Что такое нейтронные боеприпасы
Нейтронная бомба: история и принцип работы
От этой бомбы невозможно спрятаться: не спасет ни бетонный бункер, ни бомбоубежище, никакие средства защиты. При этом после взрыва нейтронной бомбы здания, предприятия и прочие объекты инфраструктуры останутся нетронутыми и попадут прямиком в лапы американской военщины. Рассказов о новом страшном оружии было так много, что в СССР про него начали сочинять анекдоты.
Принцип действия бомбы основан на свойстве быстрых нейтронов гораздо свободнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации “обычной” ядерной бомбы. Именно это свойство нейтронов и привлекло внимание военных.
Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем радиус поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции до 1350 метров от эпицентра оно остается опасным для жизни человека.
Использовать их в качестве средства поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.
История создания нейтронной бомбы
К ядерному оружию третьего поколения относятся боеприпасы, после взрыва которых энергия направляется на усиление того или иного фактора поражения. Именно к таким боеприпасам относятся нейтронные бомбы.
Ливерморская национальная лаборатория продолжала теоретическую работу по теме ERW в течение нескольких лет. В 1962 году состоялись первые испытания опытного боеприпаса. Позже появился проект заряда, пригодного для реального применения. С 1964 года велось проектирование боевых частей для баллистической ракеты MGM-52 Lance. Годом позже стартовала разработка боеголовки для противоракеты комплекса Sprint. Также предлагались иные проекты нейтронных боезарядов разного рода различного назначения. К середине семидесятых годов США запустили серийное производство нескольких новых боевых блоков типа ERW, предназначенных для ракет ряда типов.
Поток быстрых нейтронов в сравнении с поражающими факторами «обычного» ядерного взрыва показывает лучшую проникающую способность и может поражать живую силу противника, находящуюся под защитой построек, брони и т.д. Впрочем, нейтроны сравнительно быстро поглощаются и рассеиваются атмосферой, что ограничивает реальный радиус действия бомбы. Так, нейтронный заряд мощностью 1 кт при воздушном подрыве разрушает постройки и моментально убивает живую силу в радиусе до 400-500 м. На больших расстояниях влияние ударной волны и потока нейтронов сокращается, из-за чего уже на расстоянии 2-2,5 км влияние частиц на человека минимально и не представляет фатальной угрозы.
Таким образом, вопреки устоявшимся стереотипам, поток нейтронов оказывается не заменой прочим поражающим факторам, а дополнением к ним. При использовании нейтронного заряда ударная волна наносит окружающим объектам ощутимый ущерб, и ни о каком сохранении имущества речи не идет. Одновременно с этим специфика рассеивания и поглощения нейтронов ограничивает целесообразную мощность боеприпаса. Тем не менее, и такому оружию с характерными ограничениями нашли применение.
Нейтронные заряды также нашли применение в сфере противоракетной обороны. В свое время несовершенство систем управления и наведения не позволяло рассчитывать на получение высокой точности поражения баллистической цели. В связи с этим противоракеты предлагалось оснащать ядерными боевыми частями, способными обеспечить относительно большой радиус поражения. Однако одним из основных поражающих факторов атомного взрыва является взрывная волна, не образующаяся в безвоздушном пространстве.
В сфере бронетехники также осуществлялся поиск новых сортов брони, исключающей или сокращающей образование наведенной радиоактивности. Для этого из состава металла удалялись некоторые элементы, способные взаимодействовать с быстрыми нейтронами.
Даже без особой доработки хорошей защитой от потока нейтронов является стационарное сооружение из бетона. 500 мм такого материала ослабляют поток нейтронов до 100 раз. Также достаточно эффективной защитой может быть влажный грунт и другие материалы, применение которых не составляет особой сложности.
По разным данным, не остались без защиты и боевые блоки межконтинентальных баллистических ракет, рискующие столкнуться с нейтронным боезарядом противоракеты. В этой сфере используются решения, аналогичные применяемым на сухопутной технике. Вместе с другой защитой, обеспечивающей стойкость к тепловым и механическим нагрузкам, используются средства поглощения нейтронов.
Китай в прошлом декларировал отсутствие необходимости в нейтронном оружии, но при этом указывал на наличие технологий для его скорого создания. Есть ли у НОАК подобные системы в настоящее время – неизвестно. Схожим образом обстоит дело и с израильской программой. Имеются сведения о создании нейтронной бомбы в Израиле, но это государство не раскрывает информацию о своих стратегических вооружениях.
Есть основания полагать, что в ближайшем будущем ученые ведущих стран вновь вернутся к тематике нейтронного вооружения. При этом теперь речь может идти не о бомбах или боевых частях для ракет, но о т.н. нейтронных пушках. Так, в марте прошлого года заместитель министра обороны США по перспективным разработкам Майк Гриффин рассказал о возможных путях развития перспективных вооружений. По его мнению, большое будущее имеют т.н. вооружения на основе направленной энергии, в том числе источники пучков нейтральных частиц. Впрочем, замминистра не раскрыл какие-либо данные о старте работ или о реальном интересе со стороны военных.
От деления к синтезу: как устроена нейтронная бомба
От деления к синтезу: как устроена нейтронная бомба
Деление плюс синтез
Топливом для синтеза служат тяжелые изотопы водорода. При слиянии ядер дейтерия и трития образуется гелий-4 и нейтрон, энергетический выход при этом — 17,6 МэВ, что в несколько раз больше, чем при реакции деления (в пересчете на единицу массы реагентов). В таком топливе при нормальных условиях не может возникнуть цепная реакция, так что количество его не ограничено, а значит, у энерговыделения термоядерного заряда нет верхнего предела.
Дейтерий и тритий
Изотопы водорода — дейтерий (D) и тритий (T) — при нормальных условиях представляют собой газы, достаточные количества которых сложно «собрать» в устройстве разумных размеров. Поэтому в зарядах используют их соединения — твердые гидриды лития-6. По мере того как синтез самых «легкозажигаемых» изотопов разогревает топливо, в нем начинают протекать и другие реакции — с участием как содержавшихся в смеси, так и образовавшихся ядер: слияние двух ядер дейтерия с образованием трития и протона, гелия-3 и нейтрона, слияние двух ядер трития с образованием гелия-4 и двух нейтронов, слияние гелия-3 и дейтерия с образованием гелия-4 и протона, а также слияние лития-6 и нейтрона с образованием гелия-4 и трития, так что и литий оказывается не совсем уж «балластом».
. Плюс деление
Виды ядерных взрывов: 1. Космический. Применяется на высоте более 65 км для поражения космических целей. 2. Наземный. Производится на поверхности земли или на такой высоте, когда светящаяся область касается грунта. Применяется для разрушения наземных целей. 3. Подземный. Производится ниже уровня земли. Характерен сильным заражением местности. 4. Высотный. Применяется на высоте от 10 до 65 км для поражения воздушных целей. Для наземных объектов опасен только воздействием на электро- и радиоприборы. 5. Воздушный. Производится на высотах от нескольких сотен метров до нескольких километров. Радиоактивное заражение местности практически отсутствует. 6. Надводный. Производится на поверхности воды или на такой высоте, когда световая область касается воды. Характерен ослаблением действия светового излучения и проникающей радиации. 7. Подводный. Производится под водой. Световое излучение и проникающая радиация практически отсутствует. Вызывает сильное радиоактивное заражение воды.
Факторы взрыва
Смерть электронике
Хотя прямое гамма-облучение существенного боевого эффекта не обеспечивает, он возможен за счет вторичных реакций. В результате рассеяния гамма-квантов на электронах атомов воздуха (Комптон-эффект) возникают электроны отдачи. От точки взрыва расходится ток электронов: их скорость существенно выше, чем скорость ионов. Траектории заряженных частиц в магнитном поле Земли закручиваются (а значит, двигаются с ускорением), формируя при этом электромагнитный импульс ядерного взрыва (ЭМИ ЯВ).
В постоянной готовности
Бесчеловечное оружие
Абсолютно чистый заряд
В стремлении получить такой термоядерный заряд попытались отказаться от ядерного «запала», заменив деление сверхскоростной кумуляцией: головной элемент струи, состоявшей из термоядерного топлива, разогнали до сотни километров в секунду (в момент столкновения температура и плотность значительно возрастают). Но на фоне взрыва килограммового кумулятивного заряда «термоядерная» прибавка оказалась ничтожной, и эффект зарегистрировали лишь косвенно — по выходу нейтронов. Отчет об этих проведенных в США экспериментах был опубликован в 1961 году в сборнике «Атом и оружие», что при тогдашней параноидальной секретности само по себе свидетельствовало о неудаче.
В семидесятых, в «неядерной» Польше, Сильвестр Калиский теоретически рассмотрел сжатие термоядерного топлива сферической имплозией и получил весьма благоприятные оценки. Но экспериментальная проверка показала, что, хотя выход нейтронов, по сравнению со «струйным вариантом», возрос на много порядков, нестабильности фронта не позволяют достичь нужной температуры в точке схождения волны и реагируют только те частицы топлива, скорость которых, из-за статистического разброса, значительно превышает среднее значение. Так что совсем «чистый» заряд создать не удалось.
Нейтронные перехватчики
Автор статьи с 1984 по 1997 год возглавлял лабораторию специальных боеприпасов ЦНИИ химии и механики. В этом году в издательстве «Моркнига» вышла его книга «Огонь!», посвященная таким боеприпасам.Автор: А.Прищепенко
Источник: Популярная механика
Опубликовано 14 февраля 2020 | Комментариев 0
От деления к синтезу: как устроена нейтронная бомба
Деление плюс синтез
Топливом для синтеза служат тяжелые изотопы водорода. При слиянии ядер дейтерия и трития образуется гелий-4 и нейтрон, энергетический выход при этом — 17,6 МэВ, что в несколько раз больше, чем при реакции деления (в пересчете на единицу массы реагентов). В таком топливе при нормальных условиях не может возникнуть цепная реакция, так что количество его не ограничено, а значит, у энерговыделения термоядерного заряда нет верхнего предела.
Изотопы водорода — дейтерий (D) и тритий (T) — при нормальных условиях представляют собой газы, достаточные количества которых сложно «собрать» в устройстве разумных размеров. Поэтому в зарядах используют их соединения — твердые гидриды лития-6. По мере того как синтез самых «легкозажигаемых» изотопов разогревает топливо, в нем начинают протекать и другие реакции — с участием как содержавшихся в смеси, так и образовавшихся ядер: слияние двух ядер дейтерия с образованием трития и протона, гелия-3 и нейтрона, слияние двух ядер трития с образованием гелия-4 и двух нейтронов, слияние гелия-3 и дейтерия с образованием гелия-4 и протона, а также слияние лития-6 и нейтрона с образованием гелия-4 и трития, так что и литий оказывается не совсем уж «балластом».
. Плюс деление
Однако у трехфазных боеприпасов есть очень неприятная особенность — повышенный выход осколков деления. Конечно, двухфазные боеприпасы тоже загрязняют местность нейтронами, вызывающими практически во всех элементах ядерные реакции, не прекращающиеся и спустя многие годы после взрыва (так называемая наведенная радиоактивность), осколками деления и остатками «запалов» (в процессе взрыва «расходуется» всего 10−30% плутония, остальное разлетается по окрестностям), но трехфазные превосходят их в этом отношении. Превосходят настолько, что некоторые боеприпасы даже выпускались в двух вариантах: «грязных» (трехфазных) и менее мощных «чистых» (двухфазных) для применения на территории, где предполагались действия своих войск. Например, американская авиабомба В53 выпускалась в двух идентичных по внешнему виду вариантах: «грязном» В53Y1 (9 Мт) и «чистом» варианте В53Y2 (4,5 Мт).
Факторы взрыва
Со значительным запаздыванием после взрыва выделяются энергия бета-излучения продуктов деления (7 МэВ) и энергия гамма-излучения продуктов деления (6 МэВ). Эти факторы отвечают за радиоактивное заражение местности — явление, весьма опасное для обеих сторон.
Прямое действие гамма-излучения уступает по боевому эффекту и ударной волне, и свету. Лишь огромные дозы гамма-излучения (десятки миллионов рад) могут причинить неприятности электронике. При таких дозах плавятся металлы, а ударная волна с куда меньшей плотностью энергии уничтожит цель без подобных излишеств. Если плотность энергии гамма-излучения меньше, оно становится безвредным для стальной техники, а ударная волна и тут может сказать свое слово.
С «живой силой» тоже не все очевидно: во-первых, гамма-излучение существенно ослабляется, например, броней, а во-вторых — особенности радиационных поражений таковы, что даже получившие абсолютно смертельную дозу в тысячи бэр (биологический эквивалент рентгена, доза любого вида излучения, производящая такое же действие в биологическом объекте, как 1 рентген) экипажи танков оставались бы боеспособными в течение нескольких часов. За это время подвижные и сравнительно малоуязвимые машины успели бы сделать многое.
Смерть электронике
Хотя прямое гамма-облучение существенного боевого эффекта не обеспечивает, он возможен за счет вторичных реакций. В результате рассеяния гамма-квантов на электронах атомов воздуха (Комптон-эффект) возникают электроны отдачи. От точки взрыва расходится ток электронов: их скорость существенно выше, чем скорость ионов. Траектории заряженных частиц в магнитном поле Земли закручиваются (а значит, двигаются с ускорением), формируя при этом электромагнитный импульс ядерного взрыва (ЭМИ ЯВ).
В энергию ЭМИ ЯВ переходит лишь 0,6% энергии гамма-квантов, а ведь их доля в балансе энергии взрыва сама по себе мала. Вклад вносит и дипольное излучение, возникающее за счет изменения плотности воздуха с высотой, и возмущение магнитного поля Земли проводящим плазмоидом. В результате образуется непрерывный частотный спектр ЭМИ ЯВ — совокупность колебаний огромного числа частот. Существенен энергетический вклад излучения с частотами от десятков килогерц до сотен мегагерц. Эти волны ведут себя по-разному: мегагерцевые и более высокочастотные затухают в атмосфере, а низкочастотные — «ныряют» в естественный волновод, образованный поверхностью Земли и ионосферой, и могут не раз обогнуть земной шар. Правда, «долгожители» эти напоминают о своем существовании лишь хрипением в приемниках, похожим на «голоса» грозовых разрядов, а вот их более высокочастотные родственники заявляют о себе мощными и опасными для аппаратуры «щелчками».
Казалось бы, такие излучения вообще должны быть безразличны военной электронике — ведь любое устройство с наибольшей эффективностью принимает волны того диапазона, в каком их излучает. А принимает и излучает военная электроника в гораздо более высокочастотных, чем ЭМИ ЯВ, диапазонах. Но ЭМИ ЯВ действует на электронику не через антенну. Если ракету длиной в 10 м «накрывала» длинная волна с не поражающей воображение напряженностью электрического поля в 100 В/см, то на металлическом ракетном корпусе наводилась разность потенциалов в 100 000 В! Мощные импульсные токи через заземляющие связи «затекают» в схемы, да и сами точки заземления на корпусе оказывались под существенно отличающимися потенциалами. Токовые перегрузки опасны для полупроводниковых элементов: для того чтобы «сжечь» высокочастотный диод, достаточно импульса мизерной (в десятимиллионную долю джоуля) энергии. ЭМИ занял почетное место могущественного поражающего фактора: иногда им выводилась из строя аппаратура за тысячи километров от ядерного взрыва — такое было не по силам ни ударной волне, ни световому импульсу.
Бесчеловечное оружие
В стремлении получить такой термоядерный заряд попытались отказаться от ядерного «запала», заменив деление сверхскоростной кумуляцией: головной элемент струи, состоявшей из термоядерного топлива, разогнали до сотни километров в секунду (в момент столкновения температура и плотность значительно возрастают). Но на фоне взрыва килограммового кумулятивного заряда «термоядерная» прибавка оказалась ничтожной, и эффект зарегистрировали лишь косвенно – по выходу нейтронов. Отчет об этих проведенных в США экспериментах был опубликован в 1961 году в сборнике «Атом и оружие», что при тогдашней параноидальной секретности само по себе свидетельствовало о неудаче.
В семидесятых, в «неядерной» Польше, Сильвестр Калиский теоретически рассмотрел сжатие термоядерного топлива сферической имплозией и получил весьма благоприятные оценки. Но экспериментальная проверка показала, что, хотя выход нейтронов, по сравнению со «струйным вариантом», возрос на много порядков, нестабильности фронта не позволяют достичь нужной температуры в точке схождения волны и реагируют только те частицы топлива, скорость которых, из-за статистического разброса, значительно превышает среднее значение. Так что совсем «чистый» заряд создать не удалось.
masterok
Мастерок.жж.рф
Хочу все знать
Конечно, нейтронные бомбы не обладали такими свойствами.
Тактическая ракета «Ланс» служила как основное средство доставки нейтронного боеприпаса на поле боя
Чистое термоядерное оружие
На схеме представлен принцип ударно-волнового излучателя спирального типа.
• Продольное магнитное поле создается между металлическим проводником и окружающим соленоидом, разряжая батарею конденсаторов в соленоид.
• После того как заряд воспламеняется, детонационная волна распространяется в заряде взрывчатого вещества, расположенного внутри центральной металлической трубки (слева направо на рисунке).
• Под воздействием давления детонационной волны трубка деформируется и становится конусом, который контактирует со спирально намотанной катушкой, уменьшая количество неповоротных витков, сжимая магнитное поле и создавая индуктивный ток.
Что мы имеем в итоге?
1. Такая нейтронная мини-бомба эффективно способна поражать живую силу противника и его электронику.
Из сказанного выше можно сделать следующий вывод: вполне можно ожидать появления и распространения боеприпасов, у которых поражающим фактором будет являться нейтронное излучение. А значит, снова необходимо в бронетехнике и другой военной технике предпринять меры по защите экипажей и электронной начинки от нейтронного излучения. Также инженерным войскам необходимо учесть защиту от нейтронного излучения при возведении фортификационных сооружений. Защититься от нейтронного излучения вполне возможно. Эти методы уже отработаны, что позволит довольно быстро дать адекватные меры на «новую – старую» угрозу.