Что такое неполное частное в математике 6 класс
Деление целых чисел. Делимое, делитель, частное.
Деление целых чисел отличается от деления натуральных чисел, только тем что у целых чисел нужно у частного посчитать знак. Как посчитать знак частного целых чисел? Рассмотрим подробно в теме.
Термины и понятия частного целых чисел.
Чтобы выполнить деление целых чисел нужно вспомнить термины и понятия. В делении есть: делимое, делитель и частное целых чисел.
Делимое – это то целое число, которое делят. Делитель – это целое число, на которое делят. Частное – это результат деления целых чисел.
Можно сказать “Деление целых чисел” или “Частное целых чисел” смысл этих фраз один и тот же, то есть нужно поделить одно целое число на другое и получить ответ.
Деление берет свое начало из умножения. Рассмотрим пример:
У нас есть два множителя 3 и 4. Но допустим нам известно, что есть один множитель 3 и результат умножения множителей их произведение 12. Как найти второй множитель? На помощь приходит деление.
Правило деления целых чисел.
Частное двух целых чисел равно частному их модулей, со знаком плюс в результате, если числа одинаковых знаков, и со знаком минус, если они разных знаков.
Важно учитывать знак частного целых чисел. Кратко правила деления целых чисел:
Плюс на плюс дает плюс.
“+ : + = +”
Минус на минус дает плюс.
“– : – =+”
Минус на плюс дает минус.
“– : + = –”
Плюс на минус дает минус.
“+ : – = –”
А теперь рассмотрим подробно каждый пункт правила деления целых чисел.
Деление целых положительных чисел.
Вспомним, что целые положительные числа это тоже самое, что натуральные числа. Мы пользуемся теми же правила, что и при делении натуральных чисел. Знак частного от деления целых положительных чисел всегда плюс. Иными словами, при делении двух целых чисел “плюс на плюс дает плюс”.
Пример:
Выполните деление 306 на 3.
Решение:
Оба числа имеют знак “+”, поэтому ответ будет со знаком “+”.
306:3=102
Ответ: 102.
Пример:
Разделите делимое 220286 на делитель 589.
Решение:
Делимое 220286 и делитель 589 имеет знак плюс, поэтому частное тоже будет иметь знак плюс.
220286:589=374
Ответ: 374
Деление целых отрицательных чисел.
Правило деления двух отрицательных чисел.
Пусть у нас будут два отрицательных целых числа a и b. Нам нужно найти их модули и выполнить деление.
Результат деления или частное двух отрицательных целых чисел будет со знаком “+” или “минус на минус дает плюс”.
Решение:
-504:(-14)=|-504|:|-14|=504:14=34
Записать выражение можно короче:
-504:(-14)=34
Деление целых чисел с разными знаками. Правило и примеры.
При выполнении деления целых чисел с разными знаками, частное будет равно отрицательному числу.
Не важно положительное целое число делим на отрицательное целое число или отрицательное целое число делим на положительное целое число, результат деления всегда будет равен отрицательному числу.
Минус на плюс дает минус.
Плюс на минус дает минус.
Пример:
Вычислите деление 4716:(-524).
Нуль деленный на целое число. Правило.
При деление нуля на целое число ответ будет равен нулю.
Пример:
Выполните деление 0:558.
На нуль делить нельзя.
Нельзя 0 разделить на 0.
Проверка частного деления целых чисел.
Как говорилось ранее деление и умножение тесно связаны. Поэтому чтобы проверить результат деления двух целых чисел, нужно выполнить умножение делителя и частного в результате должно получиться делимое.
Проверка результата деления краткая формула:
Делитель ∙ Частное = Делимое
Рассмотрим пример:
Выполните деление и сделайте проверку 1888:(-32).
Решение:
Обращаем внимание на знаки целых чисел. Число 1888 положительное и имеет знак “+”. Число (-32) отрицательное и имеет знак “–”. Поэтому при делении двух целых чисел с разными знаками ответ будет отрицательное число.
1888:(-32)=-59
А теперь выполним проверку найденного ответа:
1888 – делимое,
-32 – делитель,
-59 – частное,
Делитель умножаем на частное.
-32∙(-59)=1888
Вопросы по теме:
Что такое частное чисел?
Ответ: частное чисел – это результат деления деления двух чисел.
Как найти частное?
Ответ: нужно одно число поделить на другое, то есть делимое поделить на делитель и получим частное.
Чему равно частное от деления целых чисел?
Ответ: если целые числа делятся без остатка, то их частное равно целому числу. Иначе будет дробное число.
Что такое делимое и делитель?
Ответ: число которое делят называют делимым, а число на которое делят называют делителем.
Пример:
Найдите частное суммы и разности чисел 48 и 16.
Решение:
Находим сумму чисел 48 и 16.
48+16=64
Находим разность чисел 48 и 16.
48-16=32
Находим частное.
64:32=2
Ответ: 2.
Значение частного двух чисел в математике
Что такое частное чисел
Частное чисел – это результат деления одного числа на другое. Оно показывает, сколько раз число a содержится в числе b.
Деление как операция
Деление – арифметическая операция, обратная умножению, суть которой заключается в нахождении одного из сомножителей по произведению и другому множителю. В данном случае произведение переходит в делимое, имеющийся сомножитель – в делитель, искомый сомножитель – в частное.
Подобно тому, как неоднократно прибавить число – это значит умножить, так и неоднократно вычесть – это значит разделить.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
На письме данную операцию можно обозначать разными символами:
Процесс деления имеет следующий вид:
В цифрах данное выражение можно записать так:
Основные свойства деления
Деление не коммутативно, то есть не перестановочно – от перемены мест элементов операции частное изменяется:
Деление не ассоциативно – то есть при последовательном выполнении деления трех или более чисел последовательность операций имеет значение, при смене порядка выполнения изменится результат:
Деление дистрибутивно справа – на одном и том же множестве две бинарные операции имеют свойство согласованности:
Имеется единственный нейтральный элемент – число 1, при делении на единицу результатом является исходное число (делимое):
Имеется единственный обратный элемент – число 1, при делении единицы на число результатом является число, обратное исходному (делителю):
Существует единственный нулевой элемент – число 0, при делении нуля на любое число результатом будет нуль:
Деление на нулевой элемент не определено:
Деление на противоположный элемент дает минус единицу:
Неполное частное
Неполное частное – результат, который получился после деления с остатком.
Под делением с остатком понимается нахождение наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Это искомое и называют неполным частным.
Разность между делимым и произведением делителя на неполное частное называется остатком, который всегда меньше делителя.
Например, 17 не делится без остатка на 5.
Наибольшее число, результат умножения которого на 5 не превосходит 17, это 3. 3 в данном случае является неполным частным.
Чтобы получить остаток, нужно из 17 вычесть произведение 3 и 5, то есть 17 – 3*5 = 2. Остаток – 2.
Изменение частного в зависимости от изменения делимого и делителя
Частное не изменится, если делимое и делить одновременно увеличить или уменьшить в одинаковое количество раз:
Задачи, примеры вычисления частного
Для того, чтобы проиллюстрировать данную арифметическую операцию, решим простые задачи.
Задача 1
В книге 891 страница. Она поделена на 9 равных глав. Узнайте, сколько страниц в одной главе.
Для этого количество страниц разделим на количество глав:
891 : 9 = 99 (страниц)
Задача 2
У Антона есть 22 апельсина. Он хочет приготовить из них компот. Для одного литра компота ему понадобится 3 апельсина. Нужно вычислить, сколько литров напитка сможет приготовить Антон и сколько апельсинов у него останется.
Урок 20 Бесплатно Деление с остатком
На этом уроке продолжим разговор о делении натуральных чисел.
Вспомним название компонентов арифметической операции деления и установим, по каким правилам находится каждое из них.
Познакомимся с делением натуральных чисел с остатком, выясним алгоритм выполнения такой математической операции.
Определим компоненты арифметической операции деления с остатком.
Подробно рассмотрим взаимосвязь между компонентами деления с остатком и закрепим полученные знания, решая текстовые задачи по теме.
Деление натуральных чисел
О математической операции деления вы уже имеете общее представление.
Уроком ранее выяснили, что деление- это арифметическая операция, с помощью которой по произведению и одному из множителей находят другой множитель.
Другими словами, деление- это математическая операция, противоположная умножению.
Разделить число а на число b— это значит найти такое число с, при умножении которого на число b, получается число а.
а ÷ b = с
а = с ∙ b
Рассмотрим данное утверждение на примере.
На детский праздник приготовили пирожные.
Всего на празднике присутствовало 6 детей, каждому ребенку досталось по 2 пирожных.
Определим сколько пирожных для детей приготовили на праздник.
Ответ: 12 пирожных.
На детский праздник приготовили 12 пирожных.
Всего на празднике присутствовало 6 детей, каждого ребенка угостили одинаковым количеством пирожных.
Выясним сколько пирожных досталось каждому ребенку.
Ответ: каждому ребенку досталось по 2 пирожных.
Делимое- это число, которое делят.
Делитель- это число, на которое делят делимое.
Частное (от слова «часть»)- результат арифметической операции деления (число, которое получается в результате деления одного числа на другое).
Для записи деления используют математический знак в виде двух точек, как двоеточие «:».
У меня есть дополнительная информация к этой части урока!
Существуют и другие равносильные обозначения знака деления.
Например, символ обелюс «÷», по виду представляет собой сочетание двух знаков: знака минус и двоеточия (горизонтальная черта как будто делит двоеточие пополам).
Считают, что данный знак был введен древнегреческим философом, библиотекарем Зенодотом Эфесским.
Ставили этот знак на полях рукописей напротив тех частей текста, которые вызывали какие-либо сомнения или не соответствовали действительности.
Впервые в математике для обозначения операции деления символ обелюс применил в своих научных трудах немецкий математик Йохан Ран в 1659 г.
Долгое время в разных странах обелюсу присваивались иные значения.
Например, в одних странах этот символ применяли в качестве знака разности, в других странах использовали его для обозначения числовых диапазонов, числовых промежутков.
Возможно вы встречали в записях математических выражений знак в виде косой черты «/» или горизонтальной черты « — », эти символы тоже используют в качестве знака деления.
Впервые косую черту в качестве знака деления применил в 1631 г. английский математик Уильям Отред.
По сегодняшний день часто используют символ «/» для записи формул.
Запись операции деления с помощью данного символа выглядит так:
а / b— значит «число а разделить на b».
Нередко в математических выражениях используют горизонтальную черту, изображая знак деления.
Имея такое символьное разнообразие, знак деления не носит специального названия
Знак деления располагается между делимым и делителем.
Делимое всегда находится слева от знака делить, а делитель- справа.
В общем виде операция деления выглядит так:
Часто, решая различного рода задачи, приходится сталкиваться с ситуацией, когда один из компонентов операции деления неизвестен и его необходимо найти.
Определим, по каким правилам можно найти каждый компонент операции деления.
1. Так как частное- это результат, полученный при выполнении деления, то очевидно, что частное находят с помощью данной арифметической операции.
Зная делимое и делитель, можно найти частное.
Дима купил 12 разноцветных воздушных шариков.
Каждому своему другу он подарил по 2 шарика.
Сколько друзей получили шарики?
12 шариков (общее количество шариков)- делимое.
2 шарика (число шариков, которое достанется каждому другу)- делитель.
Ответ: 6 друзей получили воздушные шарики.
2. Делимое- это общее количество чего-либо, число, которое делят на части.
Если неизвестно делимое число, то необходимо перемножить два известных компонента деления: делимое и частное.
Правило: чтобы найти неизвестное делимое, нужно частное умножить на делитель или делитель умножить на частное.
Вова должен решить некоторое количество задач по математике за 3 дня.
Он собирался решать по 5 задач в день.
Сколько всего задач ему необходимо решить за три дня?
5 задач (число задач, которые необходимо решать каждый день)- делитель.
3 дня (число промежутков времени, за которое необходимо решить все задачи)- частное
Ответ: 15 задач нужно решить Вове.
3. Делитель- это число, на которое делят делимое.
Если исходное делимое число разделить на равные части, то в итоге получится некоторое количество таких частей.
Правило: чтобы найти делитель, нужно делимое разделить на частное.
Восемь кусочков пиццы разделили на четверых человек.
Каждому досталось одинаковое количество кусочков пиццы.
По сколько кусочков пиццы получил каждый?
8 кусков пиццы (общее количество кусочков, которые необходимо разделить)- делимое.
4 человека (число человек, на которых делят пиццу)- частное.
Ответ: по 2 кусочка пиццы получит каждый человек.
Пройти тест и получить оценку можно после входа или регистрации
Деление с остатком
Математическая операция деление связано с разделением чего-либо на части.
Делить натуральное число на равные части вы уже умеете, данная математическая операция не вызовет у вас большого затруднения.
Однако, не всегда удается разделить натуральное число на равные части.
Разложим поровну на 4 тарелки 13 абрикосов.
Сначала в каждую тарелку положим по одному абрикосу, далее по второму, затем по третьему.
В результате у нас останется 1 абрикос, но тарелок 4.
Таким образом, в каждую тарелку удалось положить по 3 абрикоса и еще 1 остался.
Так мы разделили число 13 на равные части, и у нас остался остаток.
Продемонстрируем рассмотренный пример на координатном луче.
Изобразим координатный луч, направленный вправо, с началом отсчета в точке О и единичным отрезком 1 деление = 1 единица.
На координатном луче отметим точку А(13)- эта точка показывает общее количество абрикосов, которые нужно поделить.
Отрезок ОА разобьем на 4 отрезка по 3 деления (так как абрикосы раскладывали на четыре тарелки по три абрикоса).
Заметим следующее: по три деления мы отложили четыре раза и одно деление еще осталось (это деление нам указывает на остаток абрикосов- 1 шт).
При делении с остатком результат деления записывают двумя числами: первое число называют неполным частным, так как число делится не полностью, второе число называют остатком.
Запись деления с остатком соответствует следующей схеме:
Неполное частное- это наибольшее число, которое может быть получено при умножении его на делитель, и не превосходящее делимое.
В буквенном виде деление с остатком можно записать так:
Для разобранного выше примера про абрикосы получаем следующее:
13 ÷ 3 = 4 (ост. 1)
Число 13— это делимое
Число 3— это делитель
Число 4— это неполное частное
Число 1— это остаток от деления
Важно знать и помнить, что остаток всегда должен быть меньше делителя.
Если при делении одного натурального числа на другое остаток равен нулю, то говорят: «Число делится нацело», т.е. первое число делится на второе без остатка.
Рассмотрим алгоритм деления с остатком.
1. Найти наибольшее число, которое будет удовлетворять одновременно следующим требованиям:
2. Подобранное число разделить на делитель.
Таким образом находится значение неполного частного.
3. Вычесть из делимого наибольшее число (найденное в пункте 1 нашего алгоритма), полученный результат- это остаток.
4. Проверяем остаток сравнением, он должен быть меньше делителя.
Записывать деление с остатком можно в строчку а ÷ b = с (ост. r) или в столбик- «деление уголком».
Найдем значение выражения 19 ÷ 6.
Наибольшее число, которое меньше 19 и делится на 6— это 18.
18 разделим на делитель 6, получим 3-это неполное частное.
Вычтем из делимого числа 19 найденное наибольшее число 18, получим число 1— это остаток от деления.
Соберем все известные и полученные данные в равенство: 19 ÷ 6 = 3 (ост 1).
19— делимое.
6— делитель.
3— неполное частное.
1-остаток от деления.
Деление с остатком «уголком» выполняется по той же схеме, как и без остатка.
Разделим 45 на 13.
1. Выделим в делимом наибольшее неполное делимое, которое делится на 13.
В нашем случае это само число 45, следовательно, в неполном частном будет только одна цифра.
2. Разделим неполное делимое на делитель.
Предположим, что результатом такого деления будет число 4, тогда, умножив 13 на 4, получим число 52, но это число противоречит действительности, так как делимое 45 меньше числа 52, полученного при умножении 13 и 4.
Число 4 в качестве неполного частного нам не подходит.
Тогда возьмем число, которое предшествует 4, это число 3.
Делитель 13 умножим на 3.
3. Умножим делитель на найденное число.
13 ∙ 3 = 39 (полученное число 39 показывает, сколько единиц разделили из 45)
Число 39 меньше делимого 45, значит подобранная пробная цифра 3 подходит, записываем ее в частное
Произведение 13 и 3 запишем под делимым 45.
Важно помнить, что деление чисел в столбик происходит и записывается по разрядам, а начинается с высшего разряда.
4. Найдем остаток от деления вычитанием.
Из 45 вычтем 39, получаем остаток, он равен 45 – 39 = 6.
5. Сравним остаток от деления с делителем.
По правилу остаток всегда меньше делителя, иначе можно было бы продолжать деление.
Сравним: 13 > 6 (остаток 6 меньше делителя 13)
В делимом разрядов больше нет, выделить следующее неполное делимое не удается, следовательно, на этом деление можно считать законченным.
6. Однако, если есть следующее неполное делимое, то необходимо далее следовать данному алгоритму, начиная с пункта 2.
У меня есть дополнительная информация к этой части урока!
Найти результат деления с остатком, т.е. определить неполное частное и остаток от деления, можно методом последовательного вычитания делителя из делимого.
Идея этого метода заключается в следующем: вычитается делитель из делимого до тех пор, пока возможно выполнять такое действие.
В результате количество вычитаний будет значением неполного частного, а итоговый остаток (должен быть всегда меньше делителя)- это остаток от деления.
Разложим 15 сувениров в подарочные пакеты по 4 сувенира в каждый, по сути необходимо найти значение выражения 15 ÷ 4.
Из общего количества сувениров необходимо взять 4 штуки и положить их в подарочный пакет, данное действие опишем следующим равенством 15 – 4 = 11.
Таким образом остается 11 сувениров для дальнейшей расфасовки.
Из них опять берем 4 сувенира и укладываем в новый подарочный пакет, в результате останется 11 – 4 = 7 сувениров.
Из оставшихся 7 мы можем взять еще 4 и сформировать третий подарочный пакет, после этого у нас останется 7 – 4 = 3 сувенира.
Имея в остатке три сувенира, нам не удастся сформировать еще один (четвертый) подарочный пакет, так как по условию сувениров должно быть по 4 штуки в каждом пакете, а у нас в наличии только 3.
В результате получаем 3 подарочных пакета с необходимым количеством сувениров и 3 сувенира в остатке.
Полученный результат запишем следующим образом: 15 ÷ 4 = 3 (ост 3)
Пройти тест и получить оценку можно после входа или регистрации