Что такое нейроглия 8 класс биология
Виды тканей в организме человека
Вопрос 2 Какие виды тканей вы знаете?.
Выделяют четыре основных группы тканей: эпителиальную, соединительную, мышечную и нервную.
Вопрос 3. Чем соединительная ткань отличается от эпителиальной?
Эпителиальные ткани состоят из тесно прилегающих друг к другу клеток. Межклеточного вещества мало. Эпителиальные ткани (эпителий) образуют покровы тела, а также слизистые оболочки всех внутренних органов и полостей. Эпителий образует также большинство желез. Он обладает высокой способностью к регенерации.
Соединительные ткани состоят из клеток и большого количества межклеточного вещества. Межклеточное вещество представлено основным веществом и волокнами коллагена или элластина. Соединительные ткани хорошо регенерируют.
Вопрос 4. Какие виды эпителиальной и соединительной ткани вы знаете?
К эпителиальным тканям относятся: плоский эпителий, кубический эпителий, мерцательный эпителий, цилиндрический эпителий, а также железистая ткань, вырабатывающая различные секреты (пот, слюну, желудочный сок, сок поджелудочной железы). К соединительным тканям относятся: опорные ткани хрящевая и костная, жидкая ткань — кровь, эластичная рыхлая соединительная ткань, разделяющая мышечные волокна, жировая ткань, плотная соединительная ткань, входящая в состав сухожилий.
Вопрос 5. Какими свойствами обладают клетки мышечной ткани — гладкой, поперечнополосатой, сердечной?
Мышечная ткань любого вида обладает такими свойствами, как возбудимость и сократимость.
Гладкая (неисчерченная) мышечная ткань обеспечивает работу кровеносных сосудов и внутренних органов, например желудка, кишечника, бронхов, т. е. органов, работающих помимо нашей воли, автоматически. С помощью гладких мышц изменяются размеры зрачка, кривизна хрусталика глаза и т.д.
Поперечнополосатая (исчерченная) мышечная ткань входит в состав скелетной мускулатуры, которая работает как рефлекторно, так и по нашей воле (произвольно), образует мышцы языка, глотки, верхней части пищевода.
Сердечная (слабоисчерченная) мышечная ткань тоже состоит из мышечных волокон, но они имеют ряд особенностей. Во-первых, здесь соседние мышечные волокна соединены между собой в сеть. Во-вторых, они имеют небольшое число ядер, расположенных в центре волокна. Благодаря такому строению возбуждение, возникшее в одном месте, быстро охватывает всю мышечную ткань, участвующую в сокращении.
Вопрос 6. Какие функции выполняют клетки нейроглии?
Нейроглия выполняет несколько функций. Одна из них барьерная. Все вещества из кровеносного сосуда поступают сначала в клетки нейроглии, которые пропускают к нейронам необходимые вещества и задерживают токсичные. Кроме этого, клетки нейроглии выполняют и опорную роль, механически поддерживая нейроны.
Вопрос 7. Каково строение и свойства нейронов?
Нейрон имеет тело, от которого отходят отростки — короткие, ветвящиеся дендриты и длинный отросток, разветвляющийся на конце, — аксон. Дендриты проводят нервные импульсы к телу нейрона, а аксон — от тела нейрона на другой нейрон или на рабочий орган. По количеству отростков нейроны делятся на мультиполярные — многоотростчатые нейроны (более трех отростков), биполярные — клетки с двумя отростками, униполярные нейроны — с одним отростком, который на некотором расстоянии от клетки раздваивается.
Вопрос 8. Каковы различия по строению и функциям между дендритами и аксонами?
Дендрит — отросток, передающий возбуждение к телу нейрона. Чаще всего у нейрона несколько коротких разветвленных дендритов. Однако бывают нейроны, у которых имеется только один длинный дендрит. Дендрит, как правило, не имеет белой миелиновой оболочки.
Аксон — это единственный длинный отросток нейрона, который передает информацию от тела нейрона к следующему нейрону или к рабочему органу. Аксон ветвится только на конце, образуя короткие веточки — терминали. Аксон обычно покрыт белой миелиновой оболочкой.
Вопрос 9. Что такое синапс?
Синапсами называются места контактов нервных клеток.
НЕЙРОГЛИЯ
Смотреть что такое «НЕЙРОГЛИЯ» в других словарях:
нейроглия — нейроглия … Орфографический словарь-справочник
Нейроглия — Нейроглия, или просто глия (от др. греч. νεῦρον «волокно, нерв» и γλία «клей») совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Термин ввёл в 1846 году Рудольф Вирхов[1]. Глиальные клетки … Википедия
нейроглия — невроглия Словарь русских синонимов. нейроглия сущ., кол во синонимов: 3 • глия (2) • невроглия … Словарь синонимов
НЕЙРОГЛИЯ — (от нейро. и греч. glia клей) (глия) клетки в головном и спинном мозге, заполняющие пространства между нейронами и мозговыми капиллярами. Служат для защиты и опоры нейронов, обеспечивают реактивные свойства нервной ткани (образование рубцов,… … Большой Энциклопедический словарь
Нейроглия — (от Нейро. и греч. glía клей) глия, клетки в мозге, своими телами и отростками заполняющие пространства между нервными клетками Нейронами и мозговыми капиллярами. Каждый нейрон окружен несколькими клетками Н., которая равномерно… … Большая советская энциклопедия
нейроглия — (от нейро. и греч. glía клей) (глия), клетки в головном и спинном мозге, заполняющие пространства между нейронами и мозговыми капиллярами. Нейрология служит для защиты и опоры нейронов, обеспечивает реактивные свойства нервной ткани… … Энциклопедический словарь
нейроглия — (neuroglia, LNH; нейро + глия; син. глия) совокупность всех клеточных элементов нервной ткани, кроме нейронов … Большой медицинский словарь
Нейроглия — эктодермический остов центральной нервной системы позвоночных, состоящий из клеток двоякого рода: 1) клеток эпендимы (см.), выстилающих центральный канал и дающих отростки в толщу нервной трубки. Гомологичные им клетки имеются у бесчерепных, а… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
НЕЙРОГЛИЯ — (от нейро. и греч. glia клей) (глия), клетки в головном и спинном мозге, заполняющие пространства между нейронами и мозговыми капиллярами. Н. служит для защиты и опоры нейронов, обеспечивает реактивные свойства нерв. ткани (образование рубцов,… … Естествознание. Энциклопедический словарь
Урок Бесплатно Нервная система. Общая характеристика
Введение
Слаженная работа органов и систем обеспечивается работой нервной системы, контролирующей все процессы, происходящие в нашем организме.
Каждую секунду нервной системе приходится анализировать огромный поток информации, идущий из внешней и внутренней среды.
Образно выражаясь, нервная система, лучше любого компьютера с огромной скоростью составляет диаграммы, графики, статистику и на основе этих данных регулирует и нормализует работу нашего сложного организма.
Функции нервной системы:
Нервную систему можно разделить по анатомическим и функциональным признакам:
Сегодня мы рассмотрим строение нервной ткани, нейронов и работу соматической и вегетативной нервной системы.
Строение нервной ткани
Органы нервной системы состоят из нервной ткани.
Нервная ткань отличается отсутствием межклеточного вещества, она состоит из нейронов и глиальных клеток (нейроглии).
Формы и размеры нейронов разных отделов нервной системы могут быть разными, но для них характерно наличие тела (сомы) и отростков.
Сома нейрона имеет ядро и клеточные органоиды, осуществляет метаболизм (обмен веществ) клетки.
Нейрон имеет два отростка:
У меня есть дополнительная информация к этой части урока!
В теле нейрона присутствуют специфические органеллы тельца Ниссля (тигроид), который состоит из сильно развитой шероховатой эндоплазматической сети и аппарата Гольджи.
Тельца Ниссля находится не только в соме нейрона, но и в основаниях дендритов, в аксонах не обнаруживаются.
Если нервная система переутомлена, то количество тигроидного вещества уменьшается, причем сначала оно исчезает из дендритов, а затем из тела клетки.
При особо сильном возбуждении нейрона тигроид может исчезнуть совсем.
Миелиновая оболочка нейрона образована глиальными клетками, которые несколько раз обматываются вокруг аксона, подобно изоляционной ленте.
Цитоплазмы в теле клеток практически нет, в результате чего миелиновая оболочка представляет собой, по сути, множество слоёв клеточной мембраны.
Место нейрона, от которого начинается аксон, называется аксонным холмиком, где создается электрический импульс как ответ на раздражение.
Окончания аксона ветвятся и их называют аксонными терминалями.
В цитоплазме аксона отсутствует эндоплазматическая сеть и аппарат Гольджи, но есть митохондрии.
Микротрубочки располагаются вдоль аксона и обеспечивают транспорт белков и других веществ.
Работа нейрона
Разветвления отростков нейронов имеют нервные окончания, рецепторы, преобразующие раздражение в нервные импульсы.
Рецепторы в зависимости от местонахождения делятся на:
От рецепторов нервные импульсы по дендритам проходят к соме клетки.
В аксонном холмике происходит усиление потенциала действия (нервного импульса).
Нервный импульс по аксону достигает аксонных терминалий, а с них переходит сразу на несколько нейронов или рабочих органов.
Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети, состоящие из 20 тысяч других нейронов, по которым циркулируют нервные импульсы.
Передача нервного импульса от одного нейрона к другому происходит в местах их контактов- в синапсах.
Синапс— место контакта между двумя нейронами или между нейроном и клеткой рабочего органа, получающей сигнал.
Служит для передачи нервного импульса между двумя клетками.
Передача нервного импульса происходит двумя путями:
Возбуждающие синапсы усиливают нервный импульс, а тормозные, наоборот, ослабляют.
У меня есть дополнительная информация к этой части урока!
Развитие 100 миллиардов нейронов, образующих нервную систему, начинается еще в эмбриональном периоде и практически завершается к моменту родов.
Глиальные клетки активно растут в течение всего 2-го года жизни и способствуют быстрому росту размеров нейронов.
Также происходит увеличение количества синоптических связей, что является причиной интенсивного развития мозга в период с младенчества до двухлетия, и который продолжается в течение всего раннего детства.
По количеству отростков
По форме тела нейроны бывают:
Пройти тест и получить оценку можно после входа или регистрации
Нейроглия (глиальные клетки)
Пространство между нейронами заполнено клетками нейроглии, которые, в отличие от нейронов, делятся в течение всей жизни человека.
Количество клеток нейроглии больше количества нейронов примерно в 10-15 раз.
Глиальные клетки и нейроны:
Астроциты- звездчатые клетки, с множеством отростков. Значительное число отростков астроцитов представляют собой «ножки», плотно прилегающие к капиллярам и покрывающие собой почти всю поверхность сосуда.
Астроциты располагаются между капиллярами и телами нейронов. Их назначение- транспорт веществ из крови в нейроны и обратно, также они служат опорой для нейронов, обеспечивая их восстановление после повреждения.
Олигодендроциты образуют миелиновую оболочку вокруг отростков нейронов, их еще называют шванновскими клетками.
По размерам они меньше, чем астроциты и имеют меньше отростков.
Клетки микроглии отличаются небольшими размерами. Эти клетки могут активно передвигаться.
Функция микроглии- защита нейронов от воспалений и инфекций (по механизму фагоцитоза- захватывание и переваривание генетически чужеродных веществ). Клетки микроглиии доставляют нейронам кислород и глюкозу.
Пройти тест и получить оценку можно после входа или регистрации
Периферическая нервная система
В состав периферической нервной системы входят
Нерв (от лат. нервус- струна)- покрытые оболочкой структуры, состоящие из пучков нервных волокон, образованных в основном аксонами нейронов и клетками нейроглии.
Солнечное сплетение- известное уязвимое место организма.
Пройти тест и получить оценку можно после входа или регистрации
Соматическая и вегетативная нервная система
Как мы видели в схеме в начале урока нервная система подразделяется по функциональному признаку на соматическую и вегетативную нервную систему.
Соматическая нервная система— часть нервной системы, регулирующая деятельность скелетной (произвольной) мускулатуры.
С помощью этой нервной системы мы можем произвольно, по собственному желанию, управлять деятельностью скелетных мышц, т.е. она подчинена нашей воле, а центр управления находится в коре больших полушарий, то есть вне центральной нервной системы вторых узлов (ганглиев) нет.
Вегетативная нервная система— часть нервной системы, которая регулирует:
Она работает произвольно (автономно), то есть не подчинена воле человека, но находится под контролем центральной нервной системы.
Вегетативная нервная система подразделяется на:
Важнейшие органы контролируются и симпатической и парасимпатической нервной системой (двойная иннервация).
Полые внутренние органы имеют тройную (симпатическую, парасимпатическую и метасимпатическую) иннервацию.
Кроме того, изменения кровяного давления человека в спокойном состоянии и во время работы происходит благодаря взаимной работе симпатической и парасимпатической нервной системы.
Так в спокойном состоянии включается парасимпатический отдел нервной системы, при этом у человека расслабляются гладкие мышцы сосудов и увеличивается их просвет, в результате давление понижается.
А во время активной работы сокращаются гладкие мышцы сосудов, сужается их просвет, давление повышается, то есть включается в работу симпатический отдел вегетативной нервной системы.
Вегетативная нервная система имеет центральную и периферическую части:
Функции симпатической и парасимпатической нервной системы:
Железы (кроме потовых)
гладкая мускулатура внутренних органов (бронхов, желудочно-кишечного тракта, мочевого пузыря)
Сосуды (кроме коронарных)
Симпатический и парасимпатический отдел вегетативной нервной системы:
1. Симпатический отдел вегетативной нервной системы
Центральные структуры симпатического отдела вегетативной нервной системы расположены в спинном мозге на уровне грудных позвонков.
Периферическая часть симпатического отдела состоит из двух цепочек нервных клеток, лежащих по краям позвоночника.
Симпатическая нервная система усиливает обмен веществ, повышает возбуждаемость большинства тканей, мобилизует силы организма на активную деятельность.
Окончания симпатических волокон выделяют в качестве медиатора норадренилин и адреналин.
Например, во время бега или спортивного матча у игроков более активна симпатическая нервная система, так как выделяется в кровь большое количество адреналина (медиатора симпатической нервной системы). Симпатическая нервная система усиливает обмен веществ при увеличении физических нагрузок (учащает сердцебиение и дыхание), повышает потоотделение и снижает пороги чувствительности, при этом усиливается приток крови к коже, возрастает потоотделение, повышается возбудимость нервной системы.
2. Парасимпатический отдел вегетативной нервной системы
Центральные структуры- парасимпатические ядра лежат в продолговатом, среднем мозге и в крестцовой части серого вещества спинного мозга.
Периферические части- нервные волокна из среднего мозга уходят в составе глазодвигательного нерва, а нервные волокна от ядер продолговатого мозга входят в состав блуждающих нервов.
От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения. Парасимпатические нервные узлы располагаются в стенках внутренних органов или возле органов.
Парасимпатическая система способствует восстановлению израсходованных запасов энергии, регулирует работу организма во время сна.
Окончаниями парасимпатического отдела вегетативной нервной системы выделяется медиатор ацетилхолин.
Метасимпатический отдел вегетативной нервной системы
Метасимпатический отдел представлен нервными сплетениями и мелкими ганглиями, отдельными нейронами и их отростками, которые находятся в стенках пищеварительного тракта, мочевого пузыря, сердца и некоторых других органов, обладающих сократительной активностью.
Характеризуется высокой степенью относительной независимости от центральной нервной системы (ЦНС).
Связь с ЦНС осуществляется нейронами симпатического и парасимпатического отделов.
Органы с разрушенными метасимпатическими путями утрачивают способность к координированной моторной деятельности и другим функциям.
Нейрогуморальная регуляция работы организма
Нервная и гуморальная (эндокринная) системы обеспечивают саморегуляцию всех физиологических процессов в организме.
Гуморальная регуляция- механизм регуляции процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость, полость рта) с помощью гормонов, выделяемых клетками, органами, тканями.
Нервная регуляция осуществляется за счёт вегетативной нервной системы.
На примере работы сердца в организме мы можем увидеть, как нейрогуморальная регуляция обеспечивает нормальную работу сердца.
Парасимпатическая система замедляет и ослабляет сокращение сердца, а симпатическая усиливает и учащает сокращение сердца.
Гуморальная регуляция осуществляется через кровь- адреналин, соли кальция усиливают и учащают сердечные сокращения, а соли калия оказывают противоположное действие.
Пройти тест и получить оценку можно после входа или регистрации
Что такое нейроглия 8 класс биология
Секреторные нейроны. В некоторых ядрах переднего гипоталамуса головного мозга (например, в супраоптических и паравентрикулярных) имеются клеточные системы, состоящие из специализированных нейронов — крупных секреторных нейронов.
Последним присущи типичные для нейронов органеллы. Они подвергаются воздействию других нейронов через синаптические контакты. Однако их ответы наряду с деполяризацией мембран и освобождением нейромедиатора включают также выделение в кровь или тканевые жидкости пептидных нейрогормонов. По внешнему виду эти клетки сходны с мультиполярными нейронами.
Они имеют несколько коротких дендритов и один аксон. На дендритах и теле секреторных нейронов выявляются многочисленные синапсы — места переключения импульсов от нейронов, расположенных в ядерных центрах головного мозга. В цитоплазме и по ходу аксона секреторных нейронов определяются гранулы нейросекрета (например, окситоцин и вазопрессин). Гранулы нейросекрета выводятся в кровь или жидкость желудочков мозга. Секреторные нейроны гипоталамуса участвуют во взаимодействиях нервной и гуморальной систем регуляции.
Нейроглия. В процессе развития тканей нервной системы из материала нервной трубки, а также нервного гребня происходит развитие глиобластов. Результатом глиобластической дифференцировки является образование нейроглиальных клеточных дифферонов. Они выполняют опорную, разграничительную, трофическую, секреторную, защитную и другие функции. Нейроглия создает постоянную, стабильную внутреннюю среду для нервной ткани, обеспечивая тканевый гомеостаз и нормальное функционирование нервных клеток. По строению и локализации клеток различают эпендимную глию, астроцитную глию и олигодендроглию. Нередко эти разновидности глии объединяют обобщенным понятием «макроглия».
Эпендимная глия имеет эпителиоидное строение. Она выстилает центральный канал спинного мозга и мозговые желудочки. В качестве эпендимного эпителия эта разновидность нейроглии относится к нейроглиальному типу эпителиальных тканей. Выпячивания мягкой оболочки мозга в просвет его желудочков покрыты эпендимоцитами кубической формы. Они принимают участие в образовании спинномозговой жидкости. В стенке Ш-го желудочка мозга находятся специализированные клетки — танициты, обеспечивающие связь между содержимым желудочка и кровью за счет ультрафильтрации элементов спинномозговой жидкости.
Астроцитная глия является опорной структурой (каркасом) спинного и головного мозга. В астроцитной глии различают два вида клеток: протоплазматические и волокнистые астроциты. Первые из них располагаются преимущественно в сером веществе мозга. Они имеют короткие и толстые, часто распластанные отростки. Вторые — находятся в белом веществе мозга. Волокнистые астроциты имеют многочисленные отростки, содержащие аргирофильные фибриллы. За счет этих фибрилл формируются глиальные остов и разграничительные мембраны в нервной системе, пограничные мембраны вокруг кровеносных сосудов и так называемые «ножки» астроцитных отростков на кровеносных сосудах.
Олигодендроглия состоит из различно дифференцированных клеток — олигодендроцитов. Они плотно окружают тела нейронов и их отростки на всем протяжении до концевых разветвлений. Есть несколько видов олигодендроцитов. В органах центральной нервной системы олигодендроглия представлена мелкими отростчатыми клетками, называемыми глиоцитами. Вокруг тел чувствительных нейронов спинномозговых ганглиев находятся глиоциты ганглия (мантийные глиоциты).
Отростки нервных клеток сопровождают нейролеммоциты, или шванновские клетки. Источник их развития в периферических нервах, по данным некоторых авторов, эктомезенхима нервного гребня.
Функции олигодендроглиоцитов многообразны и чрезвычайно важны для нормальной деятельности нервных клеток. Они обеспечивают трофику нейронов. В единой метаболической системе «нейрон-глия» происходит взаимообмен некоторыми ферментами, белками и РНК. Олигодендроциты играют существенную роль в процессах возбуждения и торможения нейронов и проведения по их отросткам нервных импульсов.
Так, нейролеммоциты совместно с отростками нейронов образуют миелиновые и безмиелиновые нервные волокона периферической нервной системы, выполняя при этом роль изоляторов, препятствующих рассеиванию импульсов. Олигодендроциты принимают участие в регуляции водно-солевого баланса в нервной системе. Они могут набухать, перераспределять ионы и т. д. Специализированные глиоциты нервных окончаний участвуют в процессах рецепции, а также в передаче нервного импульса на рабочие структуры.
Помимо макроглии в нервной системе есть еще микроглия. Источником ее развития является мезенхима, а клетки микроглии представляют собой глиальные макрофаги и относятся к нейроглии лишь на основании гистотопографии. Клетки микроглии могут размножаться, проявлять фагоцитарную активность, синтезировать не свойственные организму антигены, что наблюдается при некоторых заболеваниях.















