Что такое нейтрино на простом языке
Почему так тяжело изучать нейтрино и что эта частица расскажет об истории Вселенной
Нейтрино является одной из самых распространенных частиц во Вселенной, при этом ее невероятно сложно обнаружить. Изучать нейтрино важно, потому что они содержат в себе информацию о явлениях и процессах, которые их порождают: это значит, что с помощью частицы можно узнать о происхождении Вселенной. Рассказываем обо всех тайнах, которые хранят в себе нейтрино.
Читайте «Хайтек» в
Что такое нейтрино?
Нейтрино — это сверхлегкие частицы, образующиеся в процессе ядерных реакций. Большинство из тех, что были обнаружены на Земле, исходят от Солнца, которое превращает водород в гелий. Но в 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые «нейтрино CNO». И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.
До недавнего времени было вообще непонятно, есть ли у нее масса. В последние годы стало ясно, что есть, но очень маленькая. Ее точное значение неизвестно по сию пору, а имеющиеся оценки в общем сводятся к тому, что нейтрино примерно на 10 порядков легче протона. Примерно так же соотносится вес кузнечика (около 1 грамма) с водоизмещением современного атомного авианосца George Bush (около 100 тыс. тонн).
Частица не имеет или почти не имеет электрического заряда — эксперименты пока не дали однозначного ответа, а из всех фундаментальных физических взаимодействий достоверно участвует только в слабом и гравитационном.
Нейтрино подразделяются на три поколения: электронные, мюонные и тау-нейтрино. Они обычно перечисляются именно в таком порядке, и это не случайно: так отображается последовательность их открытия. Кроме этого, есть еще антинейтрино — это античастицы трех разных типов, соответствующих «обычным». Нейтрино разных поколений могут самопроизвольно превращаться друг в друга. Ученые называют это нейтринными осцилляциями, за их открытие присудили Нобелевскую премию по физике 2015 года.
Нейтрино — результат ядерных (и термоядерных, мы далее не будем выделять их отдельно) реакций. Их, неуловимых, очень много. По подсчетам физиков-теоретиков, на каждый нуклон (то есть протон или нейтрон) во Вселенной приходится около 10 9 нейтрино. Тем не менее, мы совершенно его не замечаем: частицы проходят сквозь нас.
Как ученые ищут нейтрино?
Современные детекторы регистрируют не сами нейтрино — это пока невозможно. Объектом регистрации оказываются результаты взаимодействия частицы с веществом, заполняющим детектор. Его выбирают так, чтобы с ним реагировали нейтрино определенных, интересующих разработчиков, энергий. Поскольку энергия нейтрино зависит от механизма их образования, можно считать, что детектор рассчитан на частицы определенного происхождения.
Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 млрд солнечных нейтрино в секунду.
На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию).
После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).
Общей особенностью всех современных нейтринных телескопов являются меры, направленные на экранирование аппаратуры от всех посторонних частиц. Нейтрино, хотя их в природе очень много, засекаются детекторами очень редко. Любой посторонний шум от космических или земных частиц наверняка их заглушит.
Поэтому стандартное размещение нейтринной обсерватории — в шахте или, в некоторых случаях, под водой, чтобы вышележащая толща блокировала ненужное излучение. Эта толща тоже тщательно подбирается — горные породы, например, должны быть как можно менее радиоактивными. Граниты нам не подойдут, глины тоже. Хорошее место для детектора — шахта в толще чистого известняка.
Лучшее направление для работы нейтринной обсерватории — прием частиц, пришедших снизу, сквозь нашу планету. Для нейтрино она прозрачна, для всего остального — нет.
Современные детекторы определяют нейтринное событие по «разрушительному эффекту». Когда неуловимая частица все-таки взаимодействует с веществом детектора, она вызывает разрушение первоначального атомного ядра с образованием каких-то иных частиц. Их-то затем и обнаруживают в детекторе.
Чтобы вызвать такую реакцию, нейтрино должно иметь собственную энергию не ниже определенного, нужного для данного детектора, уровня. Поэтому современная техника всегда имеет ограничение снизу — регистрирует нейтрино, имеющие энергию выше определенного уровня. В таком порядке мы их и рассмотрим.
Зачем мы вообще изучаем нейтрино?
Нейтрино рассказывают нам чрезвычайно много о том, как Вселенная создается и удерживается от распада. Нет другого способа ответить на многие вопросы.
Натаниэль Боуден, ученый из Ливерморской Национальной лаборатории имени Лоуренса
Эксперты сравнили поиск этих частиц с работой археологов, восстанавливающих доисторические артефакты с целью понять, какой жизнь была тогда. Лучшее понимание нейтрино может раскрыть тайны других элементов астрономии и физики: от темной материи до расширения Вселенной.
Эксперимент COHERENT Окриджской национальной лаборатории состоял из пяти детекторов частиц, предназначенных для непосредственного наблюдения высокоспецифического взаимодействия между нейтрино и ядрами атомов. В прошлом году эти ученые опубликовали исследование в Science о взаимодействии между двумя нейтрино, которое было выдвинуто в качестве гипотезы десятилетиями ранее, но никогда прежде не наблюдались.
Это не просто еще одна частица. Это попытка найти, причем сравнительно простым и относительно дешевым методом, — если сравнивать с Большим адронным коллайдером, например, — новую физику. Новая физика — это и понимание того, что такое темная материя: возможно, она окажется теми самыми стерильными нейтрино. И, что возможно, выход на новые технологии. Нельзя исключать, что новые нейтрино окажутся представителями неизвестного класса частиц, которые еще и взаимодействуют между собой каким-то иным способом. Если мы нападем на след этого нового взаимодействия, то не исключено, что мы научимся его использовать на практике: подобно тому, как открытие ядерного взаимодействия привело к появлению ядерных технологий.
Григорий Рубцов, заместитель директора Института ядерных исследований.
Изучение испускаемых Землей нейтрино может помочь нам хотя бы понять, сколько в земном веществе радиоактивных элементов и где они в основном находятся. По части последнего существуют разные версии, начиная от того, что уран с торием — атрибут нижней части земной коры, и кончая тем, что источники радиации в ходе формирования планеты «утонули» к ее центру, и там существует нечто вроде ядерного реактора, причем периодически действующего.
Накопившиеся продукты распада, когда их становится достаточно много, останавливают цепную реакцию. Потом в раскаленной среде они потихоньку диффундируют наверх (они легче), освобождая место для новых порций делящегося материала, после чего процесс запускается снова. Если это так, то подобная цикличность могла бы помочь в объяснении перемен магнитной полярности Земли и, надо думать, во многом другом.
Интересен также вопрос о доле ядерных реакций в общем тепловыделении Земли. Напомним, что земные недра суммарно выдают порядка 47 ТВт тепла в год, но ученые до сих пор смутно представляют себе, какая часть этой энергии приходится на радиогенное тепло, а какая — на остаточное тепло, выделившееся когда-то при гравитационной дифференциации земного вещества.
Чем это интересно для обычного человека?
Технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что любое вложение в эту сферу окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера.
Эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.
Как мы продвинулись в изучении нейтрино?
Накануне стало известно, что Японские ученые из Университета Цукубы и Токийского университета разработали космологическую модель, которая точно отражает роль нейтрино в эволюции Вселенной.
В результате выяснилось, что в областях, где много нейтрино, обычно присутствуют массивные скопления галактик. Еще один важный вывод: нейтрино подавляет кластеризацию темной материи и галактик, а также изменяет температуру в зависимости от собственной массы.
Также стало известно, что Borexino, огромный подземный детектор частиц в Италии, уловил невиданный ранее тип нейтрино, исходящий от Солнца. Эти нейтрино подтверждают гипотезу 90-летней давности и дополняют наше представление о циклах синтеза Солнца и других звезд. В 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые нейтрино CNO. И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.
Реакция CNO выделяет лишь крошечную часть от общего количества солнечной энергии, но у более массивных звезд она считается основной движущей силой термоядерного синтеза. Экспериментальное обнаружение нейтрино CNO означает, что ученые наконец получили связь между последними частями головоломки и могут расшифровать весь цикл солнечного термоядерного синтеза.
Подтверждение того, что CNO осуществляется в процессе термоядерной активности нашей звезды, где подобные реакции занимают не более 1%, укрепляет нашу уверенность в том, что мы точно понимаем, как работают звезды.
Франк Калаприс, главный исследователь Borexinо
Детекторы нейтрино предназначены для отслеживания тех редких случаев, когда эти «призрачные частицы» случайно сталкиваются с другими атомами. Обычно в таких устройствах используются огромные объемы детекторной жидкости или газа, которые испускают вспышку света при «ударе» нейтрино. Подобные эксперименты обычно проводятся внутри камеры глубоко под землей, вдали от помех и воздействия других космических лучей.
Команда потратила годы, регулируя температуру инструмента, чтобы замедлить движение жидкости внутри детектора, и сосредоточилась на сигналах, исходящих из центральной области контейнера. В феврале 2020 года команда наконец-то уловила искомый сигнал и потратила почти год на его расшифровку и на то, чтобы удостовериться в отсутствии ошибок.
Эти данные могут не только улучшить наше понимание цикла слияния звезд, но и помочь ученым выяснить, насколько «металлическими» являются Солнце и другие звезды.
Нейтрино: крошечная частица, покорившая Вселенную.
Сейчас мы стоим на пороге новой эпохи в космологии – эпохи нейтрино. За открытия в сфере взаимодействия этих частиц присуждают Нобелевскую премию, а область знаний о них даже планируется выделить в отдельный раздел науки о небесных телах – нейтринную астрофизику. Но что же это, в конце концов, такое, и чем так революционны исследования этих частиц?
Ситуацию спас молодой швейцарский физик-теоретик Вольфганг Паули, который, к слову, приходился учеником Нильсу Бору. Рассерженный на своего учителя и его коллег, так легко сдающих позиции перед вызовами науки, он осмелился постулировать наличие в таких реакциях «неуловимой» частицы, которая, по его словам, должна была уносить часть энергии с собой и уравновешивать соотношения импульсов и энергий частиц до и после взаимодействия. Таким образом молодой ученый лишь пытался отвести гениальные умы от мысли про отказ от законов физики – на деле, его догадки на тот момент ничем не подкреплялись. Каково же было удивление Паули, когда через 23 года его предположения таки нашли свое экспериментальное подтверждение в лаборатории итальянского физика-ядерщика Энрико Ферми! «Пойманную» частицу окрестили нейтрино, в переводе – нейтрончик, «нейтральненький». (В. Паули, выдвигая в 1930 г. свою гипотезу, предлагал называть эту частицу нейтроном, т. к. она электрически нейтральна, но этим термином в 1932 г. уже была названа частица, входящая в состав ядра атома, открытая Джеймсом Чедвиком.)
“I have done a terrible thing, I have postulated a particle that cannot be detected”
Тут, пожалуй, следует сделать паузу и разъяснить, как именно «срабатывает» нейтрино в процессах бета-распада и не только, и какие уникальные физические свойства делают эту частицу по-настоящему «призрачной».
Согласно Стандартной модели (теоретическая конструкция в физике, описывающая все элементарные частицы) не все элементарные частицы являются фундаментальными – то есть такими, что составляют первоначальное звено в построении атома молекулы вещества. Так, если взять нуклоны – протон и нейтрон – то они состоят из кварков, которые, в свою очередь, поделить на меньшие составляющие уже невозможно. И таких разновидностей бесструктурных или «точечных» частиц три: помимо упомянутых кварков к ним также относятся лептоны и калибровочные бозоны (хотя последние, скорее, выступают лишь посредниками при взаимодействии предыдущих двух видов). Основная разница между упомянутыми частицами состоит в том, в каких видах фундаментальных взаимодействий (всего существует четыре вида фундаментальных взаимодействий: гравитационное, электромагнитное, сильное и слабое; далее – ВФВ) они могут участвовать: лептоны, в отличие от кварков, не вступают в сильное взаимодействие (cильное взаимодействие удерживает ядро атома и не дает нуклонам, составляющим его, разлететься) а калибровочные бозоны делятся на подвиды, каждый из которых является «переносчиком» конкретного ВФВ. Так вот к чему мы ведем: нейтрино относится к классу лептонов, но немного отличается от своих собратьев. Дело в том, что все его «лептонные родственники», наиболее известным из которых для нас является электрон, обладают электрическим зарядом, который позволяет им вступать в электромагнитное взаимодействие. Нейтрино же электрически нейтрально, а, следовательно, из четырех ВФВ для него остаются лишь гравитационное и слабое; но основным и единственным, в котором его можно заметить, является именно слабое взаимодействие.
Таким образом, единственный способ обнаружить нейтрино – это «поймать» его в момент взаимодействия с другой частицей, когда и происходит такое превращение. Но все не так просто, как кажется. Помимо всего прочего, нейтрино практически не контактирует с материей. Эти частицы беспрепятственно пронзают насквозь Солнце, нашу планету, нас! В этом «неуловимой» частице помогает и ее чрезвычайно маленькая масса: приближаясь к массивным телам, ее скорость ни на йоту не уменьшается, и она преодолевает гигантские небесные объекты легче, чем луч света преодолевает стекло. Оглянитесь вокруг: все, что вас окружает сейчас, в эту секунду пропускает через себя сотни триллионов нейтрино, и вы в том числе. Но узнать об этом вы сможете только лишь прочитав подобную статью: почувствовать нейтринные потоки невозможно. Это то, что называется интенсивностью взаимодействия: чем больше длина свободного пробега частицы (то есть расстояния, которое частица может преодолеть без смещений, столкновений и т.д.), тем слабее ее взаимодействие с веществом. У нейтрино это расстояние измеряется в астрономических единицах (среднее расстояние от Земли до Солнца, принятое за единицу измерения).
А это значит, что, чтобы поймать частицу-призрак, иногда нужно ждать невероятно долго, пока одна из триллиарда их не удосужится задеть один из атомов какой-нибудь молекулы. Поэтому астрофизики идут на все, чтобы не только не упустить этот шанс, но и увеличить вероятность его наступления. Так, чтобы отсеять другие фоновые процессы и не перепутать, к примеру, частицу из космического луча с нейтрино, установки по регистрации последних размещают глубоко под землей (японский детектор Super-Kamiokande – 1 км от поверхности; канадский детектор SNO –– 2 км) или и того лучше – в толщи льда Антарктиды (детектор Ice Cube). Все эти детекторы работают по принципу фиксирования сверхчувствительными фотоумножителями момент взаимодействия нейтрино с частицами атома молекулы воды, когда в результате образуется сверхбыстрая заряженная частица, провоцирующая в дальнейшем черенковское излучение (правильнее даже будет – излучение Вавилова-Черенкова: свечение в прозрачной среде, вызванное заряженной частицей, которая движется со скоростью, превышающей скорость света в этой среде).
Но вы спросите: а для чего это все? Ведь экспериментально наличие этой частицы уже было доказано Ферми, да и ее роль в процессах ядерного распада тоже известна. Для чего же все эти тысячи фотоумножителей, десятки тысяч тонн воды и километры выкопанной земли (и даже льда)? А дело в том, что, как очень точно некогда высказался советский физик-теоретик М.Марков:
«Современнику трудно гадать, какое истинное место займет нейтрино в физике будущего. Но свойства этой частицы столь элементарны и своеобразны, что естественно думать, что природа создала нейтрино с какими-то глубокими, пока для нас не всегда ясными «целями»»
Сказана эта фраза была еще в конце ХХ ст., сейчас же мы знакомы с нейтрино гораздо ближе, и уже можем кое-что констатировать.
Вспомните только последнюю Нобелевскую премию по физике – она была вручена за нейтринные осцилляции. Этим страшным словосочетанием называется, по сути, превращение одного вида нейтрино в другой. Помните, мы говорили о лептонах? Так вот кроме электрона к ним также относятся мюон и тау-лептон (не заморачивайтесь с названиями: они отличаются лишь массой и реакциями, в которых задействованы). Каждому из этих разновидностей лептонов соответствует отдельный вид нейтрино: электронный, мюонный и тау-нейтрино (существует также гипотеза о существовании четвертого вида – стерильного нейтрино, который вообще не взаимодействует с веществом). Отличаются они, соответственно, тем, какую частицу порождают в результате взаимодействия с атомом. Вот в приведенном выше примере с реакцией взаимодействия нейтрино с нейтроном в результате испустился электрон – следовательно, это был след электронного нейтрино. При этом лауретами было обнаружено, что виды нейтрино взаимодействуют и друг с другом, имея возможность превращаться в «своего товарища». То есть электронное нейтрино становится мюонным, а то, в свою очередь, может обернуться на тау-нейтрино. Это многое объясняет, так как до этого все нейтринные детекторы регистрировали только 1/3 от предполагаемого количества частиц. Как выяснилось, проблема заключалась в том, что отлавливали они лишь электронные нейтрино, не зная, что 2/3 их на пути из космоса до Земли изменяют свою «специализацию».
Но почему же это открытие настолько важно, что заслуживает Нобелевской премии? Да потому, что долгое время нейтрино считалось безмассовой частицей, а открытие процессов осцилляции является беспрекословным доказательством обратного: виды могут взаимопревращаться только если они имеют массу, причем такую, что электронное нейтрино будет легче, чем последнее в цепочке превращений – тау-нейтрино. Доказательство же существования у нейтрино массы открывает перед нами целые горизонты в исследовании роли этой частицы во Вселенной.
И вот почему. Нейтрино, несмотря на всю непримечательность своих физических характеристик, является самой распространенной частицей во Вселенной. Их настолько много, что на все остальное «не нейтринное» вещество приходится всего около 3-10% Вселенной! То есть, как выражаются многие астрофизики, мы, считайте, живем в нейтринной Вселенной! Однако будь эти частицы безмассовыми, подобного рода информация не принесла бы нам много пользы – разве что для общего развития. Но так как мы уже убедились в обратном, мы можем даже утверждать, что именно сила тяготения нейтрино определяет процесс ускоренного расширения Вселенной – ведь доминируя в количестве и, как следствие, в массе, нейтрино преобладает и в гравитационном действии. Вполне взможно, что именно охлаждение нейтринных сгустков и «разбрасывание» их по космическому пространству может «раздувать» нашу Вселенную. Энергии для этого им вполне хватает, ведь они забирают ее у самих звезд.
По данным ученых Вселенная прекратит процесс расширения, как только достигнет критической плотности. Ранее считалось, что до нее еще довольно далеко (примерно 100 раз по возрасту современной Вселенной), но учитывая нововыявленные обстоятельства – наличие массы у частиц, плотность которых во Вселенной в 30 раз больше плотности другого вещества, – этот момент гораздо ближе, чем нам кажется. В этом случает сила тяготения нейтрино уже будет служить «тормозом» в расширении.
Также, это открытие проливает свет и на многие процессы, происходящие в период Большого Взрыва. Долгое время было неясно, каким же именно образом распределялась материя, составляющая теперь все небесные тела. Вначале она представляла собой однородное раскаленное вещество – плазму. Но что заставило ее так «раскучкуваться» в местах, где в дальнейшем были образованы галактики? И ответ снова – нейтрино. Дело в том, что уже по истечению 1 секунды после Большого Взрыва плазма перестала быть для этих частиц препятствием – они вышли за ее пределы, перестав участвовать во внутреплазменных реакциях. Тогда эти частицы, полные энергии, двигались со скоростью света и, взаимопревращаясь, с легкостью влетали и вылетали из «нейтринных облаков». Но со временем (приблизительно 300 лет) нейтрино растратили свою энергию, и их скорость уже не позволяла им так просто покидать «нейтринные сгустки». Так образовались плотнейшие скопления нейтрино. К этому времени плазма уже приостыла и стала менее плотной. Тут и сработала сила тяготения скоплений нейтрино, которая и «расшматовала» однородное вещество. Таким образом скопления вещества распределились по «нейтринным облакам», в дальнейшем превратясь в целые системы из небесных тел. Так в космическом пространстве появились галактики, размещенные в «нейтринных ячейках».
Все это делает так званую «частицу-фантом» невероятно интересной и важной для изучения. Если нам таки удастся с ней «подружиться», мы сможем намного ближе познакомиться с космосом и процессами, протекающими в его глубинах. Ведь в отличие от электромагнитных волн, излучений и т.п. нейтрино поступают к нам из самого центра событий – сердцевины звезд, например, таких, как Солнце, где участвуют в термоядерных реакциях. Беспрепятственно преодолевая огромнейшие дистанции длинной в световые года, они могут доставлять нам ценную информацию о всех этих процессах из самых дальних закоулков космоса.
Вот такие они, эти нейтрино. Настолько же интересные, насколько и полезные.
Не только детекторы. Экскурс в прикладную физику нейтрино
Фундаментальная наука иногда кажется настолько оторванной от повседневной реальности, что хочется вдохновляться, как минимум, масштабностью ее проблем или зрелищностью экспериментов и установок. Типичным примером такой научной дисциплины, которая ассоциируется с абсолютной фундаментальностью и при этом грандиозностью, является изучение нейтрино.
Немного истории
Нейтрино — это совокупное название группы легчайших элементарных частиц, относящихся к фермионам. Существование нейтрино было предсказано Вольфгангом Паули в 1930 году, а экспериментально подтверждено в 1956 году Клайдом Коуэном и Фредериком Рейнесом. При этом Паули лишь неформально, в виде чистой гипотезы, предположил, что «имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть «нейтронами» и которые обладают спином ½. Масса «нейтрона» по порядку величины должна быть сравнимой с массой электрона и во всяком случае не более 0,01 массы протона». Таким образом он пытался объяснить наблюдаемую природу бета-распада. Он назвал такую неоткрытую частицу «нейтроном». Только через два года, в 1932, Джеймс Чедвик открыл в атоме крупную элементарную частицу, сравнимую по массе с протоном, и назвал ее «нейтрон», а неуловимый фермион Паули впоследствии удостоился названия «нейтрино» (нейтрончик) с легкой руки Энрико Ферми.
С тех самых пор нейтрино окружены ореолом загадочности в силу своих поразительных свойств. Они всерьез и надолго обосновались в научной фантастике – так, Кельвин, главный герой «Соляриса», предполагает, что именно из нейтрино разумный океан формировал своих фантомов, в том числе, фантом Хари, возлюбленной Кельвина. Вкратце напомню основные уникальные и парадоксальные аспекты нейтрино:
Долгое время продолжалась дискуссия о том, обладают ли нейтрино массой. При наличии массы у этих частиц они не вписываются в Стандартную модель физики частиц. Соответственно, это означает, что физика не ограничивается Стандартной Моделью, а за пределами Стандартной Модели существует еще и Новая Физика, изучение которой начнется с нейтрино. Сегодня известно, что нейтрино имеют ненулевую массу, примерно в шесть миллионов раз меньше, чем у электрона.
Нейтрино практически не взаимодействуют с веществом – именно поэтому Паули и допускал, что они никогда не будут открыты. Поэтому детекторы нейтрино, которые иногда называют «нейтринными обсерваториями» устанавливаются глубоко в толще воды, льда, горных пород. Такая толща служит уловителем практически для всех прочих элементарных частиц, поэтому высока вероятность зафиксировать в детекторе именно нейтрино, как солнечные, так и астрофизические, возникающие, например, при взрывах сверхновых.
Как и у всех частиц, у нейтрино существует своя античастица — антинейтрино. Отличия свойств нейтрино и антинейтрино помогают пролить свет на отличия вещества и антивещества в целом и, возможно, позволят выяснить, почему во Вселенной существует колоссальная асимметрия между количеством вещества и антивещества, куда подевалось почти все антивещество – ведь, теоретически, после Большого Взрыва они должны были образоваться в равных количествах.
С этими и другими темами мне довелось познакомиться подробно и достаточно давно. В 2014-2015 году я работал переводчиком в издательстве «Альпина Нон-Фикшн», и в этот период, в первые несколько месяцев 2015 года, перевел книгу Рэя Джаявардханы «Охотники за нейтрино». На тот момент мне казалось, что эта тема слишком академична и сложна для широкой читательской аудитории, но книга оказалась настолько интересной, а я так надолго увлекся этой темой, «когда она еще не была мейнстримом», что возвращаюсь к ней до сих пор. Разброс рассматриваемых тем, связанных с нейтрино, впрочем, меняется слабо. Пишут о новых детекторах, все более точных измерениях массы и скорости нейтрино, о космологической ценности этих исследований. Не буду здесь углубляться в эти аспекты, поскольку они хорошо и подробно рассмотрены на русском языке (и при этом богато иллюстрированы). Но позволю себе привести список статей с Хабра, которые вышли уже после книги Джаявардханы и кажутся мне наиболее интересными:
BAIKAL-GVD. Охотники за нейтрино (2.02.2020). Пост автора @DNLP о кластере глубоководных детекторов нейтрино, устанавливаемых в озере Байкал. Отличный материал с большим количеством видео и техническими деталями. На самом деле, идея использовать Байкал в качестве естественного водного резервуара гениальна, а географическое расположение детектора позволяет в большом количестве отлавливать нейтрино, прилетающие к нам со стороны Южного полюса. Аналогичный, совсем свежий материал недавно вышел на сайте «Медузы».
«Вещество и антивещество: что это такое, в чем разница и при чем тут нейтрино» (24.09.2019). Автор – @Bars21. Подробный разбор парадокса #3 из вышеприведенного списка.
«Поймай меня, если сможешь: радиоволны, каскад частиц и лед для поимки нейтрино» (11.03.2020) Пост автора @Dmytro_Kikot, дающий представление о подледном лове нейтрино.
Итак, завершая такое пространное вступление, я перейду к сути этой статьи. При всей важности нейтрино в качестве диагностического инструмента в теоретической физике, ядерной физике, космологии и астрономии, для этих неуловимых частиц уверенно просматриваются возможности практического применения. Именно о них пойдет речь в оставшейся, наиболее интересной части статьи.
Нейтрино и телекоммуникация
Идея об использовании нейтрино в качестве носителя информации привлекательна в силу того, что нейтрино беспрепятственно проникают через любой материал. Таким образом, они могли бы служить надежным носителем информации в таких средах, где распространение электромагнитных волн затруднено или невозможно.
В 2010 году было высказано предположение, что нейтрино могут применяться для однонаправленной связи с субмаринами, постоянно находящимися в подводном положении. Пучок нейтрино можно было бы направить в расположенный в условленной точке океана детектор. При попадании нейтрино в такой детектор рождались бы мюоны, испускающие излучение Черенкова, а подводная лодка могла бы считывать переданную информацию при помощи детекторов, проходя мимо при патрулировании зоны. В источнике такая точка именуется «почтовый ящик»; указано, что в силу почти полного отсутствия помех на такой глубине, «ящиков» в заданной зоне могло бы быть несколько, а скорость передачи информации в «мюонное хранилище» (muon storage) могла бы составлять более 100 бит/с.
Предыдущий пример подсказывает, что наибольшую проблему в данном случае составляет вычленение сигнала из шума, то есть, необходимость создания детектора, который различал бы информативную последовательность нейтрино на фоне нейтрино естественного происхождения. Кроме того, в примере с подводными лодками не удается уйти от пропускания пучков нейтрино через толщу воды, которой в данном случае служит сам океан. Но сохранились сведения о работах, предполагающих нейтринную коммуникацию без использования водного резервуара. В 2016 году исследовательская лаборатория Pirelli в Милане опубликовала материал о том, что с начала 2000-х ведутся работы по синтезу кристаллов кремния или кварца, используемых в качестве детекторов нейтрино. Кристалл охлаждается почти до абсолютного нуля, и при попадании пучка нейтрино температура этого кристалла немного возрастает, что можно зафиксировать при помощи приборов. Такие детекторы были бы не только гораздо компактнее водных резервуаров, но и обеспечивали бы когерентное рассеяние полученных нейтрино, и их осцилляции затем можно было бы считывать и расшифровывать. Правда, пока ни о каких практических результатах этих исследований не сообщается
Широкую известность получил эксперимент, поставленный в 2012 году в Национальной ускорительной лаборатории им. Энрико Ферми (Фермилабе) в Чикаго – в ходе упоминаемого эксперимента ученым действительно удалось передать в пучке нейтрино информацию, а именно закодировать слово «neutrino». Информация была передана с мощнейшего современного генератора нейтрино NuMI на расстояние более километра и зафиксирована детектором MINERvA. Вот как процесс проиллюстрирован на рис. 1 к упоминаемой научной статье:
Несомненно, перед нами лишь proof-of-concept (доказательство осуществимости), показанное почти 10 лет назад, но развитие нейтринной телекоммуникации ограничено техническими, а не фундаментальными сложностями. Таким образом, подобные технологии вполне могут стать реальностью.
Нейтрино и контроль над использованием ядерных реакторов
Одним из самых распространенных источников нейтрино на Земле являются ядерные реакторы. Предпринимаются попытки устанавливать уловители нейтрино (точнее — антинейтрино) вблизи от ядерного реактора, на расстоянии в пределах 10 метров, для изучения свойств этих частиц. О таком эксперименте подробно рассказано в интервью д.ф.-м.н. Дмитрия Наумова, зам. директора по научной работе Лаборатории ядерных проблем Объединенного института ядерных исследований (ОИЯИ) в Дубне. При этом Наумов отмечает, что по свойствам улавливаемых антинейтрино можно достоверно определить, не используется ли реактор для производства оружейного плутония-239. Любая компания, занимающаяся эксплуатацией ядерного реактора, обязана предоставлять данные о том, сколько плутония получает в ходе работы, и нейтрино позволяют проверить эти данные. Впрочем, существовали гораздо более фантастичные проекты, связанные с нейтринным шпионажем. В 2010 году группа французских физиков во главе с Тьерри Ласьерром опубликовала статью о том, как, регистрируя потоки нейтрино, можно обнаруживать незадекларированные ядерные реакторы. Более того, авторы предлагали устанавливать нейтринные детекторы на кораблях и следить за развитием ядерных программ Ирана и Северной Кореи, заходя в прибрежные воды этих государств.
Нейтрино и геологические изыскания
Эта прикладная возможность отчасти смыкается с предыдущей — предполагается, что детекторы нейтрино полезны при поиске месторождений урана и тория. Но гораздо более интересные возможности открываются при измерении свойств солнечных нейтрино, которые, как было указано выше, свободно пронизывают Землю насквозь. Изучая изменение осцилляций нейтрино при их прохождении через толщу пород можно было бы проводить «томографию» литосферы, находить в ней полости, анализировать плотность веществ, заполняющих эти полости. Такая технология открыла бы путь к обнаружению глубоких месторождений нефти. В частности, подобные идеи исследованы в статье перуанских ученых, опубликованной в 2015 году. Предполагается, что для такой цели могли бы использоваться не только солнечные нейтрино, но и направленные пучки нейтрино, сгенерированные искусственно. В таком случае геологоразведочные работы можно было бы существенно ускорить, затрачивая на поиск месторождений не годы, а месяцы. Впрочем, на момент публикации статьи еще не существовало столь мощных генераторов нейтрино, которые позволили бы воплотить эту технологию.
Впрочем, спектрометрия литосферы с использованием нейтрино вновь возвращает нас от прикладных задач, решаемых при помощи нейтрино, к фундаментальным. При наличии достаточно точных детекторов нейтрино можно было бы подробно изучить не только состав земной коры и распределение химических элементов в ней, но и продвинуться в исследовании свойств и состава земного ядра. Нейтринное зондирование позволило бы проверить (и окончательно опровергнуть?) даже весьма сомнительную теорию о существовании естественных ядерных реакторов в недрах планеты, но в эту тему я точно углубляться не буду.
Заключение
Надеюсь, у меня получился по-настоящему приземленный рассказ об исследовании нейтрино в XXI веке, и читатели убедились, что эти удивительные частицы важны отнюдь не только в космологии и теоретической физике. Если вам известны какие-то иные попытки практического применения нейтрино и технологии на их основе – давайте поговорим об этом в комментариях.