Что такое неполное квадратное уравнение

Неполные квадратные уравнения

Неполное квадратное уравнение – это уравнение вида

в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

ax 2 + bx = 0,если c = 0;
ax 2 + c = 0,если b = 0;
ax 2 = 0,если b = 0 и c = 0.

Решение неполных квадратных уравнений

Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

Чтобы ax + b было равно нулю, нужно, чтобы

Следовательно, уравнение ax 2 + bx = 0 имеет два корня:

Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

Пример 1. Решите уравнение:

Пример 2. Решите уравнение:

В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

В этом случае уравнение будет иметь два противоположных корня:

Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

Пример 1. Решите уравнение:

Пример 2. Решите уравнение:

Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.

Источник

Методы решения неполных квадратных уравнений

Научившись решать уравнения первой степени, хочется научиться работать с более сложными уравнениями, например, с квадратными. Многим известно, как решаются стандартные квадратные уравнения, но есть особый вид таких выражений, которые называют квадратные уравнения в краткой записи. Рассмотрим подробнее, как решать неполные квадратные уравнения.

Алгоритм нахождения решений

На сегодняшний день существует три вида таких выражений. В зависимости от этого каждое решение имеет свои особенности, от которых зависит решение конкретного примера, будь оно целым или в виде иррационального числа.

Уравнение вида ax2+bx=0 при отсутствии c

Это наиболее распространенное выражение в укороченном типе с квадратными корнями. Как решить нечто похожее в этом случае? Для этого надо разложить левую часть на множители. Алгоритм решения следующий, и обычно не меняется:

ax2+c=0 при b равном нулю

Не такой частый, но встречающийся тип квадратного выражения. Здесь имеются два корня, отличающиеся лишь знаками, в крайнем случае корней не имеется вообще.

План действий для решения такого выражения разберем на следующем примере:

А вот при одинаковых знаках в записи решения не будет в принципе. Например, для выражения 25×2+1=0 не имеется ответа, потому что сумма положительных чисел никогда не может равняться нулю.

В школьном курсе алгебры эти равенства стараются решить так, чтобы прийти к формату x2=d. То есть 9×2−2 равно нулю. Тогда x2=2/9, а ответом послужат два одинаковых корня с разными знаками.

Особый вид уравнения

Имеется также один особый тип укороченного выражения. Он имеет следующий вид ax2, которое равно нулю. У таких уравнений имеется решение в виде единственного корня. В учебниках есть указание, что решение состоит в виде двух корней, каждый из которых равен нулю.

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Другие способы решения неполных уравнений

Любое подобное выражение в квадрате можно решить, не применяя формулу квадратных корней. К таким видам решения называют формулу сокращенного умножения и правило деления на число.

Допустим, выражение 5×2=0. В этом выражении только умножение на ноль даст результат, а значит, единственный ответ здесь x=0.

Теперь возьмем выражение вида 5×2=125. Делим обе части уравнения на 5. Получим следующий промежуточный результат: x2=25. Переносим все в левую часть и получится x2−25=0. Затем используем формулу разности квадратов в виде (x-5)*(x+5)=0. Получаем итоговый результат в виде x=5 или x=-5.

Далее разберем, как решить вышеописанными способами равенство 16*x2-x=0. Выносится общий множитель за скобки x*(16x-1)=0. Получается два варианта ответа: x=0 и 16x=1. После этого делим каждую часть на 16, в итоге получаем x=1/16. Записываем итоговый ответ в виде x1=0 и x2=1/16.

Стоит отметить, что если вы не знаете, как применить формулы сокращенного умножения или деления на число, то лучше применить способ решения такого выражения согласно стандартным правилам решения квадратного уравнения. Каким именно методом решить данные квадратные выражения, выбирает сам человек. Иногда самые очевидные способы решения не подойдут для определенного примера, может и вовсе не оказаться конкретных ответов. Также не является обязательным такой вариант, как стандартные целые числа.

Здесь могут быть и иррациональные числа, а также дробные. Все будет зависеть от конкретного выражения.

Не являющиеся полными примеры по типу квадрата, несмотря на свое название, решаются достаточно просто. Можно применить как стандартные методы нахождения ответа, например, квадратные корни, так и формулы сокращенного умножения, а также деления на число.

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

При этом нельзя сказать, что какой-либо из вышеописанных способов является универсальным. Под каждое конкретное уравнение подбирается свой способ нахождения ответа. Не забывайте также о том, что не все такие квадратные равенства имеют ответ, иногда у них нет корней вовсе. Это верно, если оба числа являются положительными, а их сумма не может равняться нулю.

Видео

Из видео вы узнаете способы решения неполных квадратных уравнений.

Источник

Как решать квадратные уравнения

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие квадратного уравнения

Уравнения — это математическое равенство, в котором неизвестна одна или несколько величин. Значения неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать выражение 3 + x = 7, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Есть три вида квадратных уравнений:

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент может быть любым.

Давайте-ка на примерах — вот у нас есть два уравнения:

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято назвать неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению ax 2 + c = 0, которое:

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

Как решить уравнение ax 2 + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

0,5x = 0,125,
х = 0,125/0,5

Ответ: х = 0 и х = 0,25.

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

Обратная теорема Виета

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

Пример 1. Решить при помощи теоремы Пифагора: x 2 − 6x + 8 = 0.

2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Как разложить квадратное уравнение

С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

Формула разложения квадратного трехчлена

Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

Дискриминант: формула корней квадратного уравнения

Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

где D = b 2 − 4ac — дискриминант квадратного уравнения.

Эта запись означает:

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

Выводим формулу корней квадратного уравнения

Продолжим изучать формулу корней квадратного уравнения.

Пусть перед нами есть задача решить квадратное уравнение ax 2 + bx + c = 0. Выполним ряд равносильных преобразований:

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение,

после чего уравнение примет вид Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Так, мы пришли к уравнению Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение, которое полностью равносильно исходному ax 2 + bx + c = 0.

Отсюда выводы про корни уравнения Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение:

И еще один вывод: есть у уравнения корень или нет, зависит от знака выражения в правой части. При этом важно помнить, что знак этого выражения задается знаком числителя. Потому выражение принято называть дискриминантом квадратного уравнения и обозначается буквой D.

По значению и знаку дискриминанта можно сделать вывод, есть ли действительные корни у квадратного уравнения, и сколько.

Алгоритм решения квадратных уравнений по формулам корней

Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

Примеры решения квадратных уравнений

Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

Ответ: единственный корень 3,5.

Пример 2. Решить уравнение 54 — 6x 2 = 0.

Ответ: два корня 3 и — 3.

Пример 3. Решить уравнение x 2 — х = 0.

Ответ: два корня 0 и 1.

Пример 4. Решить уравнение x 2 — 10 = 39.

Ответ: два корня 7 и −7.

Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

Формула корней для четных вторых коэффициентов

Рассмотрим частный случай. Формула решения корней квадратного уравнения Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение, где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

Упрощаем вид квадратных уравнений

Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

Связь между корнями и коэффициентами

Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

Например, можно применить формулы из теоремы Виета:

Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

А еще найти корни квадратного уравнения можно с помощью онлайн-калькулятора. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

Источник

Неполные квадратные уравнения

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Что такое неполное квадратное уравнение. Смотреть фото Что такое неполное квадратное уравнение. Смотреть картинку Что такое неполное квадратное уравнение. Картинка про Что такое неполное квадратное уравнение. Фото Что такое неполное квадратное уравнение

Пример 1. Решить −5x² = 0.

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

Пример 1. Найти решение уравнения 9x² + 4 = 0.

Ответ: уравнение 9x² + 4 = 0 не имеет корней.

Как решить уравнение ax² + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

Ответ: х = 0 и х = 16.

Разложить левую часть уравнения на множители и найти корни:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *