Что такое неравенство например
Решение линейных неравенств
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.
Линейные неравенства — это неравенства вида:
где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит сделать так, чтобы в левой части осталось только неизвестное в первой степени с коэффициентом равном единице.
Типы неравенств
Линейные неравенства: свойства и правила
Вспомним свойства числовых неравенств:
Если же а b и c > d, то а + c > b + d.
Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.
Если а d, то а – c b, m — положительное число, то mа > mb и
Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).
Если же а > b, n — отрицательное число, то nа
Обе части можно умножить или разделить на одно отрицательное число, при этом знак поменять на противоположный.
Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>
Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.
Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.
Свойства выше помогут нам использовать следующие правила.
Правила линейных неравенств
Решение линейных неравенств
Со школьных уроков мы помним, что у неравенств нет ярко выраженных различий, поэтому рассмотрим несколько определений.
Неравенства ax + b > 0 и ax > c равносильные, так как получены переносом слагаемого из одной части в другую.
Определение 3. Линейные неравенства с одной переменной x выглядят так:
где a и b — действительные числа. А на месте x может быть обычное число.
Равносильные преобразования
Рассмотрим пример: 0 * x + 5 > 0.
Как решаем:
Метод интервалов
Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.
Метод интервалов это:
Если a ≠ 0, тогда решением будет единственный корень — х₀;
Для этого найдем значения функции в точках на промежутке;
Как решаем:
Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.
Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.
По чертежу делаем вывод, что решение имеет вид (−∞, 4) или x
Графический способ
Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.
Алгоритм решения y = ax + b графическим способом
Рассмотрим пример: −5 * x − √3 > 0.
Как решаем
Ответ: (−∞, −√3 : 5) или x
Неравенство
В математике неравенство (≠) есть утверждение об относительной величине или порядке двух объектов, или о том, что они просто не одинаковы (см. также Равенство).
Содержание
Типы неравенств
Эти математические отношения называются строгим неравенством. В противоположность им нестрогие неравенства означают следующее:
Кроме того, иногда требуется показать, что одна из величин много больше другой, обычно на несколько порядков:
Иногда не требуется знать результат и тогда можно определить формальное неравенство как два числа или алгебраических выражения, соединённые знаками >, [1]
Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.
Пример: Неравенство — алгебраическое, первой степени. Неравенство
0 » border=»0″ /> — алгебраическое, второй степени. Неравенство
x+4 » border=»0″ /> — трансцендентное.
Решение неравенств второй степени
Решение неравенства второй степени вида 0″ border=»0″ /> или
можно рассматривать как нахождение промежутков, в которых квадратичная функция
принимает положительные или отрицательные значения (промежутки знакопостоянства).
Пример 1.
Решить неравенство .
Решение. Рассмотрим функцию . Для того чтобы решить это неравенство методом интервалов нам следует найти нули функции
и выбрать соответствующие интервалы, в которых она принимает отрицательные значения.
Ответ: .
Решение неравенств методом интервалов
Пусть у нас есть неравенство вида 0″ border=»0″ /> Для его решения нам необходимо:
Крайними точками интервалов будут ,
и нули функций
.
Равносильные переходы при решении иррациональных неравенств
g\left(x\right)\Longleftrightarrow\left[\begin
0 \end
Пример 2.
Решить неравенство \sqrt
Решение. Действуем по плану:
\sqrt
Из последней выкладки видно, что наше неравенство решений не имеет.
Знаки неравенства
Русскоязычная традиция начертания знаков и
отличается от принятой в англоязычной литературе.
Символ | Код в Юникоде | Название в Юникоде | Название | HTML шестн. | HTML десят. | HTML обозн. | LaTeX |
---|---|---|---|---|---|---|---|
U+2A7D | Less-than or slanted equal to | Меньше либо равно | ⩽ | ⩽ | отсутствует | \leqslant | |
U+2A7E | Greater-than or slanted equal to | Больше либо равно | ⩾ | ⩾ | отсутствует | \geqslant | |
U+2264 | Less-than or equal to | Меньше либо равно | ≤ | ≤ | ≤ | \le, \leq | |
U+2265 | Greater-than or equal to | Больше либо равно | ≥ | ≥ | ≥ | \ge, \geq |
Примечание
См. также
Полезное
Смотреть что такое «Неравенство» в других словарях:
неравенство — неравенство … Орфографический словарь-справочник
НЕРАВЕНСТВО — (inequality) Отсутствие равенства. Если известно, что числа х и у не могут быть равными, но соотношение между ними неизвестно, то это записывается так: х ≠ у. Неравенство при известном соотношении направления может быть строгим или нестрогим.… … Экономический словарь
НЕРАВЕНСТВО — НЕРАВЕНСТВО, неравенства, мн. нет, ср. 1. Экономическое, политическое и духовное подавление трудящихся буржуазией (экон. полит.). Пока существует капиталистическая система, никакие законы не могут уничтожить неравенство и эксплоатацию. 2.… … Толковый словарь Ушакова
неравенство — отличие, разница, разность; неравноправность, неравноправие, различность, различие, расхождение, соотношение. Ant. равенство Словарь русских синонимов. неравенство сущ., кол во синонимов: 8 • диспаритет (2) … Словарь синонимов
неравенство — несоответствие — [http://www.iks media.ru/glossary/index.html?glossid=2400324] неравенство Соотношение между числами (или любыми математическими выражениями, способными принимать численное значение), указывающее, какое из них больше или… … Справочник технического переводчика
НЕРАВЕНСТВО — НЕРАВЕНСТВО, математическое утверждение, что одно выражение меньше, больше или равно другому. Знак > обозначает «больше», а знак 12, что эквивалентно выражению 124. Символы б и [ обозначают «больше или равно» и … Научно-технический энциклопедический словарь
НЕРАВЕНСТВО — НЕРАВЕНСТВО, а, ср. 1. Отсутствие равенства (в 1 и 2 знач.), равноправия. Н. сил. Социальное н. 2. В математике: соотношение между величинами, показывающее, что одна величина больше или меньше другой. Знак неравенства (> … Толковый словарь Ожегова
Неравенство — [inequality] соотношение между числами (или любыми математическими выражениями, способными принимать численное значение), указывающее, какое из них больше или меньше другого. Над ними можно по определенным правилам производить действия: сложение … Экономико-математический словарь
НЕРАВЕНСТВО — отношение, связывающее два числа и посредством одного из знаков: (меньше), (меньше или равно), (больше), (больше или равно), (неравно), то есть Иногда несколько Н. записываются вместе, напр. Н. обладают многими свойствами, общими с равенствами.… … Математическая энциклопедия
Что такое неравенство? Как решать неравенства?
Для начала неплохо бы разобраться, что же такое неравенство вообще, как оно устроено и что с ним можно (и нужно) делать. Разбираемся?
Что такое неравенство?
Говоря простым языком, берём любое уравнение и значок «=» (равно) заменяем на другой значок (>,
Уравнения бывают всякими — линейными, квадратными, дробными, показательными, логарифмическими, тригонометрическими, иррациональными и т.д.
Соответственно, и неравенства также бывают линейные, квадратные и… в общем, всякие.)
Теперь поговорим о значках неравенств. Что о них нужно знать? Неравенства со значками «>» (больше) или «
Сам значок обычно не оказывает существенного влияния на ход решения. Зато в самом конце решения, при оформлении окончательного ответа, смысл значка проявляется в полную силу! В чём мы с вами и убедимся на конкретных примерах.
Что ещё нужно знать о неравенствах? Неравенства, как и равенства, бывают верные и неверные. Здесь всё предельно ясно. Например, 2>1 — верное неравенство. А вот неравенство 2
Неравенства — ближайшие родственники уравнений. Стало быть, проблемы при решении уравнений будут автоматически приводить к полному провалу и в неравенствах. Срочно повторите решение основных типов уравнений, у кого проблемы! Я серьёзно.) Иначе в неравенствах будете тормозить нещадно… И не надейтесь, что при изложении, скажем, материала по решению квадратных неравенств я буду отдельно разжёвывать, что такое дискриминант или как рисовать график параболы.) Прошу быть к этому готовыми! Так что по ссылочкам-то гуляйте, гуляйте.)
Зачем нужны неравенства?
Вопрос резонный. Затем же, зачем нам нужны и уравнения. Для жизни.)
В обычной жизни неравенства вы видите повсюду. Причём не только видите, но и… решаете их! Сами того не замечая. Сомневаетесь?) Пожалуйста! Вот вам зашифрованные житейские примеры неравенств. Хранение при такой-то температуре (скажем, от 0°С до +25°С) — неравенство. Штраф за превышение скорости — неравенство. Распределение призовых мест в соревновании — тоже неравенство. Срок действия проездного на метро — неравенство. Опоздание на урок (поезд, самолёт) — и тут неравенство!
Одним словом, с неравенствами мы с вами сталкиваемся всякий раз, как только нам нужно оценивать или сравнивать какие-то величины. Совершенно любые. Это может быть температура в помещении, скорость автомобиля, время в пути, расходы в магазине, баланс денег на телефоне, рост, вес — да всё что угодно. Всё что мы можем выразить числом, как-то количественно оценить или с чем-то сравнить, приводит нас к понятию неравенства. Верного или неверного.)
Как решать неравенства?
Решение любого неравенства состоит из двух ключевых пунктов.
1. Тождественные преобразования неравенств.
2. Работа с числовой прямой.
Оба эти пункта — основы. Каждый из них одинаково важен. Если есть проблемы хотя бы в одном из них, то попытка решения любого, даже самого простенького неравенства, обречена на провал. Оно нам надо? Согласен, не надо.
Про первый пункт (тождественные преобразования) подробненько поговорим в этом уроке. Тут всё просто. Второй пункт (работа с числовой осью) поинтереснее будет. Его рассмотрим в следующем уроке.
Тождественные преобразования неравенств.
Тождественные преобразования неравенств очень похожи на тождественные преобразования уравнений. Собственно, именно в этом и таится основная засада в решении неравенств! Отличия проскакивают мимо головы и… приплыли.) Поэтому я особо выделю эти отличия.
1. Первое тождественное преобразование неравенств:
К обеим частям неравенства можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной). Знак неравенства от этого не изменится.
На практике это преобразование выглядит как знакомый всем старый добрый перенос членов из одной части неравенства в другую со сменой знака. Со сменой знака члена, а не неравенства! Знак самого неравенства сохраняется.
Например, надо решить такое линейное неравенство:
Знак неравенства при переносе не трогаем!
Осталось слева привести подобные, а справа посчитать. Получим:
Это правильный ответ.
Если вы — новичок и пока не знаете, как решать линейные неравенства, не беда. В отдельном уроке порешаем. Я сейчас не об этом. А о том, что первое тождественное преобразование неравенств полностью совпадает с аналогичным преобразованием для уравнений! Один в один. А вот второе тождественное преобразование в неравенствах резко отличается от такового в уравнениях. К нему и переходим.
2. Второе тождественное преобразование неравенств:
2.1. Обе части неравенства можно умножить (разделить) на одно и то же положительное число. На любое положительное число. Знак неравенства при этом сохраняется.
2.2. Обе части неравенства можно умножить (разделить) на одно и то же отрицательное число. На любое отрицательное число. Знак неравенства при этом меняется на противоположный.
Вы ведь помните, что уравнение мы имеем право умножать или делить на что попало. И на число, и на выражение с иксом. Лишь бы не на ноль. Ему, уравнению, от этого хоть бы хны. Не меняется оно. А вот неравенства более чувствительны к умножению/делению.
Вот вам наглядный пример на долгую память. Возьмём неравенство, не вызывающее сомнений:
Умножим обе части на положительное число +2, получим:
А вот это уже откровенная ахинея! Бред! Ибо минус шесть никак не больше минус четырёх. Но… стоит только изменить знак неравенства на противоположный, как всё сразу становится на свои места:
Про бред и ахинею я не просто так ругаюсь. «Забыл(а) сменить знак неравенства…» – это самая распространённая ошибка в решении неравенств. Именно на этом несложном преобразовании столько учеников сыпется! Которые забывают… Вот и ругаюсь. Авось, запомнится…)
Самые внимательные, возможно, уже заметили, что неравенство нельзя умножать на выражение с иксом. Что ж, респект, как говорится.) А почему нельзя, как вы думаете? Очень просто. Мы же ничего не знаем про знак этого самого выражения с иксом! Оно может быть положительным, может быть отрицательным. Следовательно, мы понятия не имеем, какой знак неравенства ставить после умножения. Менять его или нет? Непонятно… Конечно, это ограничение (запрет на умножение/деление неравенства на выражение с иксом) можно и обойти. Если очень уж припрёт.) Но это — отдельная тема.
Зачем нужно второе преобразование? Да всё за тем же, зачем оно нужно и в уравнениях! Избавляться от коэффициентов. На которые, напоминаю, перенос влево-вправо не распространяется. Например, что-нибудь крутое типа:
С девяткой-то всё ясно. Переносим вправо по первому преобразованию, получаем:
Знак неравенства сохраняется!
Знак неравенства меняется на противоположный!
Ещё раз. В этом уроке мы с вами пока что не решаем неравенства. Мы всего лишь тренируемся правильно применять базовые преобразования! Просто на конкретных примерах гораздо нагляднее демонстрировать сам процесс.) Стало быть, если запись окончательного ответа x
Итак, с первым пунктом — тождественными преобразованиями — разобрались (надеюсь…). Но для успешного решения неравенств одних только тождественных преобразований, чаще всего, недостаточно. Именно этим неравенства и отличаются от уравнений. Поэтому пора переходить ко второму пункту. К работе с числовой осью.
Алгебра. Урок 8. Неравенства, системы неравенств.
Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Неравенства
Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:
то получится неравенство.
Линейные неравенства
Линейные неравенства – это неравенства вида:
a x b a x ≤ b a x > b a x ≥ b
где a и b – любые числа, причем a ≠ 0, x – переменная.
Примеры линейных неравенств:
3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0
Решить линейное неравенство – получить выражение вида:
x c x ≤ c x > c x ≥ c
где c – некоторое число.
Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.
Смысл выколотой точки в том, что сама точка в ответ не входит.
Смысл жирной точки в том, что сама точка входит в ответ.
Таблица числовых промежутков
Неравенство | Графическое решение | Форма записи ответа |
---|---|---|
x c |