Что такое немембранные органоиды

Биология в лицее

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Органоиды (греч. órganon — орган и éidos — вид), или органеллы (лат. organella — уменьшительное от греч. órganon ) — постоянные структуры эукариотических клеток.

Органоиды разделяют на немембранные (не имеющие мембран), одномембранные (окруженные одной мембраной) и двухмембранные (окруженные двумя мембранами).

Немембранные органоиды

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоиды

Немембранные органоиды — это органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе микротрубочекклеточный центр и органоиды движения (жгутики и реснички).

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоидыРибосомы впервые были описаны как уплотненные частицы, или гранулы, американским цитологом румынского происхождения Джорджем Паладе в середине 1950-х годов. Термин «рибосома» был предложен Ричардом Робертсом в 1958 году взамен множества различных названий, которые существовали для обозначения этих частиц (микросомы, микросомные частицы, микросомные рибонуклеопротеидные частицы, гранулы Паладе). В составе рибосомы различают большую и малую субъединицы, которые синтезируются в ядрышке из рибосомальных белков и рРНК и поступают в цитоплазму, где и формируют рибосому.

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоидыПолирибосомы, или полисомы, — находящиеся в живых клетках и синтезирующие белок комплексы, каждый из которых состоит из молекулы иРНК и нескольких связанных с ней рибосом.

Полисомы образуются при последовательном присоединении рибосом к иРНК. Двигаясь по иРНК, рибосомы «считывают» информацию, заложенную в одной и той же молекуле иРНК. При этом каждая рибосома синтезирует одну полипептидную цепь согласно нуклеотидной последовательности иРНК.

Синтез белка в клетке осуществляется преимущественно полисомами, а не одиночными рибосомами.

Основная функция рибосом — синтез белка.

Рибосомы эукариотических клеток крупнее, чем рибосомы прокариот. Синтез рРНК и рибосомных белков у эукариот происходит в специальной внутриядерной структуре — ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме.

Рибосомы эукариот и прокариот

Рибосомы прокариотического типа

Характерные особенностиРибосомы эукариотического типа
Диаметр8 нм23 нм
Молекулярная масса2,5 х 10 64,2 х 10 6
Соотношение РНК и белка3: 21:1
Состав большой субъединицы2 молекулы рРНК и 34 молекулы белка3 молекулы рРНК и 49 молекул белка
Состав малой субъединицы1 молекула рРНК и 21 молекула белка1 молекула рРНК и 33 молекулы белка
Скорость осаждения в ультрацентрифуге70 S80 S
Примерное количество в клетке10 410 5

Микротрубочки входят в состав как временных, так и постоянных структур клетки. К временным относится, например, веретено деления, а к постоянным — реснички, жгутики и центриоли клеточного центра.

Микротрубочки образуют внутренний каркас клетки ( цитоскелет ), участвуют в поддержании формы клетки и расположения органоидов в цитоплазме, входят в состав ресничек и жгутиков, используются в качестве «рельсов» для транспортировки частиц и т. д. Из микротрубочек состоят также центриоли и веретено деления, микротрубочки участвуют в митотическом и мейотическом расхождении хромосом.

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоиды

Микротрубочки полярны: на одном конце может происходить самосборка микротрубочки, на другом — разборка. Сборка и разборка микротрубочек связана с затратами энергии.

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоиды

Микротрубочки являются динамическими структурами, в клетке они постоянно строятся и разбираются. Такая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоидыКлеточный центр — немембранный органоид, постоянная структура животных клеток. Отсутствует в клетках растений.

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоидыВеретено деления — структура, возникающая в клетках эукариотических организмов в процессе деления ядра.

Веретено деления: микротрубочки прикрепляются к центромерам хромосом

Веретено деления состоит из микротрубочек. Часть микротрубочек идет от центриолей к хромосомам, другие микротрубочки заканчиваются свободно в цитоплазме. Веретено деления обеспечивает согласованное расхождение хромосом к полюсам клетки.

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоидыПосле деления клетки каждая из вновь образовавшихся клеток получает пару центриолей: перед началом деления клетки происходит удвоение центриолей (от каждой центриоли отпочковывается новая центриоль) и центриоли расходятся к полюсам.

Электронная микрофотография клеточного центра: видны две центриоли, перпендикулярно ориентированные друг к другу

В результате образуются два клеточных центра — по одному на каждую вновь образовавшуюся клетку, при этом каждый клеточный центр состоит из двух центриолей.

В животных клетках две центриоли образуют клеточный центр. Эти структуры, расположенные под прямым углом друг к другу, обычно находятся вблизи ядра. В ходе митоза они расходятся к разным концам клетки, формируя веретено деления. После деления каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

В клетках растений центриолей нет, и митотическое веретено образуется там при их отсутствии.

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоиды

Что такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоидыОрганоиды движения — реснички и жгутики. Это выросты мембраны диаметром около 0,25 мкм, содержащие внутри микротрубочки. Такие органоиды имеются у многих клеток: у простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например в дыхательном эпителии.

Реснички — многочисленные цитоплазмические выросты на поверхности мембраны. Жгутики — единичные цитоплазматические выросты на поверхности клетки.

Источник

Что такое немембранные органоиды?

Любая живая клетка состоит из трех основных компонентов: ядра, цитоплазматической мембраны и цитоплазмы. Цитоплазма — внутренняя часть клетки — занимает наибольший объем и включает в себя гиалоплазму и непосредственно органоиды.

Органоиды — это постоянные функциональные структуры клетки. Каждый из них выполняет свою, строго определенную функцию. Почему они получили такое название? Дело в том, что немембранные органоиды, в отличие от остальных, лишены собственной замкнутой мембраны и, соответственно, не имеют четкой границы с жидкой средой.

Немембранные органоиды клеткиЧто такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоиды

Сами органоиды тоже можно разделить на несколько типов:

Немембранные органоиды

К немембранным органоидам клетки принято относить:

Рибосомы

По своей форме рибосомы напоминают сферу. Массовая их доля от массы всей клетки достаточно велика и порой может насчитывать четверть. Основная функция рибосом — биосинтез белка. Рибосомы представляют собой сложные рибонуклепротеиды, в их состав входят белки и рибосомальные РНК.

Молекулы РНК составляют большую часть и образуют каркас органоида. Условно рибосомы можно разделить на большую и малую субъединицы, которые способны к диссоциации. В нерабочем состоянии эти субъединицы находятся раздельно и соединяются, когда рибосома активна.

В процессе соединения в цитоплазме обязательно должны присутствовать ионы кальция или магния.

В клетке рибосомы располагаются как свободно, так и в связи с эндоплазматической сетью. Чаще всего рибосомы бывают единичными, но возможны случаи, когда с молекулой информационной РНК ассоциируются две или более рибосом.

Такую структуру называют полисомой. Полисомы состоят из одной молекулы иРНК и группы рибосом. Они выполняют функцию «считывания» информаци иРНК и создания полипептидных цепей в соответствии с нуклеотидной последовательностью.

Существуют два типа рибосом: прокариотические и эукариотические. Прокариотические характерны в основном для организмов-прокариотов, эукариотическое — для эукариотов. И те и другие имеют в своем составе все те же субъединицы и выполняют одни и те же функции. Примечательно, что рибосомы эукариот имеют больший размер, чем рибосомы прокариот.

Реснички и жгутики

И реснички, и жгутики служат для передвижения и состоят в основном из сократительных белков. Ресничками обладают простейшие одноклеточные, такие как инфузории-туфельки; жгутики характерны для сперматозоидов и хламидомонад. Располагаются они с внешней стороны цитоплазматической мембраны.

Микротрубочки

Микротрубочки находятся непосредственно в цитоплазме любой эукариотической клетки и представляют собой полые трубки из белка тубулина.

Способны легко распадаться и собираться заново; такая нестабильность в динамике исключительно важна.

Например, в процессе клеточного деления микротрубочки растут в разы быстрее, способствуют образованию веретена деления и правильной ориентации хромосом. В длину эти органоиды не превышают нескольких микрометров.

Микротрубочки выполняют строительную функцию, помогая создавать каркас клетки, поддерживают ее форму, а также участвуют в транспорте различных частиц, играя роль своеобразных рельсов: способствуют легкому перемещению митохондрий внутри клетки. Аксонема — центральная структура ресничек и жгутиков — также образована микротрубочками.

Помимо перечисленного, они участвуют и в информационных процессах: входят в состав центриолей и веретена деления, играют роль в расхождении хромосом при митотическом и мейотическом делениях.

Микрофиламенты

Микрофиламенты — сократимые элементы цитоскелета, состоящие из актиновых нитей и прочих сократительных белков. Обнаружены во всех клетках эукариот, но особенно высокое их содержание приходится на мышечные волокна.

Встречаются во всей цитоплазме и находятся в ней в виде пучков из параллельно расположенных нитей или трехмерной сети. Принимают участие в построении цитоскелета, изменении формы и передвижении, эндомитозе, участвуют в процессах фагоцитоза, образования перетяжки во время деления хромосом и расхождения их к полюсам.

Микрофибриллы

Микрофибриллы в большинстве своем сосредоточены в подмембранном слое цитоплазмы. Они представляют из себя тонкие, неветвящиеся и напоминающие нити элементы, состоящие из белка.

В зависимости от класса клеток белок имеет свою, отличную от других структуру. Микрофибриллы так же, как и микротрубочки, принимают участие в формировании каркаса и выполняют опорную функцию. В совокупности с микротрубочками и микрофиламентами образуют цитоскелет.

Клеточный центр

Клеточный центр обязательно присутствует в любой животной клетке, но, согласно наблюдениям, отсутствует у высших растений, водорослей и некоторых видов простейших. Он включает в себя две центриоли — структуры, напоминающие полые цилиндры, стенки которых образованы микротрубочками.

Центриоли располагаются перпендикулярно друг другу и образуют диплосому. Одна из них, материнская, в отличие от дочерней, имеет дополнительные образования, например, сатиллиты, а также является источником образования микротрубочек. Снаружи центриоли окружены матриксом, который имеет собственную ДНК и РНК.

При митотическом делении центриоли отвечают за правильное распределение хромосом между двумя новыми клетками. В процессе деления ядра в клетках эукариот образуется веретено деления, построенное из микротрубочек.

Эта структура обеспечивает расхождение хромосом к полюсам. По завершении процесса деления каждая новая клетка имеет по две центриоли, в результате чего образуется два новых клеточных центра. Каждый клеточный центр содержит в себе две центриоли.

Клеточный центр участвует во множестве процессов. Так, именно он отвечает за управление абсолютно всеми микротрубочками, имеющимися в клетке, образование ресничек, жгутиков и нитей веретена деления.

При делении клеточный центр располагается рядом с полюсами, так как участвует в образовании веретена деления. В клетках, которые в данный момент не делятся, его расположение приходится на центр клетки, рядом с ядром или комплексом Гольджи.

Фламинго-НН

Органоиды (греч. órganon — орган и éidos — вид), или органеллы (лат. organella — уменьшительное от греч. órganon) — постоянные структуры эукариотических клеток.

К органоидам относят клеточный центр, рибосомы, митохондрии, пластиды, комплекс Гольджи, эндоплазматическую сеть, лизосомы, вакуоли и цитоплазматические микротрубочки. Каждый органоид осуществляет определенные функции, жизненно необходимые для клетки. Органоиды разделяют на немембранные (не имеющие мембран), одномембранные(окруженные одной мембраной) и двухмембранные (окруженные двумя мембранами).

Немембранные органоиды

Немембранные органоиды — это органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе микротрубочекклеточный центр и органоиды движения (жгутики и реснички).

Рибосома — мельчайший органоид сферической или слегка овальной формы, диаметром 8 — 23 нм. Можно сказать, что рибосомы представляют собой гигантские объединения молекул —нуклеопротеиды, состоящие из молекул рРНК, связанных с белками.

Рибосомы впервые были описаны как уплотненные частицы, или гранулы, американским цитологом румынского происхождения Джорджем Паладе в середине 1950-х годов.

Термин «рибосома» был предложен Ричардом Робертсом в 1958 году взамен множества различных названий, которые существовали для обозначения этих частиц (микросомы, микросомные частицы, микросомные рибонуклеопротеидные частицы, гранулы Паладе).

В составе рибосомы различают большую и малую субъединицы, которые синтезируются в ядрышке из рибосомальных белков и рРНК и поступают в цитоплазму, где и формируют рибосому.

Рибосомы могут располагаться в цитоплазме свободно или быть связанными с мембранами эндоплазматической сети. Свободные рибосомы могут быть единичными, но нередко с одной молекулой иРНК может быть ассоциировано несколько рибосом, такая структура называется полирибосомой, или полисомой.

Полирибосомы, или полисомы, — находящиеся в живых клетках и синтезирующие белок комплексы, каждый из которых состоит из молекулы иРНК и нескольких связанных с ней рибосом.

Полисомы образуются при последовательном присоединении рибосом к иРНК. Двигаясь по иРНК, рибосомы «считывают» информацию, заложенную в одной и той же молекуле иРНК. При этом каждая рибосома синтезирует одну полипептидную цепь согласно нуклеотидной последовательности иРНК.

Синтез белка в клетке осуществляется преимущественно полисомами, а не одиночными рибосомами.

Основная функция рибосом — синтез белка.

Рибосомы эукариотических клеток крупнее, чем рибосомы прокариот. Синтез рРНК и рибосомных белков у эукариот происходит в специальной внутриядерной структуре — ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме.

Рибосомы эукариот и прокариот

Характерные особенности Рибосомы прокариотического типа Рибосомы эукариотического типа

Диаметр8 нм23 нм
Молекулярная масса2,5 х 1064,2 х 106
Соотношение РНК и белка3: 21:1
Состав большой субъединицы2 молекулы рРНК и 34 молекулы белка3 молекулы рРНК и 49 молекул белка
Состав малой субъединицы1 молекула рРНК и 21 молекула белка1 молекула рРНК и 33 молекулы белка
Скорость осаждения в ультрацентрифуге70 S80 S
Примерное количество в клетке104105

Микротрубочки — полые цилиндрические структуры клеток эукариотических организмов, основной компонент которых — белок тубулин. Длина микротрубочек варьирует, диаметр сечения около 25 нм.

Микротрубочки входят в состав как временных, так и постоянных структур клетки. К временным относится, например, веретено деления, а к постоянным — реснички, жгутики и центриоли клеточного центра.

Микротрубочки образуют внутренний каркас клетки (цитоскелет), участвуют в поддержании формы клетки и расположения органоидов в цитоплазме, входят в состав ресничек и жгутиков, используются в качестве «рельсов» для транспортировки частиц и т. д. Из микротрубочек состоят также центриоли и веретено деления, микротрубочки участвуют в митотическом и мейотическом расхождении хромосом.

Микротрубочки в клетках человеческого организма: А — микротрубочки в интерфазе; В — ранняя анафаза митоза, микротрубочки зеленые, центриоли красные, хромосомы голубые (световая микроскопия в ультрафиолетовом свете, флюоресцентные красители)

Микротрубочки полярны: на одном конце может происходить самосборка микротрубочки, на другом — разборка. Сборка и разборка микротрубочек связана с затратами энергии.

Микротрубочки являются динамическими структурами, в клетке они постоянно строятся и разбираются. Такая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Клеточный центр — немембранный органоид, постоянная структура животных клеток. Отсутствует в клетках растений.

Клеточный центр состоит из двух центриолей. При образовании митотического веретена деления центриоли расходятся к полюсам клетки, обеспечивая равномерное распределение хромосом между дочерними клетками.

Веретено деления — структура, возникающая в клетках эукариотических организмов в процессе деления ядра. Веретено деления: микротрубочки прикрепляются к центромерам хромосом

Веретено деления состоит из микротрубочек. Часть микротрубочек идет от центриолей к хромосомам, другие микротрубочки заканчиваются свободно в цитоплазме. Веретено деления обеспечивает согласованное расхождение хромосом к полюсам клетки.

После деления клетки каждая из вновь образовавшихся клеток получает пару центриолей: перед началом деления клетки происходит удвоение центриолей (от каждой центриоли отпочковывается новая центриоль) и центриоли расходятся к полюсам.

В результате образуются два клеточных центра — по одному на каждую вновь образовавшуюся клетку, при этом каждый клеточный центр состоит из двух центриолей.

Центриоль — небольшой немембранный органоид (диаметр 0,2 мкм, длина 0,3 — 0,5 мкм), представляет собой цилиндр, стенка которого образована девятью триплетами микротрубочек, состоящих из молекул белка тубулина.

Клеточные органоиды: их строение и функцииЧто такое немембранные органоиды. Смотреть фото Что такое немембранные органоиды. Смотреть картинку Что такое немембранные органоиды. Картинка про Что такое немембранные органоиды. Фото Что такое немембранные органоиды

Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков.

Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ — богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного организма.

Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды.

Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы — носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, и-РНК, р-РНК.

Строение животной клетки

Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Клеточные включения — скопления запасных питательных веществ: белков, жиров и углеводов. Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму.

Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам. Ядро — место синтеза ДНК, иРНК, рРНК.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *