Что такое несчетное множество
Несчетное множество
В теории множеств счётное мно́жество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция , где
обозначает множество всех натуральных чисел. Другими словами, счётное множество — это множество, равномощное множеству натуральных чисел.
Счётное множество является «наименьшим» бесконечным множеством, то есть в любом бесконечном множестве найдётся счётное подмножество. Мощность множества всех натуральных чисел обозначается символом (произносится: «алеф-нуль»).
Содержание
Свойства
Связанные понятия
Несчётное множество — такое бесконечное множество, которое не является счётным. Таким образом, любое множество является либо конечным, либо счётным, либо несчётным.
Примеры
Множество рациональных чисел и множество алгебраических чисел счётны, однако множество вещественных чисел континуально и, следовательно, несчётно.
См. также
Полезное
Смотреть что такое «Несчетное множество» в других словарях:
НЕСЧЕТНОЕ МНОЖЕСТВО — понятие теории множеств; бесконечное множество, мощность которого больше, чем мощность счетного множества. Напр., множество всех действительных чисел несчетное множество … Большой Энциклопедический словарь
НЕСЧЕТНОЕ МНОЖЕСТВО — бесконечное множество, не являющееся счетным множеством, т. е. неэквивалентное множеству натуральных чисел. Напр., множество действительных чисел, в отличие от множества рациональных, является Н. м. М. И. Войцеховский … Математическая энциклопедия
МНОЖЕСТВО ТИПА — множество ( множество), объединение (пересечение) счетного числа замкнутых (открытых) множеств. См. Борелевское множество. А МНОЖЕСТВО, аналитическое множество, в полном сепарабельном метрическом пространстве непрерывный образ борелевского… … Математическая энциклопедия
несчётное множество — понятие теории множеств; бесконечное множество, мощность которого больше, чем мощность счётного множества. Например, множество всех действительных чисел несчётное множество. * * * НЕСЧЕТНОЕ МНОЖЕСТВО НЕСЧЕТНОЕ МНОЖЕСТВО, понятие теории множеств; … Энциклопедический словарь
ПРОЕКТИВНОЕ МНОЖЕСТВО — множество, к рое может быть получено из борелевских множеств повторным применением операций проектирования и перехода к дополнению. П. м. классифицируются по классам, образующим проективную иерархию. Пусть I=ww бэровское пространство… … Математическая энциклопедия
ДЕСКРИПТИВНАЯ ТЕОРИЯ МНОЖЕСТВ — раздел теории множеств, изучающий внутреннее строение множеств в зависимости ют тех операций, при помощи к рых эти множества могут быть построены из множеств сравнительно простой природы (напр., замкнутых или открытых подмножеств данного… … Математическая энциклопедия
ЗЕНОН ЭЛЕЙСКИЙ — (род. ок. 490, Элея, Нижняя Италия – ум. 430 до Р. X.) первый древнегреч. философ, писавший прозаические соч. и пользовавшийся приемами косвенного доказательства, за что и назван был «изобретателем диалектики», прославился своими парадоксами.… … Философская энциклопедия
ЗЕНОН ЭЛЕЙСКИЙ — [греч. Ζήνων ὁ ᾿Ελεάτης] (V в. до Р. Х.), древнегреч. философ, представитель философской элейской школы, ученик Парменида, создатель знаменитых «апорий Зенона». Жизнь и сочинения Точная дата рождения З. Э. неизвестна. По свидетельству Диогена… … Православная энциклопедия
СКОЛЕМ — (Skolem), Торальф Альберт (р. 23 мая 1887) – норв. логик, математик, философ; кандидат философии (1913), д р философии (1926), доцент ун та в Осло (1918–30), научный сотрудник Ин та науки и свободомыслия (ин т Кристиана Микельсена, 1930–38), проф … Философская энциклопедия
Как вообразить несчетное множество?
Как известно, бесконечности бывают разных типов. Бывают счетные, бывают несчетные. Несчетные делятся на множества мощности континуум и все остальные. Счетные множества это такие, элементы которых можно упорядочить в длинный ряд и занумеровать натуральными числами. С несчетными такой фокус не удается. Тогда как же можно представить несчетное множество, в частности множество вещественных чисел [0;1)? Ответ — дерево бесконечной высоты.
Для меня несчетные множества всегда выглядели как непонятное, туманное облако символов витающее где-то на задворках мозга. Но вот недавно
облако скондесировалось в пару не слишком аккуратных, но компактных кристаллов. О них собственно и речь.
Чтобы избежать путаницы, под несчетным множеством будем подразумевать множество мощности континуум (к таким относятся вещественные числа, иррациональные числа, множество всех подмножеств натуральных чисел и другие).
Карусель
Как известно из википедии и других достоверных источников, мощность вещественных чисел отрезка [0;1) является континуумом. Вещественные числа из этого отрезка нельзя посчитать натуральными числами, т.е. сделать так чтобы одному натуральному числу соответствовало одно вещественное и наоборот. Для неверующих проведем диагональную процедуру Кантора.
Представим чисела отрезка [0,1) в двоичной системе счисления и получим набор бесконечных последовательностей единиц и нулей.
Допустим, мы упорядочили такой набор в виде бесконечного списка как на рисунке. Упорядочив, получим квадратную таблицу в каждой ячейке которой находится либо 1, либо 0. Рассмотрим ячейки располагающиеса на главной диагонали.
Инвертировав диагональ(000010. ) получим последовательность не попадающую в наш список, так как полученная последовательнось отличается от каждой попавшей в список хотя бы одним элементом. Последовательность номер n будет отличаться от диагональной в n-ой позиции. Следовательно, диагональная последовательность отсутствует в списке.
Исходя из приведенной схемы несчетное множество можно представлять в виде непрерывногенерируемых последовательностей. Инвертировали одну диагональную последовательность — вставили её в начало списка — сгенерировали новую и так далее. Такая карусель выглядит сомнительно.
Дерево
Получается, множество максимальных путей в бинарном дереве бесконечной высоты имеет мощность континуум, что эквивалентно мощности вещественных чисел отрезка [0;1).
Если вернуться к интерпретации бинарных последовательностей как двоичных дробей, то рациональные дроби вида 0,x(y) будут выглядеть в виде конечной кривулины х и бесконечной последовательности кривулин y, иррациональные числа будут выглядеть как одна бесконечная неповторяющаяся кривулина x.
Смешная загогулина
В полученном результате есть одна загвоздка: Количество путей максимальной длинны, исходящих из корня двоичного дерева бесконечной высоты несчетно. Количество же вершин такого дерева можно посчитать. Это легко сделать последовательно нумеруя вершины сверху вниз.
Для дерева конечной высоты расклад другой:
Количество путей максимальной длинны, исходящих из корня в двоичном дереве высотой N равно 2^(N-1), а количество вершин почти в два раза больше — 2^N — 1. Устремляя N к бесконечности получим, что счетная бесконечность вершин в два раза “больше” несчетной бесконечности путей.
Вот такой псевдопарадокс, иллюстрирующий работу интуиции.
Разнообразие бесконечностей
Бесконечные множества содержат неограниченную последовательность элементов, объединенных общим признаком. Самые часто используемые из них в математике:
Все они бесконечны, вовсе не означает, что они равномощны.
Сравнение и отображение
Числа в математике можно сравнивать друг с другом и выяснять, какое из них больше. С множествами можно производить аналогичные действия. Это будет называться их отображение друг в друга. Оно может быть дизъюнктивно, конъюнктивно и биективно. Это аналог числовых понятий «больше», «меньше» и «равно». Для того чтобы разобраться, как происходит это сравнение, нужно понятие подмножества.
Подмножеством некоторого набора компонентов называется любая часть компонентов этого набора. То есть, совокупность состоящее из чисел 1 и 3 является подмножеством множества чисел 1, 3 и 5. А они оба, в свою очередь, являются подмножествами совокупности нечётных чисел и т. д.
Если каждому компоненту множества A можно сопоставить какой-то элемент подмножества совокупности В, то отображение А в В конъюнктивно или А меньше, чем В. Если при этом нельзя найти в наборе А подмножество, которое можно сопоставить с совокупностью В, то отображение В в А дизъюнктивно. Если же каждому компоненту из комплекса А можно сопоставить элемент из совокупности В и каждому компоненту из набора В можно сопоставить элемент из совокупности А, то эти множества отображаются друг в друге биективно. В таком случае говорят, что они эквивалентны.
Для сравнения совокупностей можно использовать их мощность. Если мощность А меньше мощности В, то и множество А меньше, чем В. Если мощности равны, то сами наборы элементов эквивалентны.
Сопоставление наборов элементов
Казалось бы, используя свойства сравнения наборов элементов, можно найти соотношение мощностей бесконечных совокупностей. Ведь очевидно, что множество N является подмножеством совокупности Z, они оба являются подмножеством Q, а множества Q и I вместе составляют R. И отсюда, по определению, следует, что мощности соотносятся так: |N| |I|, и загадкой остается только соотношение совокупностей Q и I. Но всё не так просто.
Выяснение размера бесконечного комплекса компонентов — такая же задача, как определение размера конечной совокупности — пересчёт компонентов. Возможность посчитать и пронумеровать элементы бесконечной совокупности называется счётностью. Совокупность натуральных чисел — счётная. Элементам в этом случае легко присвоить порядковые номера. И все множества, которые эквивалентны N, тоже будут счётными. Его размер |N| = a.
Но если взять R, то его элементы пронумеровать не получится. Ведь между любыми двумя точками, а прямой всегда можно поставить ещё одну. То есть, совокупность R «бесконечна вглубь»: каждый промежуток между бесконечным количеством точек содержит в себе бесконечное количество точек. Значит, свойство R — несчётность. Такие «бесконечные вглубь» множества называют континуальными. И их мощность обозначается как |R| = c.
Ещё одно важное свойство бесконечных множеств заключается в том, что если из бесконечной совокупности удалить (или добавить к ней) подмножество меньшей мощности, то размер исходной совокупности сохранится. Если из N убрать все числа от 1 до 10, то его мощность не уменьшится на 10, а останется прежней. Множество останется бесконечным и счётным: a — 10 = a.
Бесконечная мощность счётных и несчётных множеств может быть описана тремя формулами. Это два равенства и одно неравенство:
Совокупность всех точек интервала или отрезка на прямой тоже будет континуальна, так как на неё можно спроецировать всю совокупность точек действительной прямой R.
Соотношение мощностей
Континуальное множество больше счётного. Но какова их разница? Чтобы это вычислить, потребуется понятие булеан.
Что такое булеан
Есть некий набор компонентов V. Булеаном V будет называться комплекс всех его подмножеств. Как будут соотноситься размер булеана и самого V? Если V состоит из одного элемента, то его булеан будет состоять из двух элементов: пустого набора компонентов и самого V. Если V состоит из двух элементов, то булеан содержит 4 элемента: пустое множество, V и каждый из двух элементов. Если V содержит 3 элемента, то булеан содержит 8: пустое, само V, каждый из трёх его элементов в отдельности и каждую пару элементов (которых тоже три).
То есть мощность булеана — это 2 в степени размера самого V. Булеан так и записывается 2^|V|. Размер булеана всегда будет больше, чем мощность самой совокупности.
Результат сопоставления
Размер булеана любой счётной совокупности будет 2^a. Если рассматривать N, то его булеан будет состоять из пустоты, бесконечного числа элементов N, бесконечного числа пар элементов, бессчётного числа сочетаний элементов по 3, 4, 5 и так до бесконечности. Какому известному множеству можно сопоставить этот булеан?
Так как это N — натуральные числа, то каждый элемент булеана — это последовательность чисел. Если представить каждую такую последовательность в виде знаков после запятой в десятичной дроби, то получатся координаты точек в интервале от 0 до 1, который эквивалентен R. Так как булеан N содержит бесконечное количество комбинации бесконечных десятичных дробей, то он покрывает все точки в этом интервале. Это нестрогое доказательство уравнения c = 2^a.
Обозначения мощностей а и c происходят от слов account и continum, но именно такая последовательность букв порождает вопрос: а есть ли бесконечное множество мощностью b, которое меньше c, но больше a. Если и есть, то пока они неизвестны. А вот комплекс больший по мощности, чем c, есть. Это булеан континуального множества с мощностью 2^c. А у этого булеана тоже есть булеан с ещё большей мощностью.
Бесконечные множества бывают счётными и несчётными. Счётными называют те, элементы в которых можно пересчитать, то есть эквивалентные совокупности натуральных чисел. К ним относятся само множество натуральных, а также целых и рациональных чисел. Среди несчётных выделяют континуальные множества, эквивалентные совокупности всех точек на прямой. К ним относятся действительные и иррациональные числа. Континуальность является булеаном счётного набора.
1.21 Несчетные множества
Мы рассмотрели счетные множества. Примеры их можно продолжить. Кроме того, как мы показали, сумма конечного числа или счетного числа счетных множеств есть снова счетное множество. Естественно возникает вопрос: «а существуют ли вообще несчетные множества?». Положительный ответ на него дает следующая теорема:
Множество действительных чисел, заключенных между 0 и 1, несчетно.
Множество действительных чисел D включает в себя множество R рациональных чисел и множество Q иррациональных чисел. Любое иррациональное число можно представить бесконечной непериодической десятичной дробью.
Множество R – счетное, если мы докажем, что множество Q – несчетное, то несчетным будет и множество D.
Где Аij – J-я десятичная цифра числа AI.
Построим десятичную дробь
С помощью Диагональной процедуры Кантора, а именно: за B1 примем произвольную цифру, не совпадающую с А11; за B2 – произвольную цифру, не совпадающую с А22, и т. д. Вообще за BN примем произвольную цифру, не совпадающую с AMn. Построенная таким образом дробь b не совпадает ни с одной дробью a. От a1 она отличается по крайней мере первой цифрой, от a2 – по крайней мере второй цифрой и т. д.
Таким образом, никакое счетное множество иррациональных (действительных) чисел, лежащих на отрезке [0; 1], не исчерпывают этого отрезка. Следовательно, множество иррациональных чисел и множество действительных чисел на отрезке [0; 1] является несчетным.
Любые множества, эквивалентные отрезку [0; 1], являются Несчетными:
1. Множество всех точек любого отрезка [ А; B ].
2. Множество всех точек прямой.
3. Множество всех прямых на плоскости.
4. Множество всех непрерывных функций одной или нескольких переменных и т. д.
Счётные и несчётные множества — понятие, свойства и примеры
Множество — это совокупность или набор элементов. Количество этих элементов называется мощностью этой совокупности. Мощность пустого набора компонентов равна нулю. С размером конечных совокупностей тоже всё просто. У них можно пересчитать количество компонентов. А вот возможность посчитать компоненты бесконечности различает счётные и несчётные множества.
Разнообразие бесконечностей
Бесконечные множества содержат неограниченную последовательность элементов, объединенных общим признаком. Самые часто используемые из них в математике:
Все они бесконечны, вовсе не означает, что они равномощны.
Сравнение и отображение
Числа в математике можно сравнивать друг с другом и выяснять, какое из них больше. С множествами можно производить аналогичные действия. Это будет называться их отображение друг в друга. Оно может быть дизъюнктивно, конъюнктивно и биективно. Это аналог числовых понятий «больше», «меньше» и «равно». Для того чтобы разобраться, как происходит это сравнение, нужно понятие подмножества.
Подмножеством некоторого набора компонентов называется любая часть компонентов этого набора. То есть, совокупность состоящее из чисел 1 и 3 является подмножеством множества чисел 1, 3 и 5. А они оба, в свою очередь, являются подмножествами совокупности нечётных чисел и т. д.
Если каждому компоненту множества A можно сопоставить какой-то элемент подмножества совокупности В, то отображение А в В конъюнктивно или А меньше, чем В. Если при этом нельзя найти в наборе А подмножество, которое можно сопоставить с совокупностью В, то отображение В в А дизъюнктивно. Если же каждому компоненту из комплекса А можно сопоставить элемент из совокупности В и каждому компоненту из набора В можно сопоставить элемент из совокупности А, то эти множества отображаются друг в друге биективно. В таком случае говорят, что они эквивалентны.
Для сравнения совокупностей можно использовать их мощность. Если мощность А меньше мощности В, то и множество А меньше, чем В. Если мощности равны, то сами наборы элементов эквивалентны.
Сопоставление наборов элементов
Казалось бы, используя свойства сравнения наборов элементов, можно найти соотношение мощностей бесконечных совокупностей. Ведь очевидно, что множество N является подмножеством совокупности Z, они оба являются подмножеством Q, а множества Q и I вместе составляют R. И отсюда, по определению, следует, что мощности соотносятся так: |N| |I|, и загадкой остается только соотношение совокупностей Q и I. Но всё не так просто.
Выяснение размера бесконечного комплекса компонентов — такая же задача, как определение размера конечной совокупности — пересчёт компонентов. Возможность посчитать и пронумеровать элементы бесконечной совокупности называется счётностью. Совокупность натуральных чисел — счётная. Элементам в этом случае легко присвоить порядковые номера. И все множества, которые эквивалентны N, тоже будут счётными. Его размер |N| = a.
Но если взять R, то его элементы пронумеровать не получится. Ведь между любыми двумя точками, а прямой всегда можно поставить ещё одну. То есть, совокупность R «бесконечна вглубь»: каждый промежуток между бесконечным количеством точек содержит в себе бесконечное количество точек. Значит, свойство R — несчётность. Такие «бесконечные вглубь» множества называют континуальными. И их мощность обозначается как |R| = c.
Ещё одно важное свойство бесконечных множеств заключается в том, что если из бесконечной совокупности удалить (или добавить к ней) подмножество меньшей мощности, то размер исходной совокупности сохранится. Если из N убрать все числа от 1 до 10, то его мощность не уменьшится на 10, а останется прежней. Множество останется бесконечным и счётным: a — 10 = a.
Поскольку N отображается в R конъюнктивно (N является подмножеством R, но не имеет подмножества эквивалентного R), то |R|=c > a=|N|. А так как R представляет собой объединение совокупностей Q и I, то размер |I| = |R| — |Q| = c — a = c. Значит, I тоже континуально.
Бесконечная мощность счётных и несчётных множеств может быть описана тремя формулами. Это два равенства и одно неравенство:
Совокупность всех точек интервала или отрезка на прямой тоже будет континуальна, так как на неё можно спроецировать всю совокупность точек действительной прямой R.
Соотношение мощностей
Континуальное множество больше счётного. Но какова их разница? Чтобы это вычислить, потребуется понятие булеан.
Что такое булеан
Есть некий набор компонентов V. Булеаном V будет называться комплекс всех его подмножеств. Как будут соотноситься размер булеана и самого V? Если V состоит из одного элемента, то его булеан будет состоять из двух элементов: пустого набора компонентов и самого V. Если V состоит из двух элементов, то булеан содержит 4 элемента: пустое множество, V и каждый из двух элементов. Если V содержит 3 элемента, то булеан содержит 8: пустое, само V, каждый из трёх его элементов в отдельности и каждую пару элементов (которых тоже три).
То есть мощность булеана — это 2 в степени размера самого V. Булеан так и записывается 2^|V|. Размер булеана всегда будет больше, чем мощность самой совокупности.
Результат сопоставления
Размер булеана любой счётной совокупности будет 2^a. Если рассматривать N, то его булеан будет состоять из пустоты, бесконечного числа элементов N, бесконечного числа пар элементов, бессчётного числа сочетаний элементов по 3, 4, 5 и так до бесконечности. Какому известному множеству можно сопоставить этот булеан?
Так как это N — натуральные числа, то каждый элемент булеана — это последовательность чисел. Если представить каждую такую последовательность в виде знаков после запятой в десятичной дроби, то получатся координаты точек в интервале от 0 до 1, который эквивалентен R. Так как булеан N содержит бесконечное количество комбинации бесконечных десятичных дробей, то он покрывает все точки в этом интервале. Это нестрогое доказательство уравнения c = 2^a.
Обозначения мощностей а и c происходят от слов account и continum, но именно такая последовательность букв порождает вопрос: а есть ли бесконечное множество мощностью b, которое меньше c, но больше a. Если и есть, то пока они неизвестны. А вот комплекс больший по мощности, чем c, есть. Это булеан континуального множества с мощностью 2^c. А у этого булеана тоже есть булеан с ещё большей мощностью.
Бесконечные множества бывают счётными и несчётными. Счётными называют те, элементы в которых можно пересчитать, то есть эквивалентные совокупности натуральных чисел. К ним относятся само множество натуральных, а также целых и рациональных чисел. Среди несчётных выделяют континуальные множества, эквивалентные совокупности всех точек на прямой. К ним относятся действительные и иррациональные числа. Континуальность является булеаном счётного набора.