Что такое непозиционная система счисления что такое позиционная система счисления
Определение позиционной и непозиционной системы счисления
Системы счисления
Система счисления — метод записи чисел с помощью письменных знаков.
Системы делятся на позиционные, непозиционные и смешанные. Смысл их в том, чтобы дать каждому числу уникальное представление. В разных системах одно и то же число может быть записано по-разному. Символы, используемые для записи чисел, называют цифрами, даже когда система использует в дополнение к арабским цифрам или вместо них буквы латинского алфавита.
Что такое позиционная система
Позиционная система счисления — система счисления, в которой значение каждого числового знака в записи числа зависит от его позиции.
В позиционной системе количественный эквивалент каждой цифры зависит от места ее записи в коде числа. Любое целое число x в d-ичной позиционной системе счисления является конечной линейной комбинацией степеней числа d:
k — показатель разряда.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В общем случае представить произвольное число x в системе счисления с заданным основанием d означает расписать его по формуле:
Таким образом, в любой позиционной системе число может быть представлено в виде многочлена.
Что такое непозиционная система
Непозиционная система — это такая система счисления, в которой положения цифры в записи числа не зависит величина, которую она обозначает.
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от ее места в коде числа.
Еще до нашей эры разные народы независимо друг от друга отказывались от унарной системы счисления, в которой количество предметов обозначали таким же количеством одинаковых значков, и переходили к более удобным системам. Например, у египтян система счисления была десятичной, но запись числа составлялась только из иероглифов 1, 10, 100, 1000. Их нужно было складывать, поэтому не имело значения, в каком порядке они записаны.
Отличие между системами
Чтобы пользоваться позиционной системой счисления, достаточно знать, как в ней изображаются цифры и что они обозначают, а также ее основание — количество уникальных цифр. Порядок записи во всех позиционных системах одинаков.
В непозиционных системах количество цифр-символов может достигать десятков и даже сотен, так как для записи больших чисел постоянно приходится вводить новые символы. Для чтения числа нужно знать правила его записи. Часто приходится выполнять арифметические операции, например, вычитание и сложение.
Достоинства позиционной системы
Простое выполнение подсчета
У всех позиционных систем одни и те же алгоритмы выполнения арифметических действий. Также в позиционных системах удобно работать с дробями и отрицательными числами, которые зачастую просто невозможно представить в непозиционных системах.
Главные свойства позиционных систем:
Малое количество символов в записи
Позиционные системы используют только десять арабских цифр. Системы с основанием больше десяти добавляют к цифрам 26 латинских букв. В некоторых системах используют круглые и квадратные скобки.
Чем больше основание системы счисления, тем меньшее количество цифр понадобится для записи числа. Числа, состоящие из трех разрядов в десятичной системе, могут иметь всего два разряда в шестнадцатеричной.
Основание позиционной системы
Обычно за основание принимают целое натуральное число. Но существуют также системы с дробным или отрицательным основанием. Последние называют нега-позиционными.
Основание позиционной системы счисления — это количество уникальных символов, изображающих ее цифры.
Таким образом, чтобы найти эту главную характеристику любой позиционной системы, достаточно подсчитать количество цифр в ней.
Классификация позиционных систем
Двоичные
Двоичная система — система счисления, в которой в качестве базовых чисел выбираются степени числа два.
Чтобы не путать их с числами, записанными в десятичной системе счисления, справа внизу указывают основание системы счисления. Обычно число при этом заключают в скобки.
Двоичную систему использовали задолго до возникновения информационных технологий. Во втором тысячелетии до нашей эры народы Южной Америки кодировали двоичной системой свои записи, в том числе и не числовые. Узелок и ровный участок нити чередовались друг с другом.
В современной двоичной системе, на основе которой был создан телеграф, а позже — реле и переключатели, единица обозначает наличие сигнала, ноль — его отсутствие. Цифровые электронные схемы работают по тому же принципу. Также на нем основаны сигнальные системы, использующиеся до сих пор, например, азбука Морзе.
Восьмеричные
Когда-то два индейских племени решили, что им удобно при счете смотреть на восемь промежутков между пальцами, а не на сами пальцы. Восьмеричная система счисления отразилась в их языках, в которых только восемь слов, обозначающих цифры.
В двадцатом веке, когда для написания программ требовалось зашифровывать все больше информации в двоичной системе и упростить вычисления для людей, придумали альтернативную систему, которая позволила сократить количество цифр в коде. Число восемь — это два в кубе, поэтому перевести записи из двоичной системы в восьмеричную и обратно проще, чем в десятичную.
Десятичные
Элементы числовой базы, или ключевые числа, в десятичной системе счисления представляют собой степени десяти: 10 = 10^1, 100 = 10^2, 1000 = 10^3.
В системе всего десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число 10 — основание системы счисления. Цифры от 0 до 9 представляют собой коэффициенты разложения числа по степеням десяти.
Родиной десятичной системы счисления считается Индия, хотя еще в вавилонской цивилизации с ее шестидесятеричной системой использовались закодированные десятичные цифры, а инки в своей узелковой письменности кодировали информацию десятью цветами. Но именно в Индии начали строго соблюдать порядок разрядов числа при записи и ставить ноль, чтобы избежать путаницы. Примерно в середине VIII века эту систему стали использовать другие страны. В Европе она распространилась к XVI веку и была названа «арабской».
Шестнадцатеричные
Шестнадцатеричные системы, как и восьмеричные, появились для упрощения взаимодействия с компьютером. Кроме арабских цифр, в них используются еще и латинские буквы от А до F. В разных языках программирования для записи чисел в шестнадцатеричной системе разные правила, называемые синтаксисом.
Пятеричная
Система, связанная с количеством пальцев на одной руке, использовалась в Китае и у некоторых племен Африки. В китайском языке у иероглифов, обозначающих цифры от шести до девяти, был один и тот же знак в начале — сокращенное обозначение цифры пять. Для записи чисел в этой системе используются цифры 0, 1, 2, 3, 4.
Двенадцатеричная
Если большим пальцем руки сосчитать число фаланг на других пальцах этой руки, получится двенадцать. Группы по двенадцать предметов называли во многих европейских языках словами, схожими с русским словом «дюжина»: duodezim на латыни, douzaine на французском, dozzina на итальянском, dozen на английском. Римляне пользовались двенадцатеричными дробями, \frac1 <12>они называли унцией.
В Европе счет дюжинами долгое время, вплоть до XVIII века, сохранялся наравне с десятеричной системой. Дюжина дюжин составляла гросс (от немецкого слова «большой»), дюжина гроссов — массу. Признаки влияния числа 12 заметны в англо-американской системе линейных мер, в которой 1 фут равен 12 дюймам, 1 дюйм — 12 линиям, 1 линия — 6 точкам.
Шестидесятеричная
Первой позиционной системой счисления считается шестидесятеричная система в Древнем Вавилоне. Ее основание до сих пор применяют для измерения времени. Система счисления времени — смешанная, но для перевода минут в секунды или часы потребуется именно шестидесятеричная система.
Для измерения углов и записи координат (широты, долготы) тоже используют эту систему, так как изначально астрономические координаты записывали в шестидесятеричных дробях. По аналогии с часом градус делят на шестьдесят минут, минуту — на шестьдесят секунд.
Двадцатеричная
Двадцатеричную систему называют вигезимальной. Эта система, как и десятеричная, связана с количеством пальцев, поэтому многие народы изобрели ее независимо друг от друга. Основание 20 сохранилось в лингвистической структуре их языков, именно на нем основана система счета в разговорной речи. Например, во французском языке «восемьдесят» состоит из слов «четыре» и «двадцать».
Римская система счисления
Описание
Римская система счисления относится к непозиционным. Она известна всему миру и широко применяется до сих пор. Это связано не с какими-то особыми достоинствами, а скорее с политическим и культурным влиянием Древнего Рима на европейскую цивилизацию.
Сейчас римская система используется в русском языке для обозначения:
В других странах свои особенности употребления римских цифр: в Европе ими часто записывают номер года, в Латвии — день недели.
Считается, что в основу римских цифр легли жесты:
100 и 1000 обозначаются буквами C и М — первыми буквами соответствующих латинских слов.
Основные характеристики
Для записи чисел используют семь букв латинского алфавита:
Сначала записываются тысячи, потом сотни, потом десятки и единицы. Ноль в системе отсутствует, но раньше вместо него использовали букву N. От позиционных систем римская отличается использованием принципов сложения и вычитания. Когда большая цифра стоит перед меньшей, они складываются. Когда меньшая стоит перед большей — вычитаются.
Лекция на тему: «Системы счисления»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Лекция на тему:
« Системы счисления»
знать понятие системы счисления, позиционной и непозиционной системы;
уметь переводить числа из одной системы счисления в другую, выполнять арифметические операции в позиционных системах счисления.
Позиционные и непозиционные системы счисления.
Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами. Все системы счисления делятся на две большие группы: позиционные и непозиционные.
В непозиционных системах счисления значение цифры не зависит от ее положения в числе.
Самой распространенной из непозиционных систем счисления является римская. В качестве цифр в римской системе используются: I (1), V (5), X (10), L (50), C (100), D (500), M (1000). Значение цифры не зависит от ее положения в числе. Например, в числе XXX (30) цифра X встречается трижды и, в каждом случае, обозначает одну и ту же величину – число 10, три раза по 10 в сумме дают 30. Величина числа в римской системе счисления определяется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа – прибавляется. Например, запись десятичного числа 1998 в римской системе счисления будет выглядеть следующим образом: MCMXCVIII =1000 + (1000-100) + (100-10) + 5 + 1 + 1 + 1
В позиционных системах счисления количественное значение цифры зависит от ее позиции в числе.
Позиция цифры в числе называется разрядом.
Наиболее распространенной позиционной системой счисления является десятичная. Десятичная система счисления имеет алфавит цифр, который состоит из десяти (всем известных, так называемых арабских) цифр и основание равное 10. Первая позиционная система счисления была придумана еще в древнем Вавилоне, причём вавилонская нумерация была шестидесятеричной, т.е. в ней использовалось шестьдесят цифр. До сих пор при измерении времени мы используем основание равное 60 (в 1 минуте содержится 60 секунд, а в часе – 60 минут). В девятнадцатом веке довольно широкое распространение получила двенадцатеричная система счисления. До сих пор мы часто употребляем дюжину (число 12): в сутках две дюжины часов, круг содержит тридцать дюжин градусов.
Каждая позиционная система имеет определенный алфавит цифр и основание. Основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения цифр соседних разрядов числа.
Рассмотрим десятичную систему счисления.
Рассмотрим в качестве примера десятичное число 555. Цифра 5 встречается трижды, причем самая правая обозначает пять единиц, вторая справа – пять десятков и, наконец, третья – пять сотен.
Число 555 записано в привычной для нас свернутой форме. В развернутой форме запись числа 555 в десятичной системе должна выглядеть следующим образом:
555 10 =5*10 2 + 5*10 1 + 5*10 0
Число в позиционных системах счисления записывается в виде суммы ряда степеней основания (в данном случае 10) с коэффициентами, в качестве которых выступают цифры данной системы счисления.
Задание для тренировки (выполняются у доски)
Представить через степени основания (10) следующие числа:
Компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации кодируются в последовательности электрических импульсов: есть импульс (1), нет импульса (0), т.е. в последовательности нулей и единиц. Компьютер использует две цифры, т.е. числа записываются в двоичной системе счисления.
В двоичной системе основание равно 2, а алфавит состоит из двух цифр 0 и 1.
Позиционные системы счисления.
Задание для тренировки (выполняются у доски)
Представить через степени основания указанных систем следующие числа:
Перевод чисел из одной системы счисления в другую.
1. Перевод чисел в десятичную систему счисления. Преобразование чисел, представленных в двоичной, восьмеричной и шестнадцатеричной системах счисления, в десятичную выполняется следующим образом: необходимо записать число в развернутой форме и вычислить его значение.
11011 2 =1*2 4 + 1*2 3 + 0*2 2 + 1*2 1 + 1*2 0 = 1*16+1*8 + 0*4 + 1*2 + 1*1 = 27 10
1*16 1 +В*16 0 =1*16+11*1=27 10
Задание для тренировки (выполняются у доски)
Переведите в десятичную систему счисления следующие числа:
Восьмеричные: 32 (26)
Шестнадцатеричные: 1А (26)
2. Перевод чисел из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную. Перевод чисел из десятичной системы в двоичную, восьмеричную и шестнадцатеричную более сложен и может осуществляться различными способами.
Способ деления : десятичное число делим на основание системы – получаем частное и остаток. Остаток запоминается. Частное вновь делим на основание системы – опять получаем частное и остаток. И так продолжаем, пока частное не станет меньше основания системы. После чего записываем последнее частное и все остатки в обратном порядке – полученное число и есть результат перевода из десятичной системы счисления в искомую.
Перевод числа из десятичной системы счисления в двоичную систему счисления.
Перевод числа из десятичной системы счисления в восьмеричную.
2 3 результат деления 32 8
Перевод числа из десятичной системы счисления в шестнадцатеричную.
А результат деления 1А 16
Задание для тренировки (выполняются у доски)
Переведите из десятичной системы счисления, следующие числа:
В двоичные: 27 (11011)
В восьмеричные: 27 (33)
В шестнадцатеричные:27 (1В)
3. Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.
Для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры. Для перевода целого двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры.
Перевод чисел из двоичной системы счисления в восьмеричную.
101001 2 101 001 2 1*2 2 + 0*2 1 + 1*2 0 0*2 2 + 0*2 1 +1*2 0 51 8
Для упрощения перевода можно заранее подготовить таблицу преобразования двоичных триад (групп по 3 цифры) в восьмеричные цифры.
Перевод чисел из двоичной системы счисления в шестнадцатеричную.
101001 2 0010 1001 2 0*2 3 + 0*2 2 + 1*2 1 + 0*2 0 1*2 3 + 0*2 2 + 0*2 1 +1*2 0 29 16
Для упрощения перевода можно заранее подготовить таблицу преобразования двоичных тетрад (групп по 4 цифры) в шестнадцатеричные цифры.
Задание для тренировки (выполняются у доски)
Переведите из двоичной системы счисления, следующие числа:
В восьмеричные: 1111 (17)
В шестнадцатеричные: 101001 (29)
ля обратного перевода из восьмеричной и шестнадцатеричной систем счисления так же можно воспользоваться вышеприведенными таблицами.
Расположите числа, записанные в различных системах счисления, в порядке возрастания (для этого переведите все числа в 10-ю систему счисления) :
Что такое непозиционная система счисления что такое позиционная система счисления
Электронные облака
Лекции
Рабочие материалы
Тесты по темам
Template tips
Задачи
Логика вычислительной техники и программирования
Лекция «Системы счисления»
Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.
Символы, при помощи которых записывается число, называются цифрами.
В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.
Классификация систем счисления
Системы счисления подразделяются на позиционные и непозиционные.
Позиционные системы счисления
Путем долгого развития человечество пришло к созданию позиционного принципа записи чисел, который состоит в том, что каждая цифра, содержащаяся в записи числа, занимает определенное место, называемое разрядом. Отсчет разрядов производится справа налево. Единица каждого следующего разряда всегда превосходит единицу предыдущего разряда в определенное число раз. Это отношение носит название основание системы счисления (у непозиционных систем счисления понятия «разряда» и «основания» отсутствуют).
Общее свойство всех позиционных систем счисления: при каждом переходе влево (вправо) в записи числа на один разряд величина цифры увеличивается (уменьшается) во столько раз, чему равно основание системы счисления.
Непозиционные системы счисления
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. Например: Римская система счисления.
Из многочисленных представителей этой группы в настоящее время сохранила свое значение лишь римская система счисления, где для обозначения цифр используются латинские буквы:
I | V | X | L | С | D | М |
1 | 5 | 10 | 50 | 100 | 500 | 1000 |
С их помощью можно записывать натуральные числа. Например, число 1995 будет представлено, как MCMXCV (М-1000,СМ-900,ХС-90 и V-5).
Правила записи чисел в римской системе счисления:
Например, запись XXX обозначает число 30, состоящее из трех цифр X, каждая из которых, независимо от места ее положения в записи числа, равна 10. Запись MCXX1V обозначает 1124, а самое большое число, которое можно записать в этой системе счисления, это число MMMCMXCIX (3999). Для записи еще больших чисел пришлось бы вводить все новые обозначения. По этой причине, а также по причине отсутствия цифры ноль, римская система счисления не годится для записи действительных чисел.
Таким образом, можно констатировать следующие основные недостатки непозиционных систем счисления:
Алфавит и основание системы счисления
Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например:
Десятичная система: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>
Двоичная система: <0, 1>
Восьмеричная система: <0, 1, 2, 3, 4, 5, 6, 7>
Шестнадцатеричная система:
Количество цифр в алфавите равно основанию системы счисления. Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.
Позиция цифры в числе называется разрядом: разряд возрастает справа налево, от младших к старшим, начиная с нуля.
Развёрнутая форма представления числа
Системы счисления, используемые в вычислительной технике
Несмотря на то, что исторически человек привык работать в десятичной системе счисления, с технической точки зрения она крайне неудобна, так как в электрических цепях компьютера требовалось бы иметь одновременно десять различных сигналов. Тем не менее, такие схемы существуют в некоторых видах микрокалькуляторов.
Чем меньше различных сигналов в электрических цепях, тем проще микросхемы, являющиеся основой конструкции большинства узлов ЭВМ, и тем надежнее они работают.
Наименьшее основание, которое может быть у позиционных систем счисления это – двойка. Именно поэтому двоичная система счисления используется в вычислительной технике, а двоичные наборы приняты за средство кодирования информации. В компьютере имеются только два устойчивых состояния работы микросхем, связанных с прохождением электрического тока через данное устройство (1) или его отсутствием (0). Говоря точнее, (1) кодирует высокое напряжение в схеме компьютера, а (0) – низкое напряжение.
Если вспомнить, что двоичная система счисления обладает самыми маленькими размерами таблиц сложения и умножения, то можно догадаться, что этот факт должен сильно радовать конструкторов ЭВМ, поскольку обработка сигнала в этом случае будет также самой простой. Таким образом, двоичная система счисления, с точки зрения организации работы ЭВМ, является наилучшей.
Мы уже говорили о преимуществах двоичной системы счисления с технической точки зрения организации работы компьютера. Зачем нужны другие системы счисления, кроме, естественно, еще и десятичной, в которой человек привык работать? Чтобы ответить на него, возьмем любое число в десятичной системе счисления, например 255, и переведем его в другие системы счисления с основаниями, кратными двойке:
Чем меньше основание системы счисления, тем больше разрядов требуется для его записи то есть, тем самым мы проигрываем в компактности записи чисел и их наглядности. Поэтому, наряду с двоичной и десятичной системами счисления, в вычислительной технике применяют так же запись чисел в 8-и 16-ричных системах счисления. Поскольку их основания кратны двойке, они органично связаны с двоичной системой счисления и преобразуются в эту систему наиболее быстро и просто (по сути они являются компактными видами записи двоичных чисел). Все другие системы счисления представляют для вычислительной техники чисто теоретический интерес.
Решение задач
1. Какое число записано с помощью римских цифр: CLVI
Решение: Зная обозначения, запишем: С – 100; L – 50; V – 5; I – 1
Решение: Пользуемся формулой:
a1 = 3; a2 = B; a3 = F; a4 = A
Следовательно: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*16 0
Ответ: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*160
3. Запишите в свёрнутой форме число 1*8 2 + 4*8 1 + 7*8 0
Решение: Пользуемся формулой:
Следовательно: 1*8 2 + 4*8 1 + 7*8 0 = 1478
Ответ: 1*8 2 + 4*8 1 + 7*8 0 = 1478
Алгоритмы перевода в системы счисления по разным основаниям
Алгоритм перевода чисел из любой системы счисления в десятичную
Алгоритм перевода целых чисел из десятичной системы счисления в любую другую
Алгоритм перевода правильных дробей из десятичной системы счисления в любую другую
Алгоритм перевода произвольных чисел из десятичной системы счисления в любую другую
Перевод чисел из двоичной системы счисления в систему счисления с основанием q=2 n
Решение задач
1. Переведём в 10-ую с.с. число: 0,1235
Решение: Действуем строго по алгоритму перевода чисел из любой системы счисления в десятичную:
Найдём сумму ряда: 0,2 + 0,08 + 0,024 = 0,30410
Ответ: 0,1235 = 0,30410
2. Переведём число 12610 в 8-ую с.с. и число 18010 в 16-ую с.с.
Решение: Действуем строго по алгоритму перевода целых чисел из 10-ой с.с. в любую другую:
Во втором примере процесс можно продолжать бесконечно. В этом случае деление продолжаем до тех пор, пока не получим нужную точность представления. Записываем числа сверху вниз.
Ответ: 0,6562510 = 0,А816; 0,910 = 1,1110012 с точностью до семи значащих цифр после запятой.
4. Переведём число 124,2610 в шестнадцатеричную с.с.
Решение: Действуем строго по алгоритму перевода произвольных чисел:
Переводим целую и дробную часть:
Записываем полученные числа справа налево (в целой части) и сверху вниз (в дробной части).
Ответ: 124,2610 = 7С,428А16
5. Переведём число: 11001010011010101112 в шестнадцатеричную систему счисления
Решение: Действуем строго по алгоритму перевода чисел из 2-ой с.с в с.с. с основанием 2 n :