами.
Смерть мозга
1. Введение
Диагноз «смерть мозга» устанавливается при работающем сердце и искусственной вентиляции легких и является эквивалентом смерти человека.
Наиболее частые причины смерти мозга:
Смерть мозга после восстановления кровообращения при сердечно-легочной реанимации развивается в течение первой недели с момента остановки кровообращения, чему в ряде случаев может предшествовать период начального улучшения неврологической симптоматики.
2. Условия, необходимые для постановки диагноза смерть мозга
2. 1. Установить какова причина поражения мозга, и может ли она привести к полной и необратимой утрате его функции.
2. 2. Исключить все потенциально обратимые состояния со сходными клиническими проявлениями.
Такими состояниями являются:
Действие алкоголя седативных наркотических препаратов, мышечных релаксантов
Выраженные электролитные и гормональные расстройства, нарушения кислотно-основного состояния, гипогликемия.
Диагноз смерть мозга не может быть установлен при:
3. Клинические признаки смерти мозга
3. 1. Отсутствие сознания.
3. 2. Отсутствие двигательных реакций в ответ на болевые раздражители.
3. 3. Отсутствие стволовых рефлексов.
3. 4. Апноэ.
4. 1. Электроэнцефалография (ЭЭГ).
4. 2. Церебральная агиография
Производится контрастная двукратная панангиография четырех магистральных сосудов головы (общие сонные и позвоночные артерии) с интервалом не менее 30 минут. Среднее артериальное давление во время ангиографии должно быть не менее 80 мм рт. ст. Если при ангиографии выявляется, что ни одна из внутримозговых артерий не заполняется контрастным веществом, то это свидетельствует о прекращении мозгового кровообращения.
Исследование по своей информативности приближается к классической ангиографии. Демонстрация отсутствия кровотока в магистральных мозговых артериях может служить подтверждением смерти мозга.
4. 4. Транскраниальная доплеровская ультрасонография
4. 5. Церебральная сцинтиграфия.
Подтверждением смерти мозга служит отсутствие накопления изотопа мозговой тканью.
5. Алгоритм констатации смерти мозга
Для констатации смерти мозга необходимо положительно ответить на все следующие вопросы:
5. 1. Известна ли причина комы и может ли она привести к полной и необратимой утрате функции головного мозга?
Кома неизвестной этиологии (отсутствие признаков травмы, инсульта, гипоксического или гипотензивного поражения) требует детального обследования до того, как вести речь о констатации смерти мозга.
5. 2. Можно ли исключить действие алкоголя, седативных препаратов, наркотиков, мышечных релаксантов, гипотермию, гипотензию, гипогликемию, электролитные, гормональные нарушения, как причину коматозного состояния и полученных результатов неврологического исследования?
5. 3. Можно ли отнести все имеющиеся движения к спинальным рефлексам?
Диагноз смерти мозга не может быть установлен при принятии какой-либо специфичной позы (децеребрационной или декортикационной), наличии дрожи, защитных движениях любой конечности, головы в ответ на боль. Исследуется двигательный ответ на боль при раздражении супраорбитальной области и сжатии твердым объектом ногтевых фаланг пальцев.
5. 4. Отсутствует ли реакция зрачков на свет?
5. 5. Отсутствует ли роговичный рефлекс?
5. 6. Отсутствуют ли окулоцефалический и окуловестибулярный рефлексы?
Для исследования окуловестибулярного рефлекса проводится двусторонняя калорическая проба. До ее проведения необходимо убедиться в отсутствии перфорации барабанных перепонок. Голову больного поднимают на 30 градусов выше горизонтального уровня. В наружный слуховой проход вводится катетер малых размеров, производится медленное орошение наружного слухового прохода холодной водой (50 мл при 0 градусов Цельсия). При сохранной функции ствола головного мозга появляется отклонение глаз в сторону раздражения. Отсутствие нистагма или отклонения глазных яблок при калорической пробе в течение 1 минуты, свидетельствует об отсутствии окуловестибулярного рефлекса. Проба с противоположной стороны проводится не ранее чем через 5 минут после первой.
5. 7. Отсутствуют ли кашлевой и глоточный рефлексы?
Наличие кашлевого и глоточного рефлексов определяется при раздражении задней стенки глотки и аспирации содержимого трахеи.
5. 8. Отсутствует ли спонтанное дыхание?
Техника проведения теста:
Статья добавлена 29 октября 2015 г.
Что такое некроз мозга
1. Кафедра нервных болезней лечебного факультета Московского государственного медико-стоматологического университета (МГМСУ); 2. Кафедра трансплантологии и искусственных органов (МГМСУ); 3. Кафедра трансплантологии и искусственных органов Первого московского государственного медицинского университета; 4. Городская клиническая больница №11; 5. Институт электронных управляющих машин им. И.С. Брука, Москва
Диагностика смерти мозга: современное состояние проблемы
Журнал: Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;112(3): 4-12
Стулин1 И. Д., Хубутия2 А. Ш., Готье3 С. В., Синкин4 М. В., Мусин1 Р. С., Солонский1 Д. С., Мнушкин1 А. О., Кащеев1 А. В., Савин1 Л. А., Знайко5 Г. Г. Диагностика смерти мозга: современное состояние проблемы. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;112(3):4-12.
Stulin1 I D, Khubutiia2 A Sh, Got’e3 S V, Sinkin4 M V, Musin1 R S, Solonskiĭ1 D S, Mnushkin1 A O, Kashcheev1 A V, Savin1 L A, Znaĭko5 G G. The diagnosis of brain death: the current state of the problem. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2012;112(3):4-12.
1. Кафедра нервных болезней лечебного факультета Московского государственного медико-стоматологического университета (МГМСУ); 2. Кафедра трансплантологии и искусственных органов (МГМСУ); 3. Кафедра трансплантологии и искусственных органов Первого московского государственного медицинского университета; 4. Городская клиническая больница №11; 5. Институт электронных управляющих машин им. И.С. Брука, Москва
1. Кафедра нервных болезней лечебного факультета Московского государственного медико-стоматологического университета (МГМСУ); 2. Кафедра трансплантологии и искусственных органов (МГМСУ); 3. Кафедра трансплантологии и искусственных органов Первого московского государственного медицинского университета; 4. Городская клиническая больница №11; 5. Институт электронных управляющих машин им. И.С. Брука, Москва
В середине 50-х годов ХХ века произошел огромный скачок в реаниматологии — появились синхронизированная искусственная вентиляция легких (ИВЛ), препараты для поддержания артериального давления и сердечной деятельности. В 1959 г. у 23 больных была описана так называемая «запредельная кома» (coma depasse). При работающем сердце и ИВЛ наблюдалась кома без реакций на внешние раздражители, с тотальной арефлексией и изоэлектрической электроэнцефалограммой (ЭЭГ). Все пациенты скончались через непродолжительное время [26].
Началось изучение данного состояния не только с медицинской, но также с философской и религиозной точек зрения. К 1968 г. было принято предположение, что в случае изолированной гибели головного мозга человек перестает существовать как личность и это состояние становится эквивалентом смерти человека. Были опубликованы первые клинические признаки смерти человека на основании диагноза смерти мозга (СМ) — так называемые Гарвардские критерии [11]. Тогда же была постулирована возможность прекращения дальнейшей реанимации и забора органов для последующей трансплантации при СМ. К началу 80-х годов в США было закончено и обработано первое и пока единственное клиническое многоцентровое исследование (The Collaborative Study of Cerebral Death), определившее основные клинические и некоторые инструментальные признаки СМ [13].
Согласно международному определению, СМ — это ятрогенное состояние, характеризирующееся полным и необратимым прекращением всех функций головного мозга при работающем сердце и ИВЛ.
Механизмы развития смерти мозга
Патогенез развития СМ изучен достаточно полно. Значительные анатомические повреждения головного мозга возникают при тяжелых черепно-мозговых травмах (ЧМТ), а также в результате кровоизлияния в вещество мозга, либо под мозговые оболочки. Свой вклад вносит и период апноэ, которое практически всегда сопровождает тяжелые травмы или острые сосудистые события.
Полное непоступление артериальной оксигенированной крови в полость черепа течение 30 мин ведет к необратимому поражению нейронов, восстановление которых становится невозможным [10]. Такая ситуация возникает при резком повышении внутричерепного давления до уровня систолического артериального и при остановке сердечной деятельности и проведении неадекватного непрямого массажа сердца в течение указанного выше периода времени. Для понимания процесса развития СМ в случае повышения внутричерепного давления (ВЧД) или преходящей аноксии необходимо более подробно остановиться на формировании и поддержании внутричерепного гомеостаза.
Согласно сформулированной более 200 лет назад доктрине Монро—Келли, существует физиологическая система, участвующая в поддержании равновесия объема внутричерепного содержимого.
Общий объем содержимого черепа можно выразить формулой:
Vобщ=Vкровь+Vцсж+Vмозг+V H 2 O +Vх,
где Vобщ — объем содержимого черепа в настоящий момент времени; Vкровь — объем крови, находящейся во внутримозговых сосудах и венозных синусах; Vцсж — объем цереброспинальной жидкости (ЦСЖ); Vмозг — объем ткани мозга; V H 2 O — объем свободной и связанной воды; Vх — патологический дополнительный объем (опухоль, гематома и т.д.), в норме отсутствующий в полости черепа [26].
В норме все эти компоненты находятся в динамическом равновесии и создают постоянно пульсирующее в незначительных пределах ВЧД, равное 8—10 мм рт.ст. В закрытой костной структуре черепа левая часть формулы — величина постоянная, в то время как правые составляющие могут динамически меняться. Постоянные пульсирующие изменения ВЧД можно измерить инвазивным погружным методом [23] либо с помощью эхоэнцефалоскопии (Эхо-ЭС) [6]. Увеличение объема одной из переменных в правой половине формулы ведет к неизбежному уменьшению других. Наиболее быстро изменяются объемы воды и ЦСЖ, в меньшей степени — крови.
Постепенно нарастающие изменения объема и давления ЦСЖ могут не проявляться клинически, а после достижения индивидуально определенной критической черты происходят клиническая декомпенсация и резкий рост ВЧД. Описан механизм развития дислокационного синдрома в результате абсорбции большого объема ЦСЖ при повышении ВЧД. Такое большое количество абсорбировавшейся ЦСЖ вызывает затруднение венозного оттока из-за пережатия венозных коллекторов веществом мозга, замедляя эвакуацию жидкости из полости черепа, что приводит к дислокации мозга.
ВЧД может возрастать настолько, что начинает превышать АД. В таких наблюдениях регистрируется патогномоничная для СМ модель так называемого прецеребрального реверберирующего кровотока. Кровь из сердца поступает в аорту, затем в общие сонные артерии (ОСА), замедляясь, доходит до бифуркаций, а затем, будучи не в состоянии «пробиться» в мозг через внутренние сонные артерии (ВСА), движется вперед-назад и/или частично сбрасывается в наружные сонные артерии (НСА). Иными словами, все внутренние органы продолжают получать свою порцию гемоглобина, а мозг обескровливается.
Процесс прогредиентного нарастания ВЧД при прекращении кровотока был показан в экспериментах на собаках еще в 80-е годы [1]. Экспериментальная часть была выполнена в лаборатории искусственного сердца Всесоюзного научно-исследовательского института трансплантологии и искусственных органов СССР на 10 собаках. Первой группе животных (5 собак) производили остановку сердца подачей постоянного тока напряжением 2 В с последующим восстановлением его деятельности при помощи механического кардиомассажера. Второй группе животных (5 собак) повышали ВЧД до момента прекращения церебрального кровотока, т.е. создавали экспериментальную модель СМ.
Взрослые собаки массой от 10 до 15 кг были анестезированы введением 5% раствора этаминала натрия. Для измерения артериального и венозного давления производилась катетеризация соответствующих сосудов. Давление ЦСЖ измерялось путем пункции в большой цистерне и субарахноидальном пространстве на поясничном уровне. Регистрация артериального, венозного и ликворного давлений осуществлялась на 4-канальном полиграфе с помощью ртутных электроманометров. Повышения ВЧД достигали введением теплого изотонического раствора хлорида натрия: 2 животным — в большую цистерну, 3 — в субарахноидальное пространство на поясничном уровне с помощью аппарата Боброва. Кровоток во внутренних сонных артериях и яремных венах исследовали ультразвуковым флоуметром чрескожным методом и на обнаженных сосудах, в позвоночных артериях — перкутанно. Объемный кровоток в обнаженной внутренней сонной артерии измеряли электромагнитным флоуметром. На эхоэнцефалоскопе оценивали пульсацию сигнала М-эха.
В результате выявлено, что у 5 животных первой группы во время прекращения сердечной деятельности на 5—10 мин кровоток в магистральных артериях головы и внутренних яремных венах отсутствовал, пульсация М-эха не определялась. Через 20—30 мин кардиомассажа исследуемые гемодинамические показатели практически достигали нормы и оставались такими на протяжении всего остального времени эксперимента, коэффициент пульсации М-эха также был в пределах нормы (10—20%). Таким образом, прецеребральный кровоток, эхопульсация и величина ВЧД до остановки сердца и после восстановления сердечных сокращений заметно не изменялись. У животных второй группы выявлено, что при подъеме ВЧД до 30—35 мм рт.ст. не наблюдалось существенных изменений показателей линейной скорости кровотока (ЛСК) в магистральных артериях головы и объемной скорости кровотока во внутренних сонных артериях — они оставались прежними либо несколько увеличивались. Коэффициент пульсации М-эха постепенно увеличивался до 40—50%.
Таким образом, повышение ВЧД до определенного уровня не сопровождается значительным изменением как прецеребрального, так и, вероятно, внутримозгового артериального кровотока, что, по-видимому, связано с сохранением ауторегуляции мозгового кровотока. В то же время уже на этой стадии опытов отмечались выраженное усиление и асимметрия венозного сигнала, что подтверждает мнение о большей чувствительности церебральной флебоциркуляции к колебаниям ВЧД. Дальнейшее повышение ВЧД до уровня артериального диастолического давления (60—65 мм рт.ст.) вызывало снижение усредненной ЛСК, в основном за счет уменьшения диастолической скорости, что графически выражалось соответствующим снижением составляющих ЛСК на допплерограммах, причем диастолическая компонента непосредственно приближалась к изолинии. Это коррелировало с уменьшением объемного кровотока по ВСА. Коэффициент пульсации М-эха заметно, но неоднозначно менялся: у 2 животных увеличивался до 80—90%, у 3 остальных — снижался до 10—15%.
При последующем повышении ВЧД и приближении его к величине среднего системного АД (75—100 мм рт.ст.) у животных появлялись брадиаритмия, расширение зрачков, косоглазие, происходило нарушение дыхания вплоть до полной его остановки. С появлением дыхательной аритмии всем собакам начинали ИВЛ, которую продолжали в течение 2—5 ч до летального исхода. Вместе с прекращением дыхания у животных отмечалось резкое падение артериального давления, которое затем, несмотря на периодическое введение 0,3 мл 0,2% раствора норадреналина, вызывавшего кратковременный подъем до 200/120 мм рт.ст., удавалось поддерживать лишь на уровне 60/35—90/60 мм рт.ст. Данная ситуация, вероятнее всего, представляла собой СМ при еще продолжавшейся, но резко ослабленной сердечной деятельности.
Эхопульсографическое обследование при этом выявляло отсутствие пульсаций желудочковой системы. На допплерограммах внутренних сонных и позвоночных артерий появлялся отрицательный патологический зубец в диастолический период кровотока, что отражало прекращение церебральной перфузии. Графическая и цифровая регистрация мгновенной объемной скорости кровотока в ВСА давала равные величины объема крови в положительную и отрицательную фазы циркуляции; таким образом, усредненный объемный кровоток равнялся нулю. Ангиографическое исследование демонстрировало стоп-феномен на уровне позвоночных артерий. Интересно, что если повышение АД после введения норадреналина было очень кратковременным (5—7 мин) и практически не меняло рисунок допплерограммы и показатели объемного кровотока, то снижение ВЧД на 20—30 мм рт.ст. вскоре после прекращения церебральной перфузии регистрировалось на допплерограммах магистральных артерий головы как физиологическая модель кровотока, которая вновь переходила в реверберирующую при последующем повышении ВЧД. Венозный сигнал при появлении признаков СМ резко снижался параллельно с артериальным.
Патофизиология изменений внутренних органов, связанных со смертью мозга
Отсутствие нисходящего регулирующего влияния головного мозга на все органы и ткани организма трансформирует метаболизм. Наибольшее значение эти изменения приобретают при кондиционировании потенциального донора, когда встает вопрос о сохранении хорошего функционирования органов, предназначенных для пересадки.
Гибель нейронов гипоталамуса и пережатие стебля гипофиза в результате вклинения промежуточного мозга ведет к прекращению секреции ряда гормонов. Антидиуретический гормон имеет короткий период полураспада, и при непоступлении в кровь его концентрация значительно падает в течение 15 мин, а через 4 ч даже следовые количества гормона не определяются в плазме. Это проявляется клиникой несахарного диабета в 77% случаев СМ [19]. Современные рекомендации по кондиционированию тел с СМ включают обязательное введение вазопрессина, который способствует стабилизации состояния.
Аденогипофиз из-за его анатомически точного соответствия турецкому седлу редко повреждается в результате действия травмирующего агента. На заре исследований было отмечено, что при констатированной СМ гормональная функция передней доли гипофиза чаще сохранена, что использовалось как аргумент против самой концепции. В настоящий момент этот феномен связывают с особенностями кровоснабжения гипофиза [16].
Основной результат развивающихся в результате гибели гипоталамуса изменений метаболизма тиреоидных гормонов — прогрессирующее снижение содержания уровня трийодтиронина (Т3). В настоящее время инфузия трийодтиронина входит в протоколы ведения таких пациентов в большинстве научных центров. Однако точное определение показаний, длительности и необходимых концентраций вводимых гормонов является целью проводящихся и будущих исследований.
Нередко при констатированной СМ наблюдается гипергликемия, требующая коррекции. Она может быть вызвана не только нарушениями функции гипофиза [24], возможно, свою роль играет и нарушение функционирования рецепторов инсулина [28].
Массивный выброс катехоламинов в ответ на ЧМТ или другие повреждения головного мозга может проявляться как гипертонический криз при феохромоцитоме и вести к повреждению миокарда в 42% случаев за счет вазоконстрикции, что определяется на ЭКГ в ближайшие часы после события. Таким механизмом, сходным с развитием стенокардии Принцметала, можно объяснить изменения на коронарограммах и частое развитие острой гипотензии даже у молодых пациентов. Потеря чувствительности барорецепторов и развитие инвариабельности сердечного ритма и уровня АД в результате исчезновения влияния парасимпатического и адренергического влияния приводит к развитию гипотензии, требующей коррекции вазопрессорами [28].
Таким образом, активация симпатоадреналовой системы оказывает повреждающее воздействие на миокард и может вызывать отек легких, мало воздействуя при этом на другие органы. Гемодинамика нарушается в результате утраты сосудистого тонуса и развития гиповолемии на фоне поражения гипоталамо-гипофизарной системы. В результате продолжающихся необратимых изменений наступает неизбежная асистолия.
Патологическая анатомия смерти мозга
Как только прекращается поступление крови к ткани мозга, начинаются процессы некроза и апоптоза. Наиболее быстро аутолиз развивается в промежуточном мозге и мозжечке. По мере проведения ИВЛ при прекратившемся мозговом кровотоке мозг постепенно некротизируется, появляются характерные изменения, напрямую зависящие от длительности респираторной поддержки. Такие трансформации впервые были выявлены и описаны у больных, более 12 ч находившихся на ИВЛ в запредельной коме. В связи с этим в большинстве англо- и русскоязычных публикаций такое состояние обозначают термином «респираторный мозг» (РМ).
В России большую исследовательскую работу, в которой выявлена корреляция между степенью изменений тканей мозга и длительностью ИВЛ у тел, соответствующих критериям СМ, провела Л.М. Попова [4]. Длительность проведения ИВЛ до момента развития асистолии составляла от 5 до 113 ч. Соответственно длительности нахождения в этом состоянии были выделены 3 стадии морфологических изменений мозга, характерных именно для РМ. Картину РМ дополнял некроз двух верхних сегментов спинного мозга, являвшийся облигатным признаком.
В 1-й стадии, соответствующей длительности СМ 4—5 ч, морфологические признаки некроза головного мозга не выявляются. Однако уже в это время в цитоплазме выявляются характерные липиды и сине-зеленый мелкозернистый пигмент. В нижних оливах продолговатого мозга и зубчатых ядрах мозжечка отмечаются некротические изменения. В гипофизе и его воронке развиваются нарушения кровообращения.
Во 2-й стадии (12—23 ч СМ) во всех отделах головного мозга и I—II сегментах спинного выявляются признаки некроза без выраженного распада и лишь с начальными признаками реактивных изменений в спинном мозге. Головной мозг становится более дряблым, появляются начальные признаки распада перивентрикулярных отделов и гипоталамической области. После выделения мозг распластывается на столе, рисунок строения полушарий мозга сохранен, при этом ишемическое изменение нейронов сочетается с жировой дистрофией, зернистым распадом, кариоцитолизом. В гипофизе и его воронке нарастают расстройства кровообращения с небольшими очагами некроза в аденогипофизе.
Как уже было отмечено, различные участки мозга разрушаются не одновременно. Зачастую на аутопсии обнаруживается типичная картина РМ в зоне кровоснабжения вертебрально-базилярного бассейна, в то время как в остальных участках мозга изменения значительно менее выражены. Видимо, это связано с особенностями анатомии виллизиева круга. В таких ситуациях иногда удается зафиксировать остаточную биоэлектрическую активность наименее поврежденных участков мозга при клинической картине СМ.
Максимальная длительность наблюдения за телами с установленной СМ, которым проводились ИВЛ и мероприятия по поддержанию гемодинамики, составила 32 дня. При аутопсии в этом и других случаях длительного (более 14 дней) кондиционирования тел с СМ мозг полностью утрачивал свою структурную целостность и изливался из полости черепа.
Следует отметить, что в настоящее время РМ стал крайне редкой находкой. Проведенная в 2008 г. серия из 12 аутопсий у тел с СМ ни разу не выявила признаков РМ [30]. Это связано со значительным сокращением времени наблюдения после первого установления клиники СМ и до отключения тела от ИВЛ.
Клинические признаки смерти мозга
Путем проведения длительного наблюдения и проведения многоцентровых исследований был получен комплекс клинических признаков, достоверно соответствующих СМ. Основа диагностики СМ — кома, отсутствие любых замыкающихся на уровне ствола мозга рефлексов и стойкое апноэ.
Кома — один из основных признаков тяжелого повреждения головного мозга. Традиционно для определения ее глубины используется шкала комы Глазго (ШКГ), однако неясность ее интерпретации у интубированных пациентов и особенно при наличии спинальных автоматизмов ограничивает использование ШКТ при подозрении на СМ.
Разработанная в 2005 г. в клинике Мэйо шкала FOUR значительно лучше подходит для оценки глубины комы у пациентов реанимационных отделений (табл. 1),
| Таблица1 |
так как позволяет оценить стволовые рефлексы, не зависит от речевого контакта и дает возможность правильно расценивать спинальные автоматизмы. Данная шкала была валидизирована в крупном многоцентровом исследовании и находит все большее распространение в мире [21, 29].
Стволовая арефлексия. Диаметр зрачка динамически поддерживается за счет импульсации парасиматических нейронов, которые находятся в ядрах ствола и симпатических, локализованных в шейных сегментах спинного мозга. При гибели клеток ствола мозга исчезает рефлекторное сужение зрачка на прямой яркий свет, и он расширяется, становясь диаметром от 4 до 6 мм. В японском исследовании 3 случаев СМ было установлено, что диаметр зрачков может медленно изменяться [20]. Мы неоднократно наблюдали зрачки диаметром 4 мм у тел с СМ, а затем и у трупов после развития асистолии [9].
При СМ любые движения глаз должны отсутствовать. В первую очередь при осмотре необходимо исключить любые спонтанные движения, любой вид нистагма. Кроме того, необходимо убедиться в отсутствии вызванных движений глазных яблок. Для этого используются два теста — окулоцефалический рефлекс и калорическая проба. Ограничения по их проведению — травма шеи и основания черепа. Нашей группой был разработан портативный цифровой прибор для гальванической вестибулярной стимуляции, который вполне может заменить проведение этих тестов — особенно в случае перелома височной кости и шейного отдела позвоночника [8].
Исследование функции V и VII нервов заключается в сильном надавливании на точки выхода тройничного нерва и область височно-нижнечелюстного сустава одновременно с обеих сторон. При этом должны отсутствовать любые ответные двигательные реакции, в том числе и в мышцах, иннервация которых замыкается на уровне спинного мозга. Обязательна проверка и корнеального рефлекса, в структуру которого входят ветви как тройничного, так и лицевого нерва.
Исследуя функцию IX, X и XI нервов, проводят санацию трахеобронхиального дерева. Отсутствие любых движений при этой процедуре говорит о тотальном выпадении рефлексов.
Тест апноэтической оксигенации (ТАО). Несмотря на широкую распространенность, до настоящего времени не проведено ни одного крупного проспективного исследования, которое бы определило все параметры проведения ТАО. Процедура его проведения разработана эмпирически и огромный опыт проведения теста во всем мире не подвергался обобщению [28].
Отношение к самому проведению теста на апноэ остается неоднозначным. Как известно, ТАО проводится после установления факта утраты мозговых функций. Противники его проведения в настоящем виде приводят несколько аргументов. Так, не зарегистрировано ни одного случая выживания или перехода в вегетативное состояние больного с установленной полной утратой мозговых функций, но появлявшимися дыхательными движениями во время теста. Таким образом, исход состояния уже предопределен и нет необходимости подвергать терминального пациента тяжелой процедуре. Известно, что ТАО может провоцировать развитие гипотензии и гипоксемии. В связи с этим могут повреждаться органы, пригодные для трансплантации. Интерпретация ТАО может быть сильно затруднена у больных с травмой грудной клетки, ушибом и отеком легких. Также имеется мнение, что само проведение ТАО может вызвать гибель потенциально жизнеспособных нейронов. Осложнения ТАО развиваются более чем в 60% случаев, включая острую артериальную гипотензию (12%), ацидоз (68%) и гипоксемию (23%). Описаны случаи развития пневмоторакса и пневмоперитонеума во время ТАО.
С другой стороны, сторонники проведения ТАО приводят следующие доводы [28]. Данный тест является единственным клиническим способом проверить функционирование продолговатого мозга. При правильной подготовке к тесту он вполне безопасен, и число осложнений не превышает 15%: 14% составляет гипотензия и 1% — аритмия [15]. В качестве основных витальных показателей для безопасности ТАО предлагаются 1) внутрисердечная температура ≥36,5 °С; 2) уровень систолического АД ≥90 мм рт.ст.; 3) отсутствие гиповолемии более 6 ч; 4) рО 2 ≥200 мм рт.ст.; 5) рСО 2 ≥40 мм рт. ст.
Наш опыт проведения ТАО у 330 пациентов с начала 2007 г. показал, что число фатальных осложнений составляет 3%. При этом значительное число (более 11%) — случаи, когда мы не смогли начать проведение теста из-за невозможности подобрать газовый состав крови для его начала. Чаще всего причиной являлась некорригируемая гипоксия у пациентов с аспирационным синдромом или длительной ИВЛ, реже — невозможность снизить уровень рСО 2 до 45 мм рт.ст. у больных с хронической обструктивной болезнью легких (ХОБЛ) в анамнезе [9].
Таким образом, до настоящего времени не выработано однозначного мнения о необходимости и безопасности проведения ТАО. Большинство исследователей склоняются к проведению ТАО после неврологического обследования в конце периода наблюдения. В отличие от России в США и многих странах западной Европы законодательно установлено, что при развитии осложнений во время ТАО он может быть заменен одним из диагностических тестов, подтверждающих диагноз СМ.
Длительность наблюдения
Согласно нашему законодательству, в случаях первичного поражения головного мозга период сохранения клинических признаков СМ должен составлять не менее 6 ч с момента их установления. При вторичном поражении мозга наблюдение удлиняется до 24 ч. Сократить время наблюдения возможно при проведении двукратной панангиографии [2]. Однако из-за инвазивности и небезопасности процедуры к ней прибегают довольно редко.
К тому же, затрачиваемое на транспортировку, проведение и оценку время суммарно приближается к 6-часовому периоду наблюдения, что делает процесс бессмысленным при рутинной диагностике СМ [9]. В опубликованной в начале 2011 г. работе был проведен анализ 1229 констатаций СМ у взрослых и 82 констатаций у детей в 100 госпиталях США [22]. Авторы показали, что во втором осмотре при подозрении на СМ вообще нет необходимости, так как ни разу не было зафиксировано положительной динамики в клинической и инструментальной картине. Несмотря на это, в среднем длительность наблюдения за телом с момента установления первых признаков СМ и до начала операции по забору органов либо развития асистолии составила 19,9 ч. В 12% наблюдений асистолия развилась во время 6-часового периода наблюдения, указанного в рекомендации Американской академии неврологии.
Факторы, затрудняющие клиническую диагностику смерти мозга
Спонтанные и рефлекторные движения. Часто наблюдаемые при СМ спонтанные или вызванные каким-либо раздражителем движения получили название «симптомов Лазаря», наиболее драматичный из которых — сгибание туловища на 40—60° и сложение рук в позе молящегося.
Сложные спинальные автоматизмы чаще всего вызываются не столько болевыми стимулами, сколько раздражением проприорецепторов. Особенно стоит отметить форсированные повороты головы при исследовании окулоцефалических реакций, вызывание сухожильных рефлексов [27] (табл. 2).
| Таблица2 |
