Что такое неопределенность измерений в лаборатории

Неопределенность измерений в метрологии

Определения погрешности и неопределенности измерений.

История возникновения термина «неопределенность измерений».

Термины используемые при расчете неопределенности.

Соотношение терминов теории неопределенности с терминами классической теории точности (в скобках):

Подробно о типах определённости и их расчётах рассказано в статье «Понятие и типы неопределенностей. ГОСТ 34100.3-2017»

Оценка результата измерений в терминах «погрешность измерений».

Что такое неопределенность измерений в лаборатории. Смотреть фото Что такое неопределенность измерений в лаборатории. Смотреть картинку Что такое неопределенность измерений в лаборатории. Картинка про Что такое неопределенность измерений в лаборатории. Фото Что такое неопределенность измерений в лаборатории

Рис.1. Диапазон возможных значений при погрешности

Оценка результата измерений в терминах «неопределенность измерений».

Что такое неопределенность измерений в лаборатории. Смотреть фото Что такое неопределенность измерений в лаборатории. Смотреть картинку Что такое неопределенность измерений в лаборатории. Картинка про Что такое неопределенность измерений в лаборатории. Фото Что такое неопределенность измерений в лаборатории

Рис.2. Диапазон возможных значений при неопределенности

Что такое неопределенность измерений в лаборатории. Смотреть фото Что такое неопределенность измерений в лаборатории. Смотреть картинку Что такое неопределенность измерений в лаборатории. Картинка про Что такое неопределенность измерений в лаборатории. Фото Что такое неопределенность измерений в лаборатории

Рис.3. Интервал значений при расчете неопределенности

Расчёт неопределённости с применением приборов.

В следующей статье «Расчет неопределенности результатов измерений | пример для люксметра «еЛайт»» мы рассмотрим практический пример как вручную вычислить неопределенность измерений освещенности, используя люксметр-пульсметр-яркомер еЛайт02. В некоторых современных приборах такой расчёт неопределённости уже осуществляется автоматически, как, например, в самом доступном люксметре с поверкой еЛайт-мини.

Рис.4. Профессиональный измеритель освещённости еЛайт01 с функцией автоматического расчёта неопределённости измерений.

Что такое неопределенность измерений в лаборатории. Смотреть фото Что такое неопределенность измерений в лаборатории. Смотреть картинку Что такое неопределенность измерений в лаборатории. Картинка про Что такое неопределенность измерений в лаборатории. Фото Что такое неопределенность измерений в лаборатории

Рис.5. Термоанемометр-гигрометр-барометр ЭкоТерма Максима 01 с функцией автоматического расчёта неопределённости измерений.

Выводы.

Отличие понятия «погрешности» от «неопределенности»:

Понравился материал? Поделитесь им в соцсетях:

Источник

Что такое неопределенность измерений в лаборатории

ГОСТ Р 54502-2011/ ISO/TS 19036:2006

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИКРОБИОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И КОРМОВ ДЛЯ ЖИВОТНЫХ

Руководство по оценке неопределенности измерений при количественных определениях

Microbiology of food and animal feeding stuffs. Guidelines for the estimation of measurement uncertainty for quantitative determinations

Дата введения 2013-01-01

Сведения о стандарте

1 ПОДГОТОВЛЕН Государственным научным учреждением Всероссийским научно-исследовательским институтом консервной и овощесушильной промышленности Российской академии сельскохозяйственных наук (ГНУ ВНИИКОП Россельхозакадемии) на основе аутентичного перевода на русский язык международного документа, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 335 «Методы испытаний агропромышленной продукции на безопасность»

ISO/ТС 34/SC 9 считает, что применение этого «пошагового» подхода не будет достаточно удовлетворительным в случае микробиологического анализа пищевых продуктов, где трудно построить модель, реально всесторонне охватывающую все этапы измерительного процесса. Из-за возможности упустить из виду какие-либо значимые источники неопределенности имеется высокий риск недооценить истинную величину неопределенности. Более того, в микробиологии трудно с достаточной точностью количественно оценить вклад каждого отдельного шага в аналитическом процессе, потому что

— аналитом являются живые организмы, физиологический статус которых может быть весьма разнообразным, и

— аналитическая цель может включать в себя различные виды, штаммы или различные роды микроорганизмов.

Другими словами, микробиологический анализ не предоставляет возможности оценить неопределенность результата измерения метрологически строго и статистически убедительно.

Глобальный подход был предложен для более общего использования стандартом ISO/TS 21748, разработанным ISO/TC 69 «Применение статистических методов», SC 6 «Методы измерений и результаты». Этот документ разъясняет, что пошаговый подход и глобальный подход не являются взаимоисключающими, поскольку оба предусматривают идентификацию и включение в рассмотрение всех составляющих неопределенности при общей оценке характеристик аналитического процесса, которые могут быть выражены как его прецизионность и смещение.

В 2009 году было введено в действие изменение 1:2009 «Неопределенность измерений в случае низких значений количества колониеобразующих единиц» к международному документу ISO/TS 19036:2006, направленное на расширение его области применения на случаи, когда при микробиологических испытаниях получают «низкие» (до 10-100 КОЕ/г) значения концентрации аналита. Решение задачи стало возможным благодаря введению в модель измерений поправочных членов, значения которых находят, используя известный в математической статистике закон Пуассона.

Изменение 1:2009 к ISO/TS 19036:2006 предусматривает:

— редакционные поправки в разделы 1, 4 и 5 (в разделе 1 третий и четвертый абзацы заменены новыми, в пункте 4.1 второй абзац после ссылки «(4.2)» дополнен словами «объединенное с составляющей, связанной с Пуассоновским распределением», в пункте 4 из уравнения исключено выражение «Что такое неопределенность измерений в лаборатории. Смотреть фото Что такое неопределенность измерений в лаборатории. Смотреть картинку Что такое неопределенность измерений в лаборатории. Картинка про Что такое неопределенность измерений в лаборатории. Фото Что такое неопределенность измерений в лаборатории«, в подпункте 5.2.1 в четвертом абзаце изменен текст первого предложения, в пункте 5.3 в начале пункта добавлены три первых абзаца);

— раздел 8 «Вычисление расширенной неопределенности», в котором приведены расчетные формулы и описаны правила проведения статистических расчетов;

— раздел 9 «Выражение неопределенности измерений в отчетах по испытаниям», в котором приведены четыре примера расчетов величины неопределенности измерений и правила представления результатов микробиологического анализа в протоколах и других отчетах по испытаниям;

— приложение В (справочное) «Величины и нижний и верхний предельные значения результата измерений, выраженные в относительных единицах», в котором приведены результаты соответствующих статистических расчетов.

1 Область применения

Настоящий стандарт представляет собой руководство по оценке и выражению неопределенности, связанной с количественными определениями, осуществляемыми в пищевой микробиологии.

Стандарт применим при количественных анализах

— продуктов, предназначенных для потребления человеком, и кормов для животных и

— проб, взятых с целью контроля состояния окружающей среды при производстве продуктов, которые обычно проводятся путем определения количества микроорганизмов с использованием техники подсчета числа культивированных колоний, однако он пригоден также и при количественных анализах, осуществляемых альтернативными инструментальными методами.

Стандарт неприменим в случае использования так называемой «техники определения наиболее вероятного числа».

В настоящем стандарте неопределенность измерений оценивается с использованием упрощенного подхода, в котором принимается в учет Пуассоновское распределение, и поэтому он применим по отношению к любому результату микробиологического анализа, включая случаи «низкого» результата подсчета числа колониеобразующих единиц и/или «низкого» числа микроорганизмов.

Подход, лежащий в основе данного стандарта, является глобальным подходом, основанным на определении стандартного отклонения воспроизводимости финального результата измерений.

2 Термины и определения

Для целей настоящего стандарта использованы следующие термины и определения.

2.1 неопределенность (измерения) [uncertainty (of measurement)]: Параметр, связанный с результатом измерения и характеризующий рассеяние значений, которые могли бы быть обоснованно приписаны измеряемой величине.

2.2 стандартная неопределенность (standard uncertainty) : Неопределенность результата измерений, выраженная в виде среднеквадратического отклонения [15].

2.3 суммарная стандартная неопределенность (combined standard uncertainty) Что такое неопределенность измерений в лаборатории. Смотреть фото Что такое неопределенность измерений в лаборатории. Смотреть картинку Что такое неопределенность измерений в лаборатории. Картинка про Что такое неопределенность измерений в лаборатории. Фото Что такое неопределенность измерений в лаборатории: Стандартная неопределенность результата измерений, полученная через значения нескольких других величин, равная положительному квадратному корню из суммы членов, представляющих собой дисперсии или ковариации этих других величин, взятых с весомостями, соответствующими степени влияния этих величин на результат измерений [15].

2.4 расширенная неопределенность (expanded uncertainty) : Величина, определяемая интервалом вокруг результата измерений, в пределах которого, как можно ожидать, находится большая доля распределения значений, которые с достаточным основанием могли бы быть приписаны измеряемой величине.

Что такое неопределенность измерений в лаборатории. Смотреть фото Что такое неопределенность измерений в лаборатории. Смотреть картинку Что такое неопределенность измерений в лаборатории. Картинка про Что такое неопределенность измерений в лаборатории. Фото Что такое неопределенность измерений в лаборатории.

2.5 коэффициент охвата (coverage factor) : Числовой коэффициент, используемый как множитель для суммарной стандартной неопределенности при определении расширенной неопределенности.

3 Принципы

3.1 Глобальный подход при оценке неопределенности измерений

Настоящий стандарт предусматривает использование так называемого глобального подхода. Он основан на обеспечении при эксперименте всеохватывающей допустимой вариабельности аналитического процесса, обусловливающей варьирование результатов измерений. Всеохватывающая вариабельность означает, что в изучение вовлечены как наблюдаемая прецизионность (случайная составляющая), так и смещение (систематическая составляющая). На практике в случае микробиологических испытаний в расчет принимается только прецизионность (см. 3.2).

Глобальный подход при оценке неопределенности результата измерения в настоящем стандарте проистекает из экспериментальной оценки стандартного отклонения воспроизводимости финального результата полностью выполненной процедуры измерений. Это стандартное отклонение соответствует суммарной стандартной неопределенности (см. 4.1).

Глобальный подход может рассматриваться как реализация концепции «черный ящик», что иллюстрирует рисунок 1, где идентифицированы основные источники неопределенности измерений в пищевой микробиологии. Такая диаграмма может быть полезной при идентификации источников неопределенности при решении вопроса, относятся они или нет к данному конкретному случаю выбранного протокола проведения эксперимента.

Что такое неопределенность измерений в лаборатории. Смотреть фото Что такое неопределенность измерений в лаборатории. Смотреть картинку Что такое неопределенность измерений в лаборатории. Картинка про Что такое неопределенность измерений в лаборатории. Фото Что такое неопределенность измерений в лаборатории

Следует иметь в виду, что применение глобального подхода требует, чтобы при использовании его результатов имелась возможность подтвердить, что процедура эксперимента была под контролем.

3.2 Рассмотрение смещения

Обычно предполагается, что смещение не принимается в учет при оценке неопределенности измерений, что вытекает из эмпирической природы микробиологических количественных определений. Другими словами, аналитическая процедура непосредственно определяет результат измерения, т.е. количество колониеобразующих единиц в единичном объеме пробы. На практике, таким образом, не представляется возможным установить истинное значение, знание которого необходимо для расчета величины смещения. Даже если применяются стандартные образцы или используются данные межлабораторных испытаний, оценена может быть только некая часть смещения.

Тем не менее указывается, что часть величины смещения может быть оценена по данным межлабораторных испытаний, описанных в настоящем стандарте в двух случаях в процедуре оценки стандартного отклонения воспроизводимости (см. разделы 6 и 7). Метод учета такой составляющей неопределенности, как смещение, в настоящем стандарте не описан. Однако, даже если систематическая составляющая неопределенности измерений формально не оценивается, можно сказать, что величина лабораторного смещения находится под контролем, будучи отслеживаемой путем участия лаборатории, например в межлабораторных испытаниях по оценке технической компетентности или путем проведения испытаний с использованием стандартных образцов.

Источник

Что такое неопределенность измерений в лаборатории

ГОСТ Р 54500.1-2011/Руководство ИСО/МЭК 98-1:2009

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Введение в руководства по неопределенности измерения

Uncertainty of measurement. Part 1. Introduction to guides on uncertainty in measurement

Дата введения 2012-10-01

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева» (ФГУП «ВНИИМ») и Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 ноября 2011 г. N 555-ст

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

Предисловие к Руководству ИСО/МЭК 98-1:2009

В 1997 г. семью международными организациями, подготовившими в 1993 г. «Руководство по выражению неопределенности измерения» (GUM) и «Международный словарь по метрологии. Основные и общие понятия и связанные с ними термины» (VIM), был образован Объединенный комитет по руководствам в метрологии (JCGM), возглавляемый директором Международного бюро мер и весов (МБМВ), который принял на себя ответственность за указанные два документа от Технической консультативной группы по метрологии ИСО (ИСО/ТАГ 4).

Учредителями JCGM помимо МБМВ являются Международная электротехническая комиссия (МЭК), Международная федерация клинической химии и лабораторной медицины (МФКХ), Международное сотрудничество по аккредитации лабораторий (ИЛАК), Международная организация по стандартизации (ИСО), Международный союз теоретической и прикладной химии (ИЮПАК), Международный союз теоретической и прикладной физики (ИЮПАП) и Международная организация по законодательной метрологии (МОЗМ).

В рамках JCGM созданы две Рабочие группы (РГ). Задачей РГ 1 «Выражение неопределенности измерения» является содействие использованию Руководства (GUM), подготовка дополнений к Руководству и иных документов, способствующих его широкому применению. Задачей РГ 2 «Рабочей группы по Международному словарю основных и общих терминов в метрологии (VIM)» является пересмотр VIM и содействие его применению. Более подробную информацию о деятельности JCGM можно найти на сайте www.bipm.org.

Настоящий документ является частью серии документов JCGM под общим названием «Оценивание данных измерений», включающей в себя:

— JCGM 100:2008 Оценивание данных измерений. «Руководство по выражению неопределенности измерения (GUM)» (см. раздел 2 настоящего стандарта);

— JCGM 101:2008 Оценивание данных измерений. Дополнение 1 к «Руководству по выражению неопределенности измерения». Трансформирование распределений с использованием метода Монте-Карло (см. раздел 2 настоящего стандарта);

— JCGM 102 Оценивание данных измерений. Дополнение 2 к «Руководству по выражению неопределенности измерения». Модели с произвольным числом выходных величин;

— JCGM 103 Оценивание данных измерений. Дополнение 3 к «Руководству по выражению неопределенности измерения». Моделирование;

— JCGM 104 Оценивание данных измерений. Введение к «Руководству по выражению неопределенности измерения» и сопутствующим документам (настоящий стандарт);

— JCGM 105 Оценивание данных измерений. Понятия и основные принципы;

— JCGM 106 Оценивание данных измерений. Роль неопределенности измерения в оценке соответствия;

— JCGM 107 Оценивание данных измерений. Применения метода наименьших квадратов.

Введение

Данные о неопределенности измерения должны всегда приниматься во внимание при оценке соответствия результата измерения его целям. Покупатель в овощной лавке не будет возражать, если при покупке килограмма фруктов весы покажут отклонение от истинного значения в пределах, допустим, двух граммов. В то же время размеры деталей гироскопов, используемых в системах навигации воздушных судов, контролируют до миллионных долей.

Измерения присутствуют практически во всех видах человеческой деятельности, включая промышленность, торговлю, науку, здравоохранение, обеспечение безопасности и охрану окружающей среды, помогая принимать обоснованные решения. Знание неопределенности измерения позволяет сопоставлять результат измерения с установленными требованиями при оценке соответствия, находить вероятность принятия неправильного решения и с ее учетом управлять возникающими рисками.

Настоящий документ служит введением в концепцию неопределенности измерения, в GUM и сопутствующие документы, указанные в предисловии. Для оценивания неопределенности используется вероятностный подход. Аббревиатуры, использованные в настоящем документе, приведены в приложении А.

В последующих изданиях JCGM 200 (VIM) предполагается дать четкое разграничение в применении термина «погрешность» к величине погрешности и к значению погрешности. То же самое относится к термину «показание». Поскольку в действующем издании JCGM 200:2008 такого разграничения нет, то данный вопрос рассматривается в настоящем документе.

1 Область применения

Как и JCGM 100, настоящий документ в первую очередь рассматривает выражение неопределенности измерения хорошо определенной величины, характеризуемой единственным истинным значением (JCGM 200, словарная статья 2.11, примечание 3) и называемой измеряемой величиной (JCGM 200, словарная статья 2.3). В JCGM 100 приведены обоснования, почему не рекомендуется использовать термин «истинное значение», однако в настоящем документе этот термин рассматривается для предотвращения возможных неясностей или путаницы с его применением.

Дополнения к GUM и другие сопутствующие документы разрабатываются JCGM с целью оказать помощь в понимании принципов, установленных в GUM, и расширить сферу его применения. Дополнения к GUM вместе с другими сопутствующими документами создают область применения концепции неопределенности измерения, существенно превышающую ту, что установлена GUM.

Настоящий документ знакомит с понятием неопределенности измерения, с GUM и дополнениями к GUM, а также документами, поддерживающими GUM. Он ограничивается преимущественно вопросами измерения величин, которые могут быть охарактеризованы непрерывными переменными, такими как длина, температура, время, количество вещества.

Настоящий документ распространяется на следующие сферы деятельности (но не ограничивается ими):

— деятельность калибровочных и испытательных лабораторий в промышленности, а также в сферах здравоохранения, обеспечения безопасности и охраны окружающей среды;

— деятельность органов по аккредитации, а также органов контроля, надзора и оценки соответствия.

Настоящий документ может быть использован при проектировании изделий, поскольку установление характеристик изделий с учетом последующих требований к контролю и связанными с ним измерениями позволит избежать завышенных технологических требований при их производстве. Применение настоящего документа в сфере высшего образования позволит включать в программы по различным дисциплинам разделы по неопределенности измерения. Результатом должна стать лучшая подготовленность специалистов к восприятию концепции неопределенности измерения и применению ее в разных измерительных задачах, что, в конечном итоге, послужит улучшению качества измерений в целом.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы*:

3 Понятие неопределенности измерения

3.1 Цель измерения состоит в получении информации об интересующей величине, называемой измеряемой величиной (JCGM 200, словарная статья 2.3). Измеряемой величиной может быть объем сосуда, разность потенциалов на клеммах батареи или массовая концентрация свинца в колбе с водой.

3.2 Абсолютно точных измерений не существует. При проведении измерения его результат зависит от измерительной системы (JCGM 200, словарная статья 3.2), методики измерения, квалификации оператора, внешних условий и других факторов [1]. Так, если измерять одну и ту же величину несколько раз одним способом и в одинаковых условиях, то, как правило, при достаточной разрешающей способности измерительной системы, позволяющей различать близкие показания (JCGM 200, словарная статья 4.1), эти показания (полученные значения измеряемой величины [JCGM 200, словарная статья 2.10]) всякий раз будут разными. Показания рассматривают как мгновенные реализации соответствующей случайной величины.

3.3 Разброс показаний позволяет судить о качестве проведенного измерения. Их среднее должно обеспечить значение оценки (ИСО 3534-1, словарная статья 1.31) истинного значения величины (JCGM 200, словарная статья 2.11), которая в общем случае будет более достоверной, чем отдельное показание. Разброс показаний и их число дают некоторую информацию в отношении среднего значения как оценки истинного значения величины. Однако эта информация в большинстве случаев не будет достаточной.

3.5 Существуют два вида погрешности измерения: систематическая и случайная (JCGM 200, словарная статья 2.19). Систематическая погрешность [значение оценки которой называют смещением при измерении (JCGM 200, словарная статья 2.18)] проявляется в том, что полученное значение измеряемой величины содержит сдвиг. Случайная погрешность проявляется в том, что при повторении измерения полученное значение измеряемой величины в большинстве случаев будет отличаться от предыдущего. Случайность заключается в том, что последующие значения измеряемой величины нельзя точно предсказать по предыдущим (если бы такая возможность существовала, то в результат измерений можно было бы внести соответствующую поправку). В общем случае каждый из видов погрешности может быть обусловлен действием нескольких факторов.

3.7 Одним из основных исходных положений подхода GUM является утверждение о возможности охарактеризовать качество измерения, исходя из единообразного обращения с систематической и случайной погрешностями, с предложением метода, как это сделать (см. 7.2). Этот метод возвращает к исходной информации, какой она была до применения «анализа погрешностей», и подводит под нее вероятностную основу с помощью концепции неопределенности измерения.

3.8 Другое базовое положение GUM состоит в утверждении, что нельзя установить, насколько хорошо известно единственное истинное значение величины, а можно только сформулировать степень нашей уверенности в том, что оно известно. Таким образом, неопределенность измерения можно представить через степень уверенности. Такая неопределенность будет отражать неполноту знания об измеряемой величине. Понятие «уверенности» очень важно, т.к. оно перемещает метрологию в сферу, где результат измерения должен рассматриваться и численно определяться в терминах вероятностей, которые выражают степень доверия.

Источник

Что такое неопределенность измерений в лаборатории

ГОСТ Р ИСО 21748-2012

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

РУКОВОДСТВО ПО ИСПОЛЬЗОВАНИЮ ОЦЕНОК ПОВТОРЯЕМОСТИ, ВОСПРОИЗВОДИМОСТИ И ПРАВИЛЬНОСТИ ПРИ ОЦЕНКЕ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ

Statistical methods. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation

Дата введения 2013-12-01

Предисловие

1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1419-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 21748:2010* «Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений» (ISO 21748:2010 «Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation», IDT).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ПЕРЕИЗДАНИЕ. Июль 2019 г.

Введение

Знание неопределенности результатов измерений крайне важно для принятия решений. Без количественных оценок неопределенности невозможно решить, превышают ли наблюдаемые отклонения результатов измерений заданную изменчивость, соответствуют ли объекты испытаний установленным требованиям. При отсутствии информации о неопределенности результатов измерений велика вероятность ошибочного принятия решений, которые могут привести к непредусмотренным расходам в процессе производства, неправильным судебным выводам, неблагоприятным последствиям для здоровья человека или неблагоприятным социальным последствиям.

ИСО/МЭК 17025:2005 «Общие требования к компетентности испытательных и поверочных лабораторий» (ISO/IEC 17025:2005 «General requirements for the competence of testing and calibration laboratories»).

ИСО 5725-2:1994 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерения» [ISO 5725-2:1994 «Accuracy (trueness and precision) of measurement methods and results. Part 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method»]

Общий подход, используемый в настоящем стандарте, требует, чтобы:

— оценки повторяемости, воспроизводимости и правильности метода, полученные при межлабораторном исследовании в соответствии с ИСО 5725-2:1994, могли быть получены из опубликованной информации об использовании метода испытаний. Эти оценки позволяют получать внутрилабораторные и межлабораторные составляющие неопределенности, а также оценку неопределенности результатов, связанную с правильностью метода;

— лаборатория подтвердила на основе проверок присущих ей смещения и прецизионности, что качество выполнения ею метода испытаний соответствует установленным требованиям к методу испытаний, то есть подтвердила, что опубликованные данные о применении метода согласуются с результатами измерений и испытаний, полученными лабораторией;

— любые воздействия на результаты измерений, не охваченные межлабораторными исследованиями, были идентифицированы, а отклонения, вызванные этими воздействиями, определены количественно.

Оценку неопределенности определяют объединением оценок дисперсии, полученных в результате межлабораторных исследований в соответствии с GUM.

Для контроля полного понимания метода разброс результатов, полученных в межлабораторном исследовании, полезно сравнивать с оценками неопределенности измерений, полученными с использованием процедур GUM. Такие сравнения будут более эффективны при использовании последовательных оценок одного и того же параметра, полученных на основе данных совместных исследований.

Применяемый в настоящем стандарте международный стандарт разработан Техническим комитетом ИСО/ТС 69 «Применение статистических методов».

1 Область применения

В настоящем стандарте приведено руководство для:

— оценки неопределенности измерений на основе данных, полученных в результате исследований, проводимых в соответствии с ИСО 5725-2;

— сравнения результатов, полученных в межлабораторном исследовании, с оценками неопределенности измерений исследуемого параметра, полученными с использованием принципов переноса неопределенности (см. раздел 13).

В ИСО 5725-3 установлены дополнительные модели для анализа промежуточной прецизионности. Однако оценка неопределенности с использованием этих моделей не включена в настоящий стандарт, хотя этот общий подход может быть применен к более широкой группе моделей.

Настоящий стандарт применим во всех областях измерений и испытаний, когда должна быть определена неопределенность результатов.

В настоящем стандарте не приведено описание применения данных повторяемости в отсутствии данных воспроизводимости.

В настоящем стандарте использовано предположение, что признанные значимыми систематические воздействия устранены либо путем численной корректировки результатов, включенной в метод измерений, либо путем анализа и устранения причины воздействий.

В настоящем стандарте приведено общее руководство. Представленный подход к оценке неопределенности применим во многих случаях, однако возможно применение и других методов.

В общем случае информация, приведенная в настоящем стандарте, относительно результатов, методов и процессов измерений, относится также к результатам, методам и процессам испытаний.

2 Термины и определения

В настоящем стандарте применены термины по ИСО 5725-3, а также следующие термины с соответствующими определениями:

2.1 смещение (bias): Разность между математическим ожиданием результатов наблюдений испытаний и измерений и истинным значением.

1 Смещение представляет собой систематическую ошибку в противоположность случайной ошибке. Могут существовать одна или несколько причин, вызывающих систематическую ошибку. Большее систематическое отклонение от истинного значения соответствует большему значению смещения.

Применительно к измерениям под ошибкой следует понимать «погрешность».

3 На практике применяют вместо истинного значения принятое опорное значение.

[ИСО 3534-2:2006, определение 3.3.2]

2.2 суммарная стандартная неопределенность (combined standard uncertainty); : Стандартная неопределенность результата измерений, полученного через значения ряда других величин, равная положительному квадратному корню из суммы членов, представляющих собой дисперсии или ковариации этих величин, взятых с весами, соответствующими степени влияния этих величин на результат измерений.

[Руководство ИСО/МЭК 98-3:2008, определение 2.3.4]

2.3 коэффициент охвата (coverage factor); : Числовой коэффициент, на который умножают суммарную стандартную неопределенность при определении расширенной неопределенности.

[Руководство ИСО/МЭК 98-3:2008, определение 2.3.6]

2.4 расширенная неопределенность (expanded uncertainty); : Величина, определяющая интервал вокруг математического ожидания результатов измерений, охватывающий большую долю распределения значений, которые обоснованно могут быть приписаны измеряемой величине.

1 Долю распределения, охватывающую интервалом, характеризует вероятность охвата или уровень доверия интервала.

2 Чтобы связать определенный уровень доверия с интервалом расширенной неопределенности, необходимы предположения (в явной или неявной форме) о форме распределения вероятностей результатов измерений и их суммарной стандартной неопределенности. Уровень доверия, который соответствует этому интервалу, может соответствовать действительности только в той степени, в какой могут быть справедливы предположения.

3 В рекомендациях [20] расширенную неопределенность называют общей неопределенностью.

[Руководство ИСО/МЭК 98-3:2008, определение 2.3.5]

2.5 прецизионность (precision): Близость независимых результатов наблюдений, полученных при определенных принятых условиях.

1 Прецизионность зависит от распределения случайных ошибок и не связана ни с истинным, ни с заданным значениями.

2 Меру прецизионности обычно выражают в терминах изменчивости и вычисляют как стандартное отклонение результатов наблюдений (испытаний/измерений). Малой прецизионности соответствует большое стандартное отклонение.

3 Количественные меры прецизионности существенным образом зависят от принятых условий. Условия повторяемости и условия воспроизводимости являются примерами крайних вариантов принятых условий.

[ИСО 3534-2:2006, определение 3.3.4]

2.6 повторяемость (repeatability): Прецизионность в условиях повторяемости.

[ИСО 3534-2:2006, определение 3.3.5]

2.7 условия повторяемости (repeatability conditions): Условия наблюдений, при которых независимые результаты наблюдений (испытаний/измерений) получают одним и тем же методом на идентичных объектах наблюдений, в одной и той же лаборатории, с применением одних и тех же средств испытаний/измерений, одним и тем же оператором, с использованием одного и того же оборудования в течение короткого интервала времени.

— процедур измерений или испытаний;

— измерительного и испытательного оборудования, используемых в одних и тех же условиях;

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *