Что такое независимое наследование
независимое наследование
Смотреть что такое «независимое наследование» в других словарях:
независимое наследование — Наследование определенного гена (признака) без влияния иных генетических факторов (др. определенного гена, пола); как правило, говорят о Н.н. генов, входящих в разные группы сцепления. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь… … Справочник технического переводчика
Независимое наследование — * незалежнае наследаванне * independent inheritance наследование определенного гена (признака) без влияния к. л. др. факторов (др. гена, пола). О Н. н., как правило, говорят, когда рассматривают гены, входящие в разные группы сцепления … Генетика. Энциклопедический словарь
Независимое наследование признаков — Закон независимого наследования каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример: при скрещивании растений гороха с желтыми и гладкими семенами… … Википедия
аутосомное наследование — Независимое от пола (не сцепленное с полом) наследование какого либо признака. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика EN autosomal inheritance … Справочник технического переводчика
Аутосомное наследование — * аўтасомнае наследаванне * autosomal inheritance независимое от пола (не сцепленное с полом) наследование к. л. признака … Генетика. Энциклопедический словарь
Генетика животных — раздел генетики (См. Генетика), изучающий Наследственность и Изменчивость преимущественно с. х., а также домашних и диких животных. Основывается на общегенетических принципах и положениях и использует в основном такие методы общей… … Большая советская энциклопедия
independent inheritance — independent inheritance. См. независимое наследование. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
Соединённые Штаты Америки — Соединенные Штаты Америки США, гос во в Сев. Америке. Название включает: геогр. термин штаты (от англ, state государство ), так в ряде стран называют самоуправляющиеся территориальные единицы; определение соединенные, т. е. входящие в федерацию,… … Географическая энциклопедия
Хромосомная теория наследственности — Хромосомная теория наследственности[1] теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду… … Википедия
Преемство в праве — (сукцессия). Приобретенные членами гражданского общества права и обязанности передаются ими друг другу в раз установленном составе. Передача происходит в виде уступки отдельных прав и обязанностей (права собственности, требований по… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Основные генетические понятия. Закономерности наследственности. Генетика человека.
Генетика и селекция
Генетика — наука, изучающая наследственность и изменчивость организмов.
Наследственность — способность организмов передавать из поколения в поколение свои признаки (особенности строения, функций, развития).
Изменчивость — способность организмов приобретать новые признаки. Наследственность и изменчивость — два противоположных, но взаимосвязанных свойства организма.
Наследственность
Основные понятия
Ген и аллели. Единицей наследственной информации является ген.
Ген (с точки зрения генетики) — участок хромосомы, определяющий развитие у организма одного или нескольких признаков.
Аллели — различные состояния одного и того же гена, располагающиеся в определённом локусе (участке) гомологичных хромосом и определяющие развитие одного какого-то признака. Гомологичные хромосомы имеются только в клетках, содержащих диплоидный набор хромосом. Их нет в половых клетках (гаметах) эукариот и у прокариот.
Признак (фен) — некоторое качество или свойство, по которому можно отличить один организм от другого.
Доминирование — явление преобладания у гибрида признака одного из родителей.
Доминантный признак — признак, проявляющийся в первом поколении гибридов.
Рецессивный признак — признак, внешне исчезающий в первом поколении гибридов.
Доминантные и рецессивные признаки у человека
Законы Г. Менделя
Первый закон Менделя. Г. Мендель скрестил растения гороха с жёлтыми семенами и растения гороха с зелёными семенами. И те и другие были чистыми линиями, то есть гомозиготами.
Первый закон Менделя — закон единообразия гибридов первого поколения (закон доминирования): при скрещивании чистых линий у всех гибридов первого поколения проявляется один признак (доминантный).
Второй закон Менделя. После этого Г. Мендель скрестил между собой гибридов первого поколения.
Второй закон Менделя — закон расщепления признаков: гибриды первого поколения при их скрещивании расщепляются в определённом числовом соотношении: особи с рецессивным проявлением признака составляют 1/4 часть от общего числа потомков.
Цитологические основы единообразия первого поколения и расщепления признаков во втором поколении состоят в расхождении гомологичных хромосом и образовании гаплоидных половых клеток в мейозе.
Гипотеза (закон) чистоты гамет гласит: 1) при образовании половых клеток в каждую гамету попадает только один аллель из аллельной пары, то есть гаметы генетически чисты; 2) у гибридного организма гены не гибридизуются (не смешиваются) и находятся в чистом аллельном состоянии.
Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.
Анализ потомства. Анализирующее скрещивание позволяет установить, гомозиготен или гетерозиготен организм по доминантному гену. Для этого скрещивают особь, генотип которой следует определить, с особью, гомозиготной по рецессивному гену. Часто скрещивают одного из родителей с одним из потомков. Такое скрещивание называется возвратным.
В случае гомозиготности доминантной особи расщепления не произойдёт:
В случае гетерозиготности доминантной особи произойдёт расщепление:
Третий закон Менделя. Г. Мендель провёл дигибридное скрещивание растений гороха с жёлтыми и гладкими семенами и растений гороха с зелёными и морщинистыми семенами (и те и другие – чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведёт себя так же, как при моногибридном скрещивании (расщепляется 3:1), то есть независимо от другой пары признаков.
Третий закон Менделя — закон независимого комбинирования (наследования) признаков: расщепление по каждому признаку идёт независимо от других признаков.
Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.
Сцепленное наследование. Нарушение сцепления
Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.
Закономерности сцепленного наследования генов были изучены Т. Морганом и его учениками в начале 20-х гг. XX в. Объектом их исследований являлась плодовая мушка дрозофила (срок её жизни невелик, и за год можно получить несколько десятков поколений, её кариотип составляют всего четыре пары хромосом).
Закон Моргана: гены, локализованные в одной хромосоме, наследуются преимущественно вместе.
Сцепленные гены — гены, лежащие в одной хромосоме.
Группа сцепления — все гены одной хромосомы.
В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления — кроссинговер (перекрёст хромосом) — обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации. Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт — определение последовательности расположения генов в хромосоме и примерного расстояния между ними.
Генетика пола
Аутосомы — хромосомы, одинаковые у обоих полов.
Половые хромосомы (гетерохромосомы) — хромосомы, по которым мужской и женский пол отличаются друг от друга.
В клетке человека содержится 46 хромосом, или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Существует 5 типов хромосомного определения пола.
Типы хромосомного определения пола
Тип | Примеры |
♀ XX, ♂ ХY | Характерен для млекопитающих (в том числе и для человека), червей, ракообразных, большинства насекомых (в том числе для дрозофил), большинства земноводных, некоторых рыб |
♀ ХY, ♂ XX | Характерен для птиц, пресмыкающихся, некоторых земноводных и рыб, некоторых насекомых (чешуекрылые) |
♀ XX, ♂ Х0 | Встречается у некоторых насекомых (прямокрылые); 0 обозначает отсутствие хромосом |
♀ Х0, ♂ XX | Встречается у некоторых насекомых (равнокрылые) |
гапло-диплоидный тип (♀ 2n, ♂ n) | Встречается, например, у пчёл и муравьёв: самцы развиваются из неоплодотворённых гаплоидных яйцеклеток (партеногенез), самки — из оплодотворённых диплоидных. |
Наследование, сцепленное с полом — наследование признаков, гены которых находятся в Х- и Y-хромосомах. В половых хромосомах могут находиться гены, не имеющие отношения к развитию половых признаков.
При сочетании XY большинство генов, находящихся в X-хромосоме, не имеют аллельной пары в Y-хромосоме. Также гены, расположенные в Y-хромосоме, не имеют аллелей в X-хромосоме. Такие организмы называются гемизиготными. В этом случае проявляется рецессивный ген, имеющийся в генотипе в единственном числе. Так X-хромосома может содержать ген, вызывающий гемофилию (пониженную свёртываемость крови). Тогда все мужские особи, получившие эту хромосому, будут страдать этим заболеванием, так как Y-хромосома не содержит доминантного аллеля.
Генетика крови
По системе АВ0 у людей 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена IА, IВ, I0. Два первых кодоминантны по отношению друг к другу, и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии — 4.
I группа | 0 | I 0 I 0 | гомозигота |
II группа | А | I А I А | гомозигота |
I А I 0 | гетерозигота | ||
III группа | В | I В I В | гомозигота |
I В I 0 | гетерозигота | ||
IV группа | АВ | I А I В | гетерозигота |
У разных народов соотношение групп крови в популяции различно.
Распределение групп крови по системе АВ0 у разных народов,%
Народность | 0 (I) | A (II) | B (III) | AB (IV) |
Австралийцы | 54,3 | 40,3 | 3,8 | 1,6 |
Англичане | 43,5 | 44,7 | 8,6 | 3,2 |
Арабы | 44 | 33 | 17,7 | 5,3 |
Венгры | 29,9 | 45,2 | 17 | 7,9 |
Голландцы | 46,3 | 42,1 | 8,5 | 3,1 |
Индийцы | 30,2 | 24,5 | 37,2 | 8,1 |
Китайцы | 45,5 | 22,6 | 25 | 6,9 |
Русские | 32,9 | 35,8 | 23,2 | 8,1 |
Японцы | 31,1 | 36,7 | 22,7 | 9,5 |
Распределение резус-фактора у разных народов,%
Народность | Резус-положительные | Резус-отрицательные |
Австралийские аборигены | 100 | 0 |
Американские индейцы | 90–98 | 2–10 |
Арабы | 72 | 28 |
Баски | 64 | 36 |
Китайцы | 98–100 | 0–2 |
Мексиканцы | 100 | 0 |
Норвежцы | 85 | 15 |
Русские | 86 | 14 |
Эскимосы | 99–100 | 0–1 |
Японцы | 99–100 | 0–1 |
Резус-фактор крови определяет ген R. R + дает информацию о выработке белка (резус-положительный белок), а ген R – не даёт. Первый ген доминирует над вторым. Если Rh + кровь перелить человеку с Rh – кровью, то у него образуются специфические агглютинины, и повторное введение такой крови вызовет агглютинацию. Когда у Rh – женщины развивается плод, унаследовавший у отца положительный резус, может возникнуть резус-конфликт. Первая беременность, как правило, заканчивается благополучно, а повторная — заболеванием ребёнка или мертворождением.
Взаимодействие генов
Генотип — это не просто механический набор генов. Это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки).
Взаимодействовать могут как аллельные гены, так и неаллельные.
Взаимодействие аллельных генов: полное доминирование, неполное доминирование, кодоминирование.
Полное доминирование — явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.
Неполное доминирование — явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.
Кодоминирование (независимое проявление) — явление, когда в формировании признака у гетерозиготного организма участвуют обе аллели. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и B, являются кодоминантными по отношению друг к другу, и оба доминантны по отношению к гену, определяющему группу крови 0.
Взаимодействие неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.
Кооперация — явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет своё собственное фенотипическое проявление, происходит формирование нового признака.
Комплементарность — явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.
Эпистаз — явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).
Полимерия — явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).
В противоположность полимерии наблюдается такое явление, как плейотропия — множественное действие гена, когда один ген отвечает за развитие нескольких признаков.
Хромосомная теория наследственности
Основные положения хромосомной теории наследственности:
Нехромосомное наследование
Согласно хромосомной теории наследственности ведущую роль в наследственности играют ДНК хромосом. Однако ДНК содержатся также в митохондриях, хлоропластах и в цитоплазме. Нехромосомные ДНК называются плазмидами. Клетки не имеют специальных механизмов равномерного распределения плазмид в процессе деления, поэтому одна дочерняя клетка может получить одну генетическую информацию, а вторая — совершенно другую. Наследование генов, содержащихся в плазмидах, не подчиняется менделевским закономерностям наследования, а их роль в формировании генотипа ещё мало изучена.
Что такое независимое наследование
Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.
При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей
При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).
Закон расщепления признаков
Определение
Закон расщепления, или второй закон Менделя : при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.
Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.
Объяснение
Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.
В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).
На схеме показан мейоз клетки с диплоидным набором 2n=4 (две пары гомологичных хромосом). Отцовские и материнские хромосомы обозначены разным цветом.
Закон независимого наследования признаков
Определение
Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.
Объяснение
Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).
Основные положения теории наследственности Менделя
В современной интерпретации эти положения следующие:
Условия выполнения законов Менделя
В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.
Условия выполнения закона расщепления при моногибридном скрещивании
Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:
Что такое независимое наследование
В привычном представлении второй закон Менделя определяет возможные комбинации из двух аллелей одного гена и дает оценку частот таких комбинаций. Напомним, в случае скрещивания двух носителей рецессивной мутации A/a ожидается классическое расщепление генотипов в потомстве:
Такой случай называется моногибридным скрещиванием, поскольку в нем отслеживается судьба одного гена.
Мендель не знал про хромосомы (их открыли через 20 лет после того, как он опубликовал свои законы), но мы-то знаем, что наблюдаемое расщепление возникает оттого, что от каждого из родителей потомству передается одна хромосома из каждой пары. Так что фактически закон Менделя описывает, как наследуются хромосомы от каждого из родителей.
Независимое наследование генов
Каждый организм несет тысячи генов, которые могут содержать мутации и наследуются все одновременно. Понятно, что чем больше признаков, определяемых разными генами, мы хотим отследить, тем больше комбинаций они формируют.
Число возможных генотипов у потомства в таком случае равно числу цветов в приведенной таблице.
Например, генотип A/a; B/b при независимом наследовании ожидается в четырех случаях из 16 (25%). Генотип a/a; b/b будет появляться только в 1 случае из 16 (6,25%).
С биологической точки зрения независимое наследование означает, что гены A и B находятся в разных парах хромосом. Приведем конкретный пример.
У собак ген MKLN1, мутация в котором является причиной летального акродерматита у бультерьеров, находится в 14-й паре хромосом. Ген PKD1, мутация в котором приводит к поликистозу почек в этой породе, расположен в 6-й паре хромосом. Эти гены наследуются независимо друг от друга.
*********************
Заметьте, что при записи генотипа мы разделили гены A и B знаком точка с запятой. В классической генетике так обозначают гены, расположенные в разных парах хромосом.
*********************
Сцепленное наследование генов
Но как же наследуются гены, расположенные в одной и той же паре хромосом? Поскольку каждая хромосома наследуется целиком, эти гены будут также наследоваться вместе, как показано на рисунке.
Понятно, что у отца и у матери аллели могут быть распределены по хромосомам и одинаковым образом, но в этом случае и генотипы потомства будут иными.
Поскольку гены C и D расположены в одной хромосоме, то есть в одной непрерывной молекуле ДНК, они не могут наследоваться независимо, как в случае рассмотренного выше случае для генов A и B!
******************
Обратите внимание, что аллели генов, расположенные в одной хромосоме из пары, записываются через запятую (например: C,d). Хромосомы в паре разделяются косой чертой (например: C,d/c,d)
******************