Что такое непостоянная арифметическая прогрессия
Научный форум dxdy
Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Правила форума
В этом разделе нельзя создавать новые темы.
Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».
Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.
Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.
Ещё раз о корректности формулировки олимпиадных задач
Насколько корректна формулировка следующей задачи?
Рассмотрим прогрессию
— Хаим, белый это цвет?
— Белый это цвет!
Это арифметическая прогрессия? Это арифметическая прогрессия!
Она состоит из натуральных чисел? Она состоит из натуральных чисел!
Она содержит бесконечно много чисел вида ? Она содержит бесконечно много чисел вида
!
Первый член прогрессии делится на её разность? Иными словами, 2 делится на 0?
Всяко, автором подразумевалась непостоянная арифметическая прогрессия. Но ведь можно было и открыто об этом сказать, а то найдётся придирчивый участник олимпиады, горящий желанием подать апелляцию (и, возможно, выиграть её). Как в случае с американкой, отсудившей 60 млн. USD у общеизвестной сети ресторанов быстрого питания за то, что они не потрудились написать, что кофе у них горячий. А она возьми да пролей этот кофе себе на самую нежную часть тела.
З. Ы.
Ясно, что если прогрессия непостоянна, ей придётся быть возрастающей, иначе натуральные числа когда-нибудь закончатся, ведь существует самое маленькое из них.
Если первый член не делится на разность, он даёт ненулевой остаток на эту разность. И все остальные члены тоже дают остаток
.
Но числа вида , начиная с некоторого момента будут делиться и на разность прогрессии. Таким образом, получаем противоречие, из которого видно, что у задачи этой не только формулировка малокорректна, но и сложность малоолимпиадна.
З. З. Ы.
Кстати, эту же задачу можно найти и вот здесь.
Да и катринка внизу до одури знакома.
Заслуженный участник |
Заслуженный участник |
Заслуженный участник |
Мне всегда казалось, что ноль делится на ноль. Другое дело, что, простите за каламбур, разделить их все равно нельзя 🙂
Заслуженный участник |
Не согласна с ewert : не подразумевает.
Кто сейчас на конференции
Сейчас этот форум просматривают: нет зарегистрированных пользователей
Арифметическая (алгебраическая) прогрессия определение, примеры нахождения с решением
Часто, при решении задач, связанных с наблюдениями и присвоением значения определенному событию за определенный промежуток времени, получается ряд чисел, который именуется арифметической прогрессией.
Одна из главных отличительных особенностей такая математическая модель имеет закономерность, по которой можно вычислить любой неизвестный член, что упрощает прогнозирование при вычислении физических ситуаций.
Примерами повседневного использования могут являться наблюдение за температурой воздуха, прогнозирование расходов с занесением результатов в таблицу и др.
Онлайн-калькулятор арифметической прогрессии
Определение и примеры арифметической прогрессии
Это последовательность из чисел, где каждое последующее число ряда (начиная со второго) увеличивается или уменьшается на определенную сумму, являющуюся константой.
Кроме этого для описания используется ряд сопутствующих терминов и определений. Членом (аn) называется единичное число из последовательности.
Разностью (d) называется фиксированное число, на которое увеличивается или уменьшается последующее число прогрессии.
Кроме этого, существуют виды таких рядов:
В качестве примера представим последовательность чисел «3, 9, 15, 21, 27». Данный случай – этот ряд чисел попадает под характеристику арифметической прогрессии. Этот вывод делается в том случае, когда разница между членами ряда фиксирована и равняется 6.
Виды арифметической (алгебраической) прогрессии
Разновидности строятся на основании характеристики разности (d), а именно на основании отличия последней от нуля.
Таким образом, можно встретить определенные вариации:
Если прогрессия не изменяется с каждым шагом на одну и ту же разность, то эта прогрессия непостоянная и арифметической не является.
Важно знать: арифметическая от геометрической отличается тем, что в последней производится увеличение каждого последующего на один и тот же множитель.
Формулы арифметической прогрессии
Одно из важнейших свойств заключается в возможности вычисления любого числа конкретного места ряда.
Чтобы решать это, необходима формула, показывающая, как находится член арифметической прогрессии. В общем виде она будет выглядеть, как значение предыдущего числа в ряду (an-1), к которому прибавляют разность (d):
Также может возникнуть задача, когда надо просуммировать все числа ряда арифметической прогрессии (сумма членов). Если их малое количество, то можно посчитать это вручную, но если количество чисел перевалит за сотню, то проще будет воспользоваться специальной формулой для обработки.
Итак, нам понадобится значение первого числа в ряду (a1) и последнего (an), а также информация об общем количестве чисел в ряду. Рекуррентная формула, показывающая, как искать сумму, будет выглядеть в таком случае следующим образом:
Обратите внимание: под значением n подразумевается именно количество членов ряда, для которых производится нахождение суммы.
Произведение членов арифметической прогрессии можно находить по похожей формуле:
где, Pn – произведение, b1 и bn – соответственно первое и последнее числа, а n – количество членов.
Отдельно следует коснуться такого понятия, как характеристическое свойство прогрессии. Оно сводится к выполнению определенного условия для каждого элемента:
Примеры задач с решением
Рассмотрим как решать задачи на заданную тему.
Пример 1
Требуется вычислить 574 член в ряду арифметической прогрессии, первые три члена которой «8, 15, 22…».
Вариант рассуждений по примеру 1. Для нахождения любого конкретного элемента ряда нам необходима информация о значении первого члена (a1) и о разности (d). Чтобы вычислить разность, вычитаем из второго члена ряда первый (15 – и получаем d = 7. Теперь мы можем считать по формуле:
Подставляя полученные значения, получим выражение вида a574 = 8 + (574-1) * 7.
После вычисления получаем ответ: a574 = 4019.
Пример 2
Требуется вычислить 544 член ряда, являющийся арифметической прогрессией, при условии, что 154-ый член равен 17, а разность (d) равна 8.
Вариант рассуждений по примеру 2. Пользоваться в данной ситуации мы будем формулой из предыдущего примера:
Подставляя известные значения, получаем выражение – а544 = 17 + (544 1) * 8.
Вычисляя, получаем ответ а544 = 4361.
Пример 3
Для подготовки к экзамену по биологии студенту Смирнову необходимо выучить 730 вопросов (включая загадки). Известно, что он весьма обеспокоен и по мере приближения даты экзамена учит ежедневно на 27 вопросов больше, чем в предыдущий день. Друг Смирнова выяснил, что тот в первый день выучил всего 17 вопросов.
Требуется выяснить, сколько времени у студента ушло на подготовку.
Вариант рассуждений по примеру 3. Очевидно, что случай с подготовкой студента к экзамену решается через формулы арифметической прогрессией (поскольку присутствует фиксированная разность d = 17). Производим подстановку известных данных:
После подстановки получаем выражение: 730 = 17 + (n 1) * 27.
После вычислений определяем ответ – 27 дней.
Арифметическая прогрессия является наиболее простой из всех числовых зависимостей. Использование описанных формул позволит намного ускорить вычисления в задачах, где это требуется.
Кроме этого, для упрощения можно использовать онлайн калькулятор. В школе данную тему изучают в программе за 9 класс, а основные задания касаются нахождения членов и сумм.
Арифметическая прогрессия свойства и формулы
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение числовой последовательности
Числовая последовательность — это множество чисел, каждому из которых можно присвоить уникальный номер.
Последовательности можно задавать разными способами:
«Последовательность простых чисел: 4, 6, 10, 19, 21, 33. »
Последовательность yn = C называют постоянной или стационарной.
Арифметическая прогрессия — (an), задана таким соотношением:
a1 = a, an+1= an + d.
Последовательность Фибоначчи — когда каждое следующее число равно сумме двух предыдущих чисел: an+1 = an + an-1.
Пример: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
Так как алгебраическая числовая последовательность — это частный случай числовой функции, то ряд свойств функций рассматриваются и для последовательностей.
Свойства числовых последовательностей:
Возрастающие и убывающие последовательности называют монотонными последовательностями.
Пример числовой последовательности выглядит так:
В такой математической последовательности каждый номер соответствует одному числу. Это значит, что в последовательности не может быть двух первых чисел и т.д. Первое число (как и любое другое) — всегда одно.
N-ный член алгебраической последовательности — это число с порядковым номером n.
Всю последовательность можно обозначить любой буквой латинского алфавита, например, a. Каждый член этой последовательности — той же буквой с индексом, который равен номеру этого члена: a1, a2. a10. an.
N-ый член последовательности можно задать формулой. Например:
Определение арифметической прогрессии
Так как числовая последовательность — это частный случай функции, которая определена на множестве натуральных чисел, арифметическую прогрессию можно назвать частным случаем числовой последовательности.
Рассмотрим основные определения и как найти арифметическую прогрессию.
Арифметическая прогрессия — это числовая последовательность a1, a2. an. для которой для каждого натурального n выполняется равенство: an+1= an + d, где d — это разность арифметической прогрессии. Описать словами эту формулу можно так: каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же числом d. Разность между последующим и предыдущим членами, то есть разность арифметической прогрессии можно найти по формуле: Если известны первый член a1 и n-ый член прогрессии, разность можно найти так: Арифметическая прогрессия бывает трех видов: Пример: последовательность чисел 11, 14, 17, 20, 23. — это возрастающая арифметическая прогрессия, так как ее разность d = 3 > 0. Свойство арифметической прогрессии Переведем с языка формул на русский: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Что как раз объясняет название «арифметическая» прогрессия. Рассмотрим пример арифметической прогрессии. Дано: арифметическая прогрессия (an), где a1 = 0 и d = 2. Найти: первые пять членов прогрессии и десятый член прогрессии. Решение арифметической прогрессии: По условиям задачи n = 10, подставляем в формулу: Формулы арифметической прогрессииВ 9 классе проходят все формулы арифметической прогрессии. Давайте узнаем, какими способами ее можно задать: Сумма первых n членов арифметической прогрессии (аn) обозначается Sn: Формулы нахождения суммы n членов арифметической прогрессии:
Чтобы быстрее запомнить формулы можно использовать такую табличку с основными определениями: Формула n-го члена арифметической прогрессииИз определения арифметической прогрессии следует, что равенство истинно: Значит, Переведем с языка формул на русский: если мы знаем первый член и разность арифметической прогрессии, то можем найти любой ее член. Арифметическую прогрессию можно назвать заданной, если известен ее первый член и разность. Доказательство формулы n-го члена арифметической прогрессииФормулу n-го члена арифметической прогрессии можно доказать при помощи метода математической индукции. Пусть дано: Нужно доказать: Действительно, Согласно принципу математической индукции формула Геометрическая прогрессияГеометрическая прогрессия — это последовательность (bn), в которой каждый последующий член можно найти, если предыдущий член умножить на одно и то же число q. Если последовательность (bn) является геометрической прогрессией, то для любого натурального значения n справедлива зависимость:
Если в геометрической прогрессии (bn) известен первый член b1 и знаменатель q, то можно найти любой член прогрессии: Общий член геометрической прогрессии bn можно вычислить при помощи формулы: Пример 1. 2, 6, 18, 54,… — геометрическая прогрессия b = 2, q = 3. Пример 3. 7, 7, 7, 7,… — геометрическая прогрессия b = 7, q = 1. Что такое непостоянная арифметическая прогрессия. Свойство членов арифметической прогрессииЗадачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость. И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на квадрату 1/2 числа членов». Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее). Последовательность может быть бесконечной или конечной. А что же такое арифметическая прогрессия? Под ней понимают получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии. Если d 0, то такая прогрессия считается возрастающей. Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия. Задается любая арифметическая прогрессия следующей формулой: Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства: В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу: К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177 Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом: Если известны и 1-ый член, то для вычисления удобна другая формула: Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом: Выбор формул для расчетов зависит от условий задач и исходных данных. Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками. Арифметическая и геометрическая прогрессии Для любого натурального n Для любого натурального n Формула n-ого члена | ||
Характеристическое свойство | ||
Сумма n-первых членов |
Примеры заданий с комментариями
По формуле n-ого члена:
Необходимо найти разность прогрессий:
По формуле n-ого члена геометрической прогрессии:
2-й способ (с помощью рекуррентной формулы)
В арифметической прогрессии ( a n ) a 74 = 34; a 76 = 156. Найдите семьдесят пятый член этой прогрессии.
Для арифметической прогрессии характеристическое свойство имеет вид .
.
Подставим данные в формулу:
Для нахождения суммы n-первых членов арифметической прогрессии используют две формулы:
.
Какую из них в данном случае удобнее применять?
По формуле n-ого члена:
Записаны несколько последовательных членов геометрической прогрессии:
Подставив найденные значения в формулу, получим:
.
Из арифметических прогрессий, заданных формулой n-го члена, выберите ту, для которой выполняется условие a 27 > 9:
Так как заданное условие должно выполняться для 27-го члена прогрессии, подставим 27 вместо n в каждую из четырех прогрессий. В 4-й прогрессии получим:
.
Что это за прогрессия?
Прежде чем переходить к рассмотрению вопроса (как найти сумму арифметической прогрессии), стоит понять, о чем пойдет речь.
Любая последовательность действительных чисел, которая получается путем добавления (вычитания) некоторого значения из каждого предыдущего числа, называется алгебраической (арифметической) прогрессией. Это определение в переводе на язык математики принимает форму:
Можно легко показать, что для рассматриваемого ряда чисел выполняется следующее равенство:
Чему равна сумма арифметической прогрессии: формула
Прежде чем приводить формулу для указанной суммы, стоит рассмотреть простой частный случай. Дана прогрессия натуральных чисел от 1 до 10, необходимо найти их сумму. Поскольку членов в прогрессии немного (10), то можно решить задачу в лоб, то есть просуммировать все элементы по порядку.
Стоит учесть одну интересную вещь: поскольку каждый член отличается от последующего на одно и то же значение d = 1, то попарное суммирование первого с десятым, второго с девятым и так далее даст одинаковый результат. Действительно:
Как видно, этих сумм всего 5, то есть ровно в два раза меньше, чем число элементов ряда. Тогда умножая число сумм (5) на результат каждой суммы (11), вы придете к полученному в первом примере результату.
Если обобщить эти рассуждения, то можно записать следующее выражение:
Считается, что впервые до этого равенства додумался Гаусс, когда искал решение на заданную его школьным учителем задачу: просуммировать 100 первых целых чисел.
Сумма элементов от m до n: формула
Формула, приведенная в предыдущем пункте, дает ответ на вопрос, как найти сумму арифметической прогрессии (первых элементов), но часто в задачах необходимо просуммировать ряд чисел, стоящих в середине прогрессии. Как это сделать?
Ответить на этот вопрос проще всего, рассматривая следующий пример: пусть необходимо найти сумму членов от m-го до n-го. Для решения задачи следует представить заданный отрезок от m до n прогрессии в виде нового числового ряда. В таком представлении m-й член a m будет первым, а a n станет под номер n-(m-1). В этом случае, применяя стандартную формулу для суммы, получится следующее выражение:
Пример использования формул
Зная, как найти сумму арифметической прогрессии, стоит рассмотреть простой пример использования приведенных формул.
Ниже дана числовая последовательность, следует найти сумму ее членов, начиная с 5-го и заканчивая 12-м:
Приведенные числа свидетельствуют, что разность d равна 3. Используя выражение для n-го элемента, можно найти значения 5-го и 12-го членов прогрессии. Получается:
Зная значения чисел, стоящих на концах рассматриваемой алгебраической прогрессии, а также зная, какие номера в ряду они занимают, можно воспользоваться формулой для суммы, полученной в предыдущем пункте. Получится:
Стоит отметить, что это значение можно было получить иначе: сначала найти сумму первых 12 элементов по стандартной формуле, затем вычислить сумму первых 4 элементов по той же формуле, после этого вычесть из первой суммы вторую.
Первый элемент последовательности;
Пятый элемент последовательности;
— «энный» элемент последовательности, т.е. элемент, «стоящий в очереди» под номером n.
Последовательность можно задать тремя способами:
Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:
В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.
Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.
То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:
Если, например, , то
Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.
Например, рассмотрим последовательность ,
Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.
Основное свойство арифметической прогрессии:
Посмотрим на рисунок.
, и в то же время
Сложив эти два равенства, получим:
.
Разделим обе части равенства на 2:
Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:
Больше того, так как
, и в то же время
, то
, и, следовательно,
Каждый член арифметической прогрессии, начиная с title=»k>l»>, равен среднему арифметическому двух равноотстоящих.
Мы видим, что для членов арифметической прогрессии выполняются соотношения:
Мы получили формулу n-го члена.
Сумма n членов арифметической прогрессии.
В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:
Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:
Итак, сумму n членов арифметической прогрессии можно найти по формулам:
Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.
Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.
а) Найдите 31 член прогрессии.
б) Определите, входит ли в данную прогрессию число 41.
Запишем формулу n-го члена для нашей прогрессии.
В общем случае
В нашем случае , поэтому
Что собой представляет арифметическая прогрессия?
Чтобы это понять, необходимо дать определение рассматриваемой прогрессии, а также привести основные формулы, которые далее будут использованы при решении задач.
Известно, что в некоторой прогрессии алгебраической 1-й член равен 6, а 7-й член равен 18. Необходимо найти разность и восстановить эту последовательность до 7 члена.
Чтобы восстановить последовательность до 7 члена, следует воспользоваться определением алгебраической прогрессии, то есть a 2 = a 1 + d, a 3 = a 2 + d и так далее. В итоге восстанавливаем всю последовательность: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.
Пример №3: составление прогрессии
Пример №4: первый член прогрессии
Продолжим приводить примеры арифметической прогрессии с решением. Во всех предыдущих задачах было известно первое число алгебраической прогрессии. Теперь рассмотрим задачу иного типа: пусть даны два числа, где a 15 = 50 и a 43 = 37. Необходимо найти, с какого числа начинается эта последовательность.
Формулы, которыми пользовались до настоящего времени, предполагают знание a 1 и d. В условии задачи об этих числах ничего неизвестно. Тем не менее выпишем выражения для каждого члена, о котором имеется информация: a 15 = a 1 + 14 * d и a 43 = a 1 + 42 * d. Получили два уравнения, в которых 2 неизвестные величины (a 1 и d). Это означает, что задача сводится к решению системы линейных уравнений.
Если возникают сомнения в полученном результате, можно его проверить, например, определить 43 член прогрессии, который задан в условии. Получим: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Небольшая погрешность связана с тем, что при вычислениях использовалось округление до тысячных долей.
Пример №5: сумма
Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.
Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter. Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.
Пример №6: сумма членов от n до m
Задача решается двумя способами. Первый из них предполагает нахождение неизвестных членов с 8 по 14, а затем их последовательное суммирование. Поскольку слагаемых немного, то такой способ не является достаточно трудоемким. Тем не менее предлагается решить эту задачу вторым методом, который является более универсальным.
Полученная формула является несколько громоздкой, тем не менее сумма S mn зависит только от n, m, a 1 и d. В нашем случае a 1 = 3, d = 4, n = 14, m = 8. Подставляя эти числа, получим: S mn = 301.
Как видно из приведенных решений, все задачи основываются на знании выражения для n-го члена и формулы для суммы набора первых слагаемых. Перед тем как приступить к решению любой из этих задач, рекомендуется внимательно прочитать условие, ясно понять, что требуется найти, и лишь затем приступать к решению.
Если возникают сомнения в полученном результате, то рекомендуется его проверять, как это было сделано в некоторых приведенных примерах. Как находить арифметическую прогрессию, выяснили. Если разобраться, то это не так сложно.