Что такое неразрушающий контроль
Неразрушающий контроль – какие задачи решает, где и как проводится?
Где проводят неразрушающий контроль?
1. Оборудование, работающее под избыточным давлением. В старом документе ПБ 03-372-00 под этим пунктом числились объекты котлонадзора. По актуальным правилам к данной категории относятся паровые, водогрейные, энерготехнологические, электрические котлы, трубопроводы пара и горячей воды, баллоны, сосуды, работающие под давлением.
2. Наружные и внутренние газопроводы стальные и полиэтиленовые. К системам газоснабжения и газораспределения также относится газовое оборудование и узлы.
3. Подъёмные сооружения – вышки, грузоподъёмные краны (включая трубоукладчики и манипуляторы), эскалаторы, лифты, канатные дороги и фуникулёры.
4 и 5. Группа объектов, относящихся к горнорудной и угольной промышленности. Речь идёт о зданиях и сооружениях поверхностных комплексов рудников, шахтных подъёмных машинах, главных компрессорных установках и вентиляторах главного проветривания. Скажем честно, не самая распространённая область НК.
6. Оборудование нефтяной и газовой отрасли. Неразрушающий контроль магистральных газопроводов, нефтепроводов и нефтепродуктопроводов – одно из приоритетных направлений. К этой же категории относят буровые вышки, инструмент, агрегаты и пр.
7. Оборудование металлургической промышленности – газопроводы технологических газов, цапфы ковшей, металлоконструкций сооружений, технических устройств и зданий.
8. Оборудование взрывопожароопасных и химических опасных производств. Самая многочисленная группа объектов с точки зрения неразрушающего контроля. Здесь и резервуары, и изотермические хранилища, и печи, и аммиачные холодильные установки, и цистерны, и котлы, и арматура, и технологические трубопроводы, и много чего ещё.
9. Железнодорожный транспорт – подвижной состав, детали вагонов, ж/д пути.
10. Объекты хранения и переработки растительного сырья. В эту категорию включены молотковые дробилки, радиальные и центробежные вентиляторы, воздушные турбокомпрессоры и пр.
12. Оборудование электроэнергетики.
Неразрушающий контроль
В ходе эксплуатации или изготовления различного оборудования, его узлов и деталей, постоянно требуется оценить его состояние. Делать это необходимо без остановки, вывода из эксплуатации, разборки или взятия образцов материалов, поскольку такие действия обходятся очень дорого.
Для этого разработаны и широко применяются методы неразрушающего контроля, или non-destructive test. Обследование конструкции, механизма, детали проводят не прерывая его использования, не вызывая простоев. Периодическое обследование позволяет своевременно обнаружить предпосылки к возникновению неисправности механизма или усталости конструкции и предпринять действия по устранению причин возможных неисправностей или разрушений. Это существенно повышает безопасность эксплуатации и снижает стоимость и продолжительность внеплановых ремонтов.
С помощью неразрушающего контроля в конструкциях, узлах и деталях находят дефекты на ранней стадии их возникновения:
Классификация методов неразрушающего контроля по ГОСТ 18353- 79
Основные методы неразрушающего контроля основаны на применении различных физических явлений и измерении характеризующих эти явления физических величин. Наиболее широко применяются следующие виды неразрушающего контроля:
Общие виды неразрушающего контроля могут включать в себя несколько конкретных методов, различающихся по таким признакам, как:
Правильный выбор способа позволяет предприятию сэкономить средства и обеспечить высокую надежность контролируемого оборудования и конструкций.
Радиоволновой метод неразрушающего контроля
Заключается в облучении исследуемого объекта радиочастотным излучением и измерении параметров прошедшей, отраженной или рассеянной электромагнитной волны.
Он применим к диэлектрическим, полупроводниковым материалам, а также к тонкостенным металлическим оболочкам и конструкциям, в которых хорошо распространяются радиоволны. Используется для проверки однородности, габаритов и формы изделий из пластика, резины, композитных материалов. Измеряют при этом амплитудные, фазовые или поляризационные характеристики волны. Неразрушающий контроль радиоволновым методом позволяет обнаружить в массе материала неоднородности, посторонние включения, некачественные клеевые и сварные соединения и другие дефекты.
Электрический метод неразрушающего контроля
Группа методов неразрушающего контроля металлов и диэлектриков основана на измерении и интерпретации характеристик электростатического поля, приложенного к контролируемому объекту. Чаще всего измеряют электрический потенциал и емкость.
Для работы с токопроводящими материалами применяют эквипотенциальный способ, к диэлектрическим материалам чаще применяют емкостной. Термоэлектрический способ применим для достаточно точного определения химического состава материала без взятия образцов и применения дорогих масс-спектрографических установок.
Неразрушающий контроль электрический
С использованием электрических методик находят различные скрытые дефекты:
Акустический, или ультразвуковой контроль
Способ основан на возбуждении в конструкции колебаний определенной частоты, амплитуды, скважности импульсов и анализе отклика конструкции на эти колебания. Интерпретация результатов с помощью специализированных компьютерных программ позволяет воссоздать двумерные сечения исследуемого объекта, не разрушая его. Различают две основных группы методик акустической дефектоскопии:
Ультразвуковой неразрушающий контроль
Звуковые колебания с частотой выше 20 килогерц называют ультразвуком. Ультразвук является одним из самых популярных способов акустической дефектоскопии в промышленности и позволяет проверять качество и пространственную конфигурацию практически любых материалов. Популярность ультразвука определяется его преимуществами перед другими методами:
Ультразвуковой способ мало применим к конструкциям, имеющим крупнозернистую структуру или сильно шероховатую поверхность.
Безопасность ультразвука для человека позволяет широко использовать его в медицинской диагностике, включая обследование ребенка в утробе матери и раннее определение его пола.
Вихретоковый метод неразрушающего контроля
Способ основан на наведении в исследуемом объекте вихревых (приповерхностных) токов малой интенсивности и частотой до нескольких мегагерц помещения его в электромагнитное поле, создаваемое вихретоковым преобразователями измерения. Применяется для металлов и других электропроводящих материалов. На основании неоднородностей приповерхностного вихревого поля можно судить о наличии неоднородностей и других дефектов в наружном слое металла (до глубины в несколько миллиметров). Измерения с высокой точностью определяют также дефекты лакокрасочных и защитных покрытий, нанесенных на металлическую деталь. В роли вихретокового преобразователя служить мощная катушка индуктивности, генерирующая высокочастотное электромагнитное поле. Вихревые токи, наводимые этим полем в приповерхностном слое металла, измеряют этой же катушкой (совмещенная схема) или отдельной (разнесенная схема). По пространственной картине распределения интенсивности измеренных токов определяют места неоднородностей, вносящих искажение в поле.
Вихретоковый метод неразрушающего контроля
На применении вихревых токов основано большое количество различных конструкций дефектоскопов, специализирующихся на определении толщины и однородности листов металлопроката и покрытий на конструкциях, непрерывного измерения диаметра проволоки и пруткового проката во время их производства. Применяются вихретоковые устройства, наряду с ультразвуковыми, и для определения состояния лопаток турбин и других ответственных высоконагруженных узлов.
Магнитный метод неразрушающего контроля
Эта группа методик имеет в своей физической основе измерение взаимодействия исследуемого объекта с магнитным полем. Применяются для дефектоскопии ферромагнитных материалов и сплавов. Три основных вида магнитных исследований – это:
Чтобы обнаружить неоднородность в структуре магнитного материала, его намагничивают, а поверхность смазывают специальной суспензией или гелем, содержащим калиброванные металлические частицы. Эти частицы концентрируются вдоль силовых линий магнитного поля, простым и наглядным способом визуализируя его. В местах неоднородностей и дефектов магнитное поле искажено, и линии его будут искривлены. Магнитографические опыты проводились учеными еще в XVIII веке, но для целей дефектоскопии были приспособлены только в XX.
Тепловой метод
Тепловые методики основаны на измерении интенсивности тепловых полей, излучаемых контролируемым устройством или конструкцией. Распределение температур на поверхности и градиент их изменения отражает распределение тепла внутри объекта. В местах дефектов и неоднородностей равномерная тепловая картина будет искажена.
Использование тепловизора для неразрушающего контроля
Исследователи путем расчетов и экспериментов определили типовые изменения в тепловом портрете изделия, характерные для тех или иных дефектов, и в настоящее время распознавание таких особенностей доверяют компьютерам и нейронным сетям. Измерения тепловой картины на поверхности производят как с помощью контактных термометров, так и путем дистанционной пирометрии. С помощью теплового портрета обнаруживают дефекты сварки и пайки, нарушения герметичности сосудов, места концентрации внутренних напряжений и неисправные электронные компоненты. Самое широкое применение тепловой способ находит в электронике и приборостроении.
Радиационный метод неразрушающего контроля
Этот способ чрезвычайно эффективный, он позволяет получать информацию о самых крупных установках и конструкциях (практически без ограничения размера) путем просвечивания их проникающим ионизирующим излучением.
Радиационный метод неразрушающего контроля
Применяется в следующих диапазонах:
Физической основой способа является возрастание плотности потока заряженных частиц в местах скрытых дефектов. На основании сравнения интенсивности прошедшего и отраженного потока делают вывод о глубине расположения неоднородности. Применяется при определении качества сварных швов на крупных изделиях, таких, как корпуса атомных или химических реакторов, турбин, магистральных трубопроводов и их запорной арматуры.
Метод неразрушающего контроля проникающими веществами
Суть способа заключается в том, что во внутренние полости контролируемого устройства или конструкции запускают специально подготовленную жидкость, реже — химически активное или радиоактивное вещество. По его скоплению или следам и определяют место дефекта.
Различают две разновидности:
Метод неразрушающего контроля проникающими веществами
Поверхность тщательно очищают, далее наносят на нее вещество-индикатор, или пенетрант. После определенной выдержки наносят вещество — проявитель и наблюдают картину дефектов визуально. В случае применения радиоактивных маркеров обнаружение дефектов производят соответствующей рентгенографической аппаратурой. Методика обладает следующими достоинствами:
Он хорошо сочетается с другими методиками и служит им для взаимной проверки.
Оптический метод неразрушающего контроля
Оптический способ дефектоскопии основан на анализе оптических эффектов, связанных с отражением, преломлением и рассеянием световых лучей поверхностью или объемом объекта.
Внешние оптические методики позволяют определять чистоту и шероховатость поверхностей, особо важную в точном машиностроении. При измерении размеров мелких деталей применяется физическое явление дифракции, шероховатость поверхностей определяется на основе интерференционных измерений.
Внутренние дефекты возможно выявить лишь для прозрачных материалов, и здесь оптическим методикам нет равных по дешевизне и эффективности.
Выгодно отличаются они своей простотой и малой трудоемкостью и при нахождении пороков поверхностей, таких, как трещины, заусенцы и забоины.
Особенности выбора метода неразрушающего контроля
В ряде отраслей промышленности, таких, как :
выбор способов дефектоскопии строго регламентирован государственными стандартами и нормами сертифицирующих организаций, таких, ка МАГАТЭ или Госатомнадзора.
Вне этих отраслей руководитель подразделения качества предприятия выбирает методики дефектоскопии, руководствуясь следующими параметрами:
Универсального способа определить все дефекты и сразу не существует. При планировании стратегии качества изделия необходимо определить дефекты, наиболее значимые по степени привносимого ими риска неисправности. Далее находится та комбинация средств измерения и методик неразрушающего контроля, которая:
Средства неразрушающего контроля применяются сегодня практически на всех производствах — от авиазавода и судоверфи до авторемонтной мастерской и кондитерской фабрики. Контролируют прочность сварных швов и герметичность сосудов высокого давления, качество лакокрасочного покрытия и однородность массы для приготовления зефира в шоколаде. Экономя предприятиям средства на проведение выборочных испытаний на разрушение, применение неразрушающей дефектоскопии сказывается и на цене выпускаемых на рынок продуктов при одновременной гарантии их высокого качества.
Что такое неразрушающий контроль
ГОСТ Р 53697-2009
(ISO/TS 18173:2005)
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
Non-destructive testing. General terms and definitions
Дата введения 2011-01-01
Предисловие
1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт оптико-физических измерений» (ФГУП «ВНИИОФИ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Управлением по метрологии Федерального агентства по техническому регулированию и метрологии
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. N 1101-ст
6 ПЕРЕИЗДАНИЕ. Август 2019 г.
Введение
Настоящий стандарт устанавливает основные технические термины, применяемые в области неразрушающего контроля. Приведенные термины используются без дополнительного определения в стандартах на конкретные методы неразрушающего контроля и служат установлению общего подхода для дальнейшей стандартизации и общепринятого использования в области неразрушающего контроля, что способствует улучшению взаимопонимания в науке, производстве и эксплуатации технических устройств, а также в торговле.
Содержание и структура стандарта в основном соответствуют международному стандарту ИСО/ТУ 18173:2005 «Контроль неразрушающий. Основные термины и определения». Международный стандарт подготовлен комитетом ИСО/ТК 371 «Неразрушающий контроль». В соответствии с требованиями, принятыми в отечественной документации и научной литературе по неразрушающему контролю, введен один новый термин и изменено содержание отдельных терминов и определений. Перечень изменений настоящего стандарта по отношению к указанному международному стандарту приведен в приложении А.
1 Область применения
Настоящий стандарт устанавливает основные технические термины, используемые в различных методах неразрушающего контроля.
2 Термины и определения
2.1 приемлемый уровень качества: Максимальный процент брака или максимальное количество бракованных единиц продукции на сотню
acceptable quality level
единиц продукции, которое при выборочном контроле может считаться удовлетворительным в данном технологическом процессе.
niveau de acceptable
2.2 критерий допуска: Критерий, на основании которого устанавливается пригодность образца продукции.
2.3 границы допуска: Набор заданных параметров, устанавливающих границы годности или браковки.
niveau
2.4 искусственная несплошность: Несплошности, полученные посредством обработки резанием или иной обработки, такие как
отверстия, пазы, щели или зарубки.
artificielle
2.5 настройка прибора; юстировка прибора: Приведение прибора в состояние, необходимое для выполнения неразрушающего контроля, его
наладка, регулировка, в частности путем сравнения его показаний со значением параметра, воспроизводимого контрольным образцом.
, appareillage
2.6 дефект критический: Один или несколько дефектов, совокупный размер, форма, ориентация, расположение или свойства которых не
удовлетворяют установленным критериям допуска и являются недопустимыми.
2.7 чувствительность: Способность метода неразрушающего контроля к обнаружению несплошностей.
de
2.8 порог чувствительности: Наименьшая регистрируемая несплошность.
seuil de
2.9 несплошность: Нарушение сплошности или когезии, выраженное в виде естественных или искусственных разрывов физической структуры
2.10 ложное показание: Показание или сигнал, представленные в виде, применяемом в используемом методе неразрушающего контроля,
интерпретируемые как вызванные причинами, не связанными с наличием несплошности или дефектности.
2.11 дефект: Дефектность или несплошность, которая может быть обнаружена методами неразрушающего контроля и которая
необязательно является недопустимой.
2.12 определение характеристик дефекта: Количественное определение размеров, формы, ориентации, расположения, роста и иных свойств
дефекта, основанное на результатах неразрушающего контроля.
de
2.13 дефектность: Отклонение показателей качества от установленных значений.
2.14 показание: Представление сигнала от несплошности, применяемое в данном методе неразрушающего контроля.
2.15 распознавание дефекта: Определение характера обнаруженного дефекта, установление его вида, формы и размеров и принятие решения о том, является ли дефект значимым, незначимым или ложным.
2.16 помеха: Любой паразитный сигнал или отклик, который может повлиять на получение, интерпретацию или обработку полезного сигнала
Что такое неразрушающий контроль?
Что такое неразрушающий контроль?
Неразрушающий контроль (НК) — это очень широкая междисциплинарная область, которая играет важную роль в обеспечении того, чтобы структурные компоненты и системы выполняли свои функции надежным и экономически эффективным образом. Специалисты и инженеры по неразрушающему контролю определяют и внедряют тесты, которые выявляют и характеризуют материальные условия и недостатки.
Такие дефекты могли бы привести к поломке самолетов, отказу реакторов, разрушению поездов, разрыву трубопроводов и ряду менее заметных, но одинаково тревожных событий.
Методы неразрушающего контроля и его тесты выполняются таким образом, чтобы не повлиять на будущую полезность объекта или материала. Другими словами, НК позволяет осматривать и измерять детали и материалы, не повреждая их.
НК обеспечивает превосходный баланс между контролем качества и экономической эффективностью. В общем говоря, неразрушающий контроль применяется к производственным инспекциям.
Технологии, которые используются в неразрушающем контроле, аналогичны технологиям, применяемым в медицинской промышленности за той лишь разницей, что неживые объекты являются предметом проверок.
Неразрушающая оценка — это термин, который часто используется взаимозаменяемо с НК. Тем не менее, технически Неразрушающая оценка используется для описания измерений, которые имеют более количественный характер. Например, метод оценки не только обнаружит дефект, но и будет использоваться для измерения чего-либо в отношении этого дефекта, такого как его размер, форма и ориентация.
Важно: что такое Неразрушающая оценка? – это оценка, из которой видно, можно ли использовать объект с дефектами или нет. Данная оценка дается опытными инспекторами на основе методов неразрушающего контроля.
Некоторые технологии НК
Многие люди уже знакомы с некоторыми технологиями, которые используются в неразрушающем контроле благодаря их применению в медицинской промышленности. Большинству людей также делали рентген и многим матерям врачи использовали ультразвук, чтобы обследовать их ребенка, пока он еще в утробе матери. Рентген и ультразвук — это лишь некоторые из технологий, используемых в области НК.
Количество методов проверки растет с каждым днем, но краткий список наиболее часто используемых методов приводится ниже.
Визуальное и оптическое тестирование
Самым основным методом неразрушающего контроля является визуальный осмотр. Визуальные инспекторы следуют процедурам, которые варьируются от простого взгляда на деталь, чтобы увидеть видимые дефекты поверхности до использования компьютерных систем камер для автоматического распознавания и измерения характеристик компонента.
что такое неразрушающий контроль
Радиография и рентгенография
Рентгенография включает использование проникающего гамма- или рентгеновского излучения на материалах и изделиях для поиска дефектов или изучения их внутренних и скрытых дефектов.
В качестве источника излучения используется рентгеновский генератор или радиоактивный изотоп. Излучение направляется через деталь на пленку. Полученный снимок показывает внутренние особенности и надежность детали. Изменения толщины и плотности материала обозначаются как от более светлых или темные области на пленке. Более темные области на снимке означают пустоты.
Испытание на магнитные частицы
Этот метод неразрушающего контроля достигается путем создания магнитного поля в ферромагнитном материале с последующим напылением на поверхность частицами железа (сухими или взвешенными в жидкости). Поверхностные и приповерхностные дефекты нарушают поток магнитного поля внутри детали и вынуждают часть поля вытекать на поверхность.
Частицы железа притягиваются и концентрируются в местах утечки магнитного потока. Это производит видимую индикацию дефекта на поверхности материала.
Изображения демонстрируют компонент до и после проверки с использованием сухих магнитных частиц.
Ультразвуковой контроль
При ультразвуковом тестировании высокочастотные звуковые волны передаются в материал для обнаружения дефектов или для определения наличия скрытого дефекта. Наиболее часто используемый метод ультразвукового контроля — это импульсное эхо, при котором звук вводится в тестируемый объект, а отражения (эхо) от внутренних дефектов или геометрических поверхностей детали возвращаются в приемник.
Ниже приведен пример проверки сварного шва. Обратите внимание на индикацию, простирающуюся до верхних границ экрана. Эта индикация создается звуком, отраженным от дефекта в сварном шве.
Испытание на проникновение
При этом методе испытания испытуемый объект покрывают раствором, который содержит видимый или флуоресцентный краситель. Избыток раствора затем удаляется с поверхности объекта, но остается в дефектах разрушения поверхности. Затем применяется проявитель для вытягивания пенетранта из дефектов. При использовании флуоресцентных красителей ультрафиолетовое излучение используется для яркого выделения флуоресценции, что позволяет легко увидеть дефекты.
Но также существуют и видимые яркие красители — их цветовой контраст между пенетрантом и проявителем позволяет легко увидеть утечку. Красные обозначения на изображении представляют дефект в этом компоненте.
Электромагнитное испытание
Существует несколько методов электромагнитного контроля, но здесь основное внимание будет уделено вихретоковому контролю. При испытаниях на вихревые токи электрические токи (вихревые токи) генерируются в проводящем материале изменяющимся магнитным полем. Сила этих вихревых токов может быть измерена. Дефекты материала вызывают перебои в вихревых токах, которые предупреждают инспектора о наличии дефекта или других изменениях в материале. Вихревые токи также зависят от электрической проводимости и магнитной проницаемости материала, что позволяет сортировать некоторые материалы на основе этих свойств. Техник на изображении осматривает крыло самолета на наличие дефектов использя метод вихревых токов.
Проверка герметичности
Для обнаружения утечек в объектах, удерживающих давление, таких как резервуарах под давлением. Утечки могут быть обнаружены с помощью электронных устройств, а также повышенным давлением, которое контролируется с помощью манометра. Таких методов на герметичности с использованием жидкости и газа может быть несколько. Их суть сводится к тому, что объект проверяется давлением газа и конструируются на утечку манометром.
Испытание на акустическую эмиссию.
Когда твердый материал подвергается воздействию, дефекты внутри материала испускают короткие всплески акустической энергии, называемые «эмиссией». Как и при ультразвуковом контроле, акустические излучения могут быть обнаружены специальными приемниками.