Что такое нмг при диабете

Система мониторирования глюкозы и инсулиновые помпы

Мониторирование глюкозы крови является важным средством достижения хорошего гликемического контроля у пациентов с сахарным диабетом 1-го типа. Уровень глюкозы крови необходимо измерять регулярно после установления диагноза сахарного диабета.

Мониторирование глюкозы крови является важным средством достижения хорошего гликемического контроля у пациентов с сахарным диабетом 1-го типа. Уровень глюкозы крови необходимо измерять регулярно после установления диагноза сахарного диабета.

В идеале глюкоза крови должна измеряться перед завтраком, обедом, ужином и на ночь. При подозрении на ночную гипогликемию, а также при увеличении вечерней дозы инсулина рекомендуется проверять глюкозу крови ночью. Часто выполнять подобные рекомендации не представляется возможности.

Средства самоконтроля

Тест-полоски имеют большое значение в определении уровня глюкозы в крови. Но даже частое тестирование с использованием тест-полосок не позволяет получить полную картину изменений уровня сахара в крови в течение суток.

Измерения уровня глюкозы тест-полосками производятся через определенные промежутки времени. Такие измерения не могут показать направление или тенденцию в изменении уровня сахара в крови. Поэтому даже те больные сахарным диабетом, которые самым тщательным образом регулярно выполняют тестирование, могут упустить повторяющиеся повышения или понижения уровня сахара в крови, особенно ночью.

Многие глюкометры обладают памятью, где хранится определенное количество последних измерений глюкозы крови, но этих данных часто бывает недостаточно для определения глюкозного профиля пациента.

Определение глюкозы в моче является устаревшим методом оценки компенсации сахарного диабета. Положительные результаты указывают только на то, что глюкоза в крови превышает 8,88 ммоль/л (почечный порог для глюкозурии). Таким образом, метод не является точным и не дает никакой информации о гипогликемии.

Результаты исследования по контролю диабета и его осложнений показали, что улучшение гликемического контроля при интенсивном управлении диабетом приводит к значительному уменьшению частоты микрососудистых осложнений со стороны глаз, почек, нервной системы у пациентов с сахарным диабетом 1-го типа.

Проблема мониторирования уровня глюкозы крови характерна для детей и подростков в связи с физиологическими и психологическими особенностями, нежеланием уделять необходимое внимание своей болезни.

Система постоянного мониторирования глюкозы

Одной из задач современной диабетологии является получение полной картины колебаний гликемии в течение суток с целью оптимизации проводимой инсулинотерапии.

Перечисленные выше проблемы стали стимулом к усовершенствованию систем контроля уровня глюкозы крови. Результатом работ стала система постоянного мониторирования глюкозы CGMS (Continuous Glucose Monitoring System) — система продолжительного глюкозного мониторинга, представленная приборами, которые измеряют сахар крови через регулярные короткие промежутки времени (1–10 минут) в течение нескольких дней.

Применение данной системы решает проблемы, возникающие при использовании тест-полосок, и может выявить скрытые отклонения, например, частые случаи гипогликемии (низкий уровень сахара в крови). Это позволяет составить четкое представление о характере гликемической кривой, выявить все проблемы на пути к компенсации сахарного диабета (инсулинорезистентность, хроническая передозировка инсулина (синдром Сомоджи), феномен «утренней зари» (Down-Phenomenon), феномен «раннего завтрака», неясные гипогликемии, неясные гипергликемии), скорректировать сахароснижающую терапию (как инсулинотерапию, так и таблетированную) с учетом индивидуальных особенностей, подобрать и запрограммировать необходимую программу введения инсулина.

Система CGMS состоит из трех частей: глюкосенсора, монитора и программного обеспечения. Глюкосенсор представляет собой тонкий, стерильный, гибкий платиновый электрод, который устанавливается подкожно. Принцип работы сенсора заключается в том, что глюкоза под воздействием глюкооксидазы (на сенсоре) превращается в глюконовую кислоту с выделением двух электронов. Электроны образуют электрический потенциал, который фиксируется электродом и передается на монитор. Чем выше содержание глюкозы в интерстициальной жидкости, тем больше выделяется электронов, тем выше электрический потенциал. Система определяет электрический потенциал каждые 10 секунд, посылая сигнал в монитор по гибкому проводу. Монитор фиксирует среднее значение электрического потенциала за 5 минут, сохраняет его в своей памяти, затем определяет среднее значение за следующие пять минут и так далее. Таким образом, монитор сохраняет в своей памяти 288 результатов за сутки и 864 результата за 3 суток. Для калибровки системы необходимо вводить в нее показатели гликемии, полученные на глюкометре, не менее 4 раз в сутки. Через трое суток после окончания мониторирования данные с монитора загружаются в компьютер и обрабатываются с помощью специального программного обеспечения. После обработки они доступны как в виде цифровых данных (288 измерений глюкозы в сутки с указанием времени, границы колебаний гликемии, средние значения гликемии за день и за трое суток), так и в виде графиков, на которых отмечены колебания гликемии по дням.

Таким образом, впервые и врач, и пациент получают полную картину колебаний уровня глюкозы в крови (рис. 1).

Показания сахара в интерстициальной жидкости аналогичны таковым в капиллярной крови, что позволяет применять общепризнанные стандарты для лечения сахарного диабета.

Инсулиновые помпы

При инсулинозависимом сахарном диабете (сахарном диабете 1-го типа) поджелудочная железа секретирует недостаточное количество инсулина. Для компенсации недостатка гормона в организм необходимо вводить экзогенный инсулин. Лечение диабета инсулинотерапией, как правило, осуществляют или при помощи введения инсулина шприцем, или при помощи шприц-ручки.

Исходя из принципа работы системы CGMS, можно предположить, что, как и мониторирование, возможно постоянное введение необходимых доз инсулина в автоматическом режиме с помощью специальных устройств. Таким прибором стала инсулиновая помпа. Инсулиновая помпа (инсулиновый дозатор) — электронное устройство для постоянного подкожного введения инсулина малыми дозами, которое заменяет инъекции шприцем или шприц-ручкой. Сама по себе инсулиновая помпа не измеряет уровень сахара крови, а только вводит инсулин в соответствии с заранее запрограммированными значениями. Это альтернатива для людей с диабетом, которые используют интенсифицированную инсулиновую терапию и регулярно измеряют уровень сахара в крови, обеспечивающая постоянное подкожное введение инсулина малыми дозами. Такая схема введения инсулина в наибольшей степени соответствует ритму работы здоровой поджелудочной железы.

Лечение сахарного диабета при помощи инсулиновой помпы существенно снижает риск гипогликемии и гипергликемии, по сравнению с лечением сахарного диабета при помощи введения инсулина посредством самостоятельных инъекций инсулина.

Основные задачи — добиться максимально физиологической компенсации диабета, минимизировать случаи гипогликемии и гипергликемии, максимально снизить риск развития осложнений диабета (ретинопатия, нефропатия, нейропатия). Риск осложнений диабета тем выше, чем в большей степени компенсация диабета отличается от физиологического уровня.

При беременности применение любых лекарств требует тщательного надзора врача, особенно при сочетании беременности и диабета. Диабет вносит свои коррективы и в выбор лекарств для контрацепции, так как эффект от лекарств, назначаемых для обеспечения эффективной контрацепции, прямо зависит от параллельно принимаемых лекарств.

История развития инсулиновых помп

Первые аппараты инсулиновой помпы появились в Лос-Анджелесе в начале 1960-х годов, автором их был Арнольд Кадиш. Усовершенствование технологии привело к уменьшению громоздких устройств до легких компактных приборов, удобных для повседневного использования (рис. 2).

Инсулиновая помпа представляет собой новое средство для введения инсулина. При этом по-прежнему целью лечения является достижение физиологического профиля инсулинемии у больных сахарным диабетом. Согласно концепции самых ранних помп, инсулин должен был вводиться внутривенно, однако в последующих помпах это было заменено на подкожное введение инсулина, что сделало использование помп доступным и более выполнимым. Однако длительное время имелись существенные ограничения из-за веса помпы и размера (400 г и приблизительно 18×7×6 см). Эти первые примитивные помпы были большие, а применение их ограничивалось еще и имеющейся одной скоростью введения инсулина. Для достижения разной скорости инфузии проводилось разбавление инсулина, что требовало не только повышенного расхода мощности батареи, но и больших затрат энергии пациента и клинических врачей для проведения адекватной терапии. Тем не менее, уже в первых исследованиях сообщалось о достижении близких к нормогликемии показателей углеводного обмена у взрослых и детей.

Современные инсулиновые помпы

Инсулиновую помпу составляют несколько частей — емкость, в которую заключается лекарство, катетер, через который гормон подается в организм человека, и пульт дистанционного управления, который помогает управлять прибором (рис. 3). Емкость с лекарством закрепляется на поясе, катетер вставляется под кожу и держится с помощью пластыря. Таким образом, лекарство регулярно вводится в организм в запрограммированных заранее дозах. Когда инсулин заканчивается, емкость вновь наполняют лекарственным препаратом. Время, на которое хватает лекарства, у каждого больного индивидуально, как правило, это 3–7 дней. На непродолжительный срок (например, во время душа) прибор можно снять, однако нельзя его снимать на долгое время, чтобы не нарушить программу и дозировку.

На первый взгляд может создаться впечатление, что постоянное ношение помпы обременительно. На самом деле это не так. Помпа мала по размеру, компактна и легка (ее размеры сопоставимы с мобильным телефоном), что позволяет носить ее на поясе, в кармане брюк или рубашки. Ночью помпу можно просто прикрепить к пижаме или положить под подушку.

Инфузионный набор состоит из канюли (иглы) и катетера (тонкой трубочки), который соединяется с помпой. Существует несколько вариантов инфузионных наборов, отличающихся длиной катетера, углом наклона канюли, ее длиной и материалом (сталь или тефлон), иглы — гнутые или прямые, как часть катетера стали различного размера и формы. Это позволяет подобрать набор с учетом индивидуальных требований пациента.

Успехи в достижении компенсации сахарного диабета при применении инсулиновых помп стали возможны только благодаря появлению новых технологий, позволяющих пациентам быстро и точно определять сахар в крови. Самоконтроль глюкозы крови позволяет более точно подобрать скорость введения инсулина, имитирующую базисную его секрецию, и проводить коррекцию болюсной дозы инсулина, таким образом обеспечивая более точное и эффективное использование инсулина.

Доза вводимого инсулина может меняться в различные дни в зависимости от меняющегося режима жизни — например, рабочий или выходной день, праздник, отпуск, занятия спортом, путешествия, изменение чувствительности к инсулину, связанное с предменструальным периодом или интеркуррентным заболеванием. Болюсное введение инсулина может быть запрограммировано в соответствии с режимом и калоражем питания. Болюсная доза инсулина может быть также введена с помощью пульта дистанционного управления, облегчая введение инсулина пациентам или родителям детей младшего возраста, уменьшая страх, что «нажатие на кнопку» самыми маленькими пациентами приведет к неправильному введению инсулина.

На сегодняшний день на российском рынке представлены помпы шести производителей — Animas Corporation, Insulet Corporation, Medtronic MiniMed, Roche/Accu-Chek, Smiths Medical MD, Sooil.

Преимущества применения помп

Наиболее важным для успешного использования помпы в клинической практике является предоставление пациентам ясного понимания возможностей современных помп, а также тех функций, которые они не могут пока обеспечить.

Помпа — не способ излечения от диабета.

Помпа — это устройство, которое позволяет осуществлять более точный контроль над количеством введенного инсулина и, таким образом, количеством инсулина, которое будет доступно рецепторам клетки через какое-то время.

Использование инсулиновой помпы не отменяет интенсивную терапию, а помогает совершенствовать ее, с тем, чтобы доводить контроль углеводного обмена до целевых уровней.

Помпа непосредственно не требует большего количества времени и усилий от пациента или органов здравоохранения; это — способ достижения нормальных или улучшенных уровней гликемии.

Помпы — эффективный и удобный способ введения инсулина, когда целью лечения являются почти нормальные уровни гликемии. Она позволяет задавать физиологичный базальный уровень инсулина, учитывая индивидуальные особенности организма, что позволяет избежать ночных гипогликемий, феномена «утренней зари», добиться более стабильных показателей обмена веществ с лучшим уровнем сахара в крови и HbA1c, следовательно, значительно снизить риск развития осложнений сахарного диабета.

Возможность использовать только ультракороткий инсулин и постоянно вводить его в малых дозах позволяет преодолеть инсулинорезистентность и избежать образования инсулиновых «депо».

Помпа избавляет от многократных, ежедневных инъекций — замена инфузионного набора происходит один раз в два-три дня. Это резко уменьшает травматизацию, что особенно важно для детей.

При использовании помпы снимаются ограничения на время, количество и состав принимаемой пищи.

Помпа проводит круглосуточное введение инсулина, что снимает необходимость самостоятельных ночных и утренних измерений, обеспечивая лучшее качество сна.

Помпа позволяет вести активный образ жизни, сохранять работоспособность независимо от внезапных стрессов и неупорядоченного рабочего дня.

Не имеется никакого возрастного ограничения для использования помп — они применялись у больных начиная с детей в возрасте 3 дня и кончая пациентами старше 80 лет.

Помпы имеют большое количество функциональных режимов, что позволяет пациентам осуществлять необходимый им выбор, а успех лечения зависит от мотивации, уровня подготовки больного и дальнейшего активного вовлечения его в процесс самоконтроля.

Следует иметь в виду, что при использовании инсулиновой помпы введение ультракороткого инсулина приводит к быстрому нарастанию кетоацидоза в случае отказа помпы или ее длительного отключения (более 1–1,5 часов) за счет небольшой продолжительности действия. Больные и их родители должны быть информированы о возможности отказа в работе помпы и необходимости временного перехода на множественные инъекции инсулина.

Технические характеристики инсулиновых помп

Инсулиновая помпа позволяет менять базисную скорость введения инсулина каждые полчаса, например с 12:00 до 12:30 вводить инсулин со скоростью 0,5 Ед/час, с 12:30 до 13:00 — со скоростью 0,6 Ед/час и т. д. Более того, есть возможность заранее запрограммировать скорость подачи инсулина в разные дни недели, что очень удобно для людей, имеющих, к примеру, сидячую работу и предпочитающих активный отдых. В случае резкого, неожиданного изменения режима дня помпа имеет режим «временная базисная доза». При активизации этой функции текущий базальный режим отменяется, и помпа начинает подавать инсулин в новом режиме, в течение от 30 минут до 24 часов. После отмены или прекращения времени действия этого режима помпа вновь возвращается к подаче текущей базисной дозы.

Для регуляции постпрандиальной гликемии помпа имеет болюсный режим введения инсулина. Человек, желающий перекусить, может запустить его непосредственно во время еды, и инсулин будет подаваться со скоростью 0,1 Ед в несколько секунд. Болюсный режим имеет несколько модификаций:

Также эти функции могут быть полезны для людей, страдающих идиопатическим парезом желудка (замедленная усвояемость пищи).

Помпа имеет много дополнительных функций — программирование нескольких базальных уровней, возможность установки временного базального уровня, память, работа с дополнительным программным обеспечением, таким как «болюсный калькулятор», и многое другое. Это позволяет настраивать помпу в соответствии с индивидуальными потребностями.

При необходимости (например, принятие водных процедур) помпа может быть отключена, в общей сложности не более чем на 1–1,5 часа.

Помпа имеет память на введенные болюсные дозы (последние 20 доз), на общую суточную дозу инсулина за последние 7 дней. Кроме того, инсулиновая помпа сзади имеет инфракрасный порт, что позволяет через устройство com-station загрузить данные в компьютер. В этом случае для анализа доступны будут последние 400 введенных болюсных доз.

Помпа запрограммирована так, что более 50 независимых систем безопасности постоянно мониторируют все ее действия.

Для удобства использования инсулиновая помпа имеет звуковой и вибрационный режимы для оповещения о процессе подачи и завершении подачи болюсной дозы, окончании инсулина в резервуаре, разряжении элементов питания, появлении различные неисправностей и сбоев. Помпа имеет также подсветку и пульт дистанционного управления для подачи болюсной дозы и остановки подачи инсулина.

После введения подкожно игла удаляется, и в подкожно-жировой клетчатке остается только катетер, который прочно фиксируется пластырем. Для большего удобства пациентов установка катетера осуществляется с помощью устройства quick serter. При нажатии на кнопку устройства установленный в него катетер с иглой вводится быстро и безболезненно.

Инфузионная система устанавливается раз в три дня, далее, во избежание тромбирования катетера с прекращением подачи инсулина, рекомендуется установить новый инфузионный набор. Сама процедура установки в помпу резервуара, подключения и введения катетера очень проста, занимает не более 5 минут и не создает проблем у пациентов. Локализация мест установки катетеров такая же, как и мест введения инсулина. Следует учитывать, что, также как при других способах введения инсулина, максимальная скорость всасывания его происходит из подкожной клетчатки передней брюшной стенки. Эта локализация также является наиболее удобной при употреблении помпы для большинства больных.

Прогрессом в использовании помпы стало применение быстродействующих аналогов инсулина (лизпро и аспарт), имеющих новые фармакокинетические характеристики, отличные от простого (короткого) инсулина. Быстродействующие инсулины коммерчески доступны и в использовании обладают идеальными характеристиками для успеха в терапии с помощью инсулиновых помп, которая планировалась прежде при внутривенном введении инсулина, при сохранении преимуществ подкожного введения. Быстрота действия позволяет достичь лучшей настройки инсулина на характер пищи без так называемого «хвостового эффекта», который бывает при применении обычного инсулина и проявляется поздней постпрандиальной гипогликемией. Было доказано, что эти инсулины уменьшают частоту гипогликемий, улучшают уровень НbА1с, а через три месяца введения их с помощью помпы повышают возможности печени продуцировать глюкозу в ответ на глюкагон.

Принципы расчета дозы инсулина

Принципы расчета дозы инсулина при переводе на инсулиновую помпу очень просты. В качестве основы берется доза инсулина, которая была на режиме множественных ежедневных инъекций. 75% от этой дозы используется в инсулиновой помпе: 50% от нее идет на базисную дозу, 50% — на болюсную. 50% базисной дозы делится на 24 часа и устанавливается в помпе в режиме «базальный профиль». 50% болюсной дозы равномерно распределяется между основными приемами пищи. При наличии у больного феномена «утренней зари» в утреннем интервале к базисной дозе добавляется +0,1 Ед/час; при наличии гипогликемий в ночное время — базисная доза уменьшается на –0,1 Ед/час в том временном интервале, когда фиксировались эпизоды гипогликемии. При гипергликемии в ночное время или более чем 3 часа после приема пищи к базисной дозе добавляется +0,1 Ед/час. При постпрандиальной гипо- или гипергликемии болюсная доза инсулина меняется аналогично тому, как менялась доза инсулина короткого действия у данного больного на режиме множественных ежедневных инъекций.

В случае отказа помпы по тем или иным причинам очень быстро (в течение 2–3 часов) развивается декомпенсация сахарного диабета с кетоацидозом. Больному необходимо проверить поступление инсулина по инфузионной системе (отсоединив инфузионную систему от катетера, установить 1–2 Ед болюсной дозы инсулина и визуально проверить ее прохождение). При нормальном поступлении инсулина проанализировать другие возможные причины: забыл сделать болюсную дозу на прием пищи, стресс, острое инфекционное заболевание, постгипогликемическая гипергликемия и пр. и ввести дополнительно болюс в небольших дозах. При неисправности помпы переходить на инъекции инсулина с помощью шприц-ручек или одноразовых шприцев с последующим обращением в специализированное сервисное обслуживание для выяснения причин отказа помпы. При закупорке инфузионной системы — поменять ее на новую.

Развитие технологии не стоит на месте. Ведутся работы над комплексом оборудования, который по праву можно назвать искусственной поджелудочной железой. При интеграции инсулиновой помпы с аппаратом, постоянно измеряющим сахар в крови (типа глюкометра постоянного ношения), введение инсулина производится согласно данным об уровне сахара в крови, постоянно измеряемом глюкометром. В таком сочетании искусственная поджелудочная железа максимально точно имитирует работу настоящей поджелудочной железы, тем самым обеспечивая максимально физиологичную компенсацию диабета.

В. В. Смирнов, доктор медицинских наук, профессор
Г. Е. Горбунов
РГМУ, Москва

Рис. 1. Динамика уровня глюкозы в крови

Рис. 2. Развитие инсулиновых помп с 1979 по 1987 год

Рис. 3. Схема устройства инсулиновой помпы

Источник

Что такое нмг при диабете

ФГБУ «Эндокринологический научный центр» Минздрава России, Москва

ФГБУ «Эндокринологический научный центр» Минздрава РФ, Москва

ФГБУ «Эндокринологический научный центр» Минздрава России, Москва

ФГБУ «Эндокринологический научный центр» Минздрава России, Москва

ФГБУ «Эндокринологический научный центр» Минздрава РФ, Москва

Институт диабета Эндокринологического научного центра, Москва

Технологии непрерывного мониторирования глюкозы: успехи и перспективы

Журнал: Проблемы эндокринологии. 2015;61(4): 54-72

Тарасов Ю. В., Филиппов Ю. И., Борисова Е. К., Федорова Е. А., Майоров А. Ю., Шестакова М. В. Технологии непрерывного мониторирования глюкозы: успехи и перспективы. Проблемы эндокринологии. 2015;61(4):54-72.
Tarasov Yu V, Filippov Iu I, Borisova E K, Fedorova E A, Maĭorov A Iu, Shestakova M V. Continuous glucose monitoring technologies: state of the art and future perspectives in view of artificial pancreas. Problemy Endokrinologii. 2015;61(4):54-72.
https://doi.org/10.14341/probl201561454-72

ФГБУ «Эндокринологический научный центр» Минздрава России, Москва

Что такое нмг при диабете. Смотреть фото Что такое нмг при диабете. Смотреть картинку Что такое нмг при диабете. Картинка про Что такое нмг при диабете. Фото Что такое нмг при диабете

Непрерывное мониторирование гликемии (НМГ) — относительно новая и активно развивающаяся технология оптимизации гликемического контроля у пациентов с сахарным диабетом. Доказана эффективность применения НМГ для улучшения показателей гликемии во многих клинических ситуациях (бессимптомные гипогликемии, высокая вариабельность гликемии и др.). В перспективе НМГ рассматривают как обязательный компонент «искусственной поджелудочной железы» — инсулиновой помпы с замкнутым контуром управления инфузией инсулина в зависимости от концентрации глюкозы в крови. Однако из-за существенных ограничений и недостаточной высокой точности использование показателей НМГ в качестве источника данных в замкнутом контуре управления инсулиновой помпой невозможно. Дальнейшее развитие технологий НМГ, очевидно, будет направлено на решение трех основных задач: увеличения срока службы сенсоров для детекции глюкозы, повышения точности результатов измерений и удобства использования для пациентов. В статье рассмотрены основные технологические решения современных приборов для НМГ и перспективные направления дальнейших разработок в данной области, их потенциальные преимущества и недостатки, в том числе в свете возможности их дальнейшей интеграции в «искусственную поджелудочную железу».

ФГБУ «Эндокринологический научный центр» Минздрава России, Москва

ФГБУ «Эндокринологический научный центр» Минздрава РФ, Москва

ФГБУ «Эндокринологический научный центр» Минздрава России, Москва

ФГБУ «Эндокринологический научный центр» Минздрава России, Москва

ФГБУ «Эндокринологический научный центр» Минздрава РФ, Москва

Институт диабета Эндокринологического научного центра, Москва

Непрерывное мониторирование гликемии (НМГ) — метод регистрации изменений концентрации глюкозы в крови, при котором результаты фиксируются с очень небольшими промежутками (не более 5 мин) на протяжении длительного времени (более суток).

Согласно результатам DCCT (Diabetes Control and Complications Trial) и других крупных исследований, интенсифицированная инсулинотерапия, включающая регулярный частый самоконтроль гликемии (СКГК), позволяет снизить выраженность осложнений сахарного диабета (СД) и предотвратить их формирование [1]. В связи с этим международные и отечественные рекомендации постулируют частый регулярный самоконтроль как неотъемлемую часть лечения СД [2, 3].

Наиболее распространенный способ самоконтроля гликемии среди людей с СД состоит в проведении экспресс-анализов образцов крови (как правило, капиллярной, взятой из пальца) с применением тест-полосок и персональных анализаторов (глюкометров) [4]. У этого способа есть объективные недостатки и ограничения. НМГ имеет объективные преимущества перед традиционным СКГК [5], в том числе:

— позволяет получать информацию о концентрации глюкозы в крови в непрерывном режиме;

— дает представление о тенденции изменений гликемии, а не только о ее фактическом уровне;

— позволяет предупреждать пользователя о выходе гликемии из целевой зоны (как в момент выхода, так и заблаговременно – учитывая динамику показателей);

— позволяет оценить истинную картину изменений гликемии в течение больших промежутков времени, а не предположительную, составленную на основе единичных измерений.

Более того, НМГ считают неотъемлемым компонентом «искусственной поджелудочной железы» — инсулиновой помпы, самостоятельно управляющей введением инсулина с учетом изменений гликемии в режиме реального времени по принципу «замкнутого контура». В целом, НМГ является одним из наиболее перспективных направлений развития технологий лечения СД [6]. В то же время у применяющихся сегодня в клинической практике приборов имеется множество недостатков, которые ограничивают использование НМГ. Наиболее существенные недостатки касаются трех аспектов — точности результатов, удобства ношения сенсора глюкозы на теле пациента и срока службы сенсора.

Технологии непрерывного мониторирования гликемии

С клинической точки зрения, применяющиеся устройства для НМГ принято делить на два типа: в «слепом» режиме (или «профессиональное» мониторирование) и в режиме «реального времени» (иногда его называют «пользовательским» мониторированием) [5]. Устройства для НМГ разделяют также на инвазивные, малоинвазивные и неинвазивные (рис. 1), а также (в зависимости от метода определения концентрации глюкозы) — на электрохимические, оптические и пьезоэлектрические.

Что такое нмг при диабете. Смотреть фото Что такое нмг при диабете. Смотреть картинку Что такое нмг при диабете. Картинка про Что такое нмг при диабете. Фото Что такое нмг при диабетеРис. 1. Общая классификация технологий НМГ.

Инвазивность устройства для НМГ определяется способом размещения сенсора глюкозы, а также способом связи с блоком электронной обработки. Способ размещения сенсора в свою очередь определяется реализованными в устройстве механизмами преобразования сигнала и определения глюкозы.

Инвазивные

Инвазивные устройства имеют полностью имплантируемые (подкожно или внутривенно) сенсоры с модулем беспроводного подключения к внешнему контроллеру. Принцип действия большинства имплантируемых сенсоров основывается на ферментативном окислении глюкозы с последующим электрохимическим или оптическим анализом продуктов реакции [7, 8]; реже используется принцип микродиализа (см. ниже). Инвазивные сенсоры могут быть полностью имплантируемыми или трансдермальными (наиболее часто встречающийся вариант) [9, 10].

Малоинвазивные

Малоинвазивные сенсоры глюкозы обычно размещаются на поверхности тела совместно с блоками обработки результатов и вывода информации. Сенсоры в данном случае либо не проникают в кожу вообще, либо их проникновение незначительно по времени и по глубине (компоненты системы не проникают за пределы эпидермиса). Предложено несколько сенсоров для НМГ, которые можно отнести к малоинвазивным, в том числе следующие.

1. Ионофорез. Через кожу сенсор пропускает слабый электрический ток (в конструкцию сенсора входят два близко расположенных друг к другу электрода, между которыми создается напряжение). Электрический ток провоцирует направленное движение поляризованных молекул (а также под действием индукции и других межмолекулярных взаимодействий – и незаряженных молекул) по кожным порам через дерму. Это стимулирует выведение на поверхности кожи микрокапель интерстициальной жидкости (ИСЖ), в которой и происходит определение концентрации глюкозы. Как правило, детекция глюкозы осуществляется путем электрохимического окисления глюкозы на поверхности сенсора [11].

2. Сонофорез. Низкочастотный ультразвук способен расширять и сжимать газообразные включения в роговом слое коже, увеличивая таким образом его проницаемость и стимулируя выход ИСЖ на поверхность. Как и в предыдущем случае, детекция глюкозы происходит в этой ИСЖ путем электрохимического окисления или спектроскопического анализа [12].

3. Вакуумизация. Локальное краткосрочноое воздействие вакуума стимулирует пропотевание ИСЖ на поверхность кожи. Детекция глюкозы опять-таки осуществляется путем электрохимического окисления [13].

4. Микропористая лазерная аблация или лазерная десорбция. Лазерное излучение малой мощности испаряет ИСЖ из микропор рогового слоя кожи; ИСЖ конденсируется (с помощью небольшого вакуума) и анализируется (электрохимическое окисление) [14].

5. Микропроколы. Технология основана на применении кремниевых микроигл (диаметр x ), катализирующую окисление глюкозы до глюконолактона. В ходе реакции кофермент (флавинаденинмононуклеотид) переходит в восстановленную форму (флавинадениндинуклеотид) (см. рис. 2: реакция 1). В зависимости от дальнейшей переконвертации фермента обратно в окисленную форму сенсоры относятся к одному из трех поколений.

Что такое нмг при диабете. Смотреть фото Что такое нмг при диабете. Смотреть картинку Что такое нмг при диабете. Картинка про Что такое нмг при диабете. Фото Что такое нмг при диабетеРис. 2. Различные способы детекции глюкозы электрохимическим методом [17]. а — биосенсоры I поколения, задействующие кислород окружающей среды; б — биосенсоры II поколения с применением искусственных медиаторов электронного транспорта; в — биосенсоры III поколения, реализующие прямой перенос электронов между электродом и GOx; г — прямое электроокисление глюкозы.

1. В сенсорах первого поколения восстановленная форма фермента окисляется кислородом внешней среды. В результате образуется перекись водорода Н 2 О 2 (см. рис. 2, а: реакция 2). Концентрация глюкозы рассчитывается, исходя из напряжения, зафиксированного либо при электрохимическом окислении образовавшейся Н 2 О 2 (см. рис. 2, а: реакция 3), либо при электрохимическом восстановлении О 2 на рабочем электроде (см. рис. 2, а: реакция 4).

2. В биосенсорах второго поколения окисление восстановленной формы фермента осуществляется медиаторами электронного транспорта (см. рис. 2, б: реакция 5), конкурирующими с кислородом (естественным субстратом реакции). Концентрация глюкозы может быть соотнесена с силой амперометрического сигнала, зафиксированного при электрохимическом окислении восстановленного медиатора (см. рис. 2, б: реакция 6) [16].

3. В биосенсорах третьего поколения окислительно-восстановительный кофермент ковалентно или электрохимически связан с рабочим электродом, что способствует протеканию обратного восстановления (или обратного окисления) путем прямого переноса электронов с рабочего электрода (или на него). Зарегистрированный при этом амперометрический сигнал может быть соотнесен с концентрацией глюкозы (см. рис. 2, в: реакция 7) [7].

Помимо оксидаз, при ферментативной детекции глюкозы применяются глюкозодегидрогеназы [6] и хинопротеин глюкозодегидрогеназы [18]. Для окисления восстановленных форм этих ферментов используются такие типичные для биологических систем медиаторы электронного транспорта, как никотинамидадениндинуклеотид (NAD + ) и хиноны.

Безферментный метод представляет собой прямое электрокаталитическое окисление глюкозы до глюконовой кислоты на наноструктурных электродах, обладающих большой поверхностью и электрокаталитической активностью (платиновые «массивы нанодендритов»; сетки нанонитей из платиново-свинцового сплава; наночастицы золота и композитные наноструктуры, содержащие платину, золото, свинец, паладий или родий) (см. рис. 2, в: реакция 8) [19, 20].

Оптический

Детекция глюкозы, основанная на оптических принципах, включает два основных подхода:

1. Применение флуорофоров.

2. Непосредственное оптическое определение.

Применение флуорофоров основано на принципах стереохимического сродства, согласно которым глюкоза и флуорофор конкурируют за взаимодействие с сайт-специфическим для обоих лигандов рецептором [13, 21]. В качестве рецепторной молекулы может применяться, к примеру, конкавалин, А (Кон А), что обусловлено наличием у него четырех сайтов связывания глюкозы. Оценка активности связывания в конкурентных условиях может быть проведена при введении других лигандов, таких как меченный флюоресцеином декстран, α-метилманнозид и гликированный белок [22, 23]. Измерение концентрации глюкозы обеспечивается различными спектроскопическими методами, в том числе приведенными ниже.

1. Присоединение меченного флюоресцеином декстрана к Кон, А вызывает перенос электрического заряда молекулы с последующим падением интенсивности флюоресценции связанного лиганда. Сродство Кон, А к глюкозе выше, чем к декстрану. Поэтому в присутствии глюкозы возрастает количество свободного (несвязанного) декстрана, что проявляется увеличением интенсивности флюоресцентного излучения (рис. 3, а). Концентрация глюкозы прямо пропорциональна интенсивности флюоресценции меченого декстрана.

Что такое нмг при диабете. Смотреть фото Что такое нмг при диабете. Смотреть картинку Что такое нмг при диабете. Картинка про Что такое нмг при диабете. Фото Что такое нмг при диабетеРис. 3. Оптическая детекция глюкозы (адаптировано из [17]). а — снижение интенсивности флюоресценции в результате аффинного связывания; б — снижение интенсивности ФРПЭ-индуцированной флюоресценции.

2. В результате Ферстеровского резонансного переноса энергии (ФРПЭ) между меченным аллофикоцианином Кон, А (донор) и меченным флюоресцеином декстраном (акцептор), который протекает при их сближении на расстояния атомарного масштаба (Ферстеровского радиуса), возникает флюоресцентное излучение [13, 22]. Любая имеющаяся молекула глюкозы присоединяется к Кон А, тем самым увеличивая дистанцию между донором и акцептором данного взаимодействия (с превышением Ферстеровского радиуса), что приводит к падению интенсивности ФРПЭ-индуцированного флюоресцентного излучения (см. рис. 3, б). Таким образом, о концентрации глюкозы можно судить по изменениям интенсивности испускания меченного флюоресцеином декстрана, вызванных ФРПЭ [24, 25].

3. ФРПЭ между молекулами донора и молекулами акцептора сопровождается сокращением времени жизни донора. Кроме того, присутствие глюкозы снижает вероятность осуществления ФРПЭ (см. рис. 3, б). Отсюда следует, что возрастание времени жизни донора может наблюдаться на фоне увеличения концентрации глюкозы. Таким образом, содержание глюкозы может быть определено путем регистрации времени жизни молекулы донора, расположенной в непосредственной близости от молекулы акцептора [13, 22].

4. Можно также регистрировать интенсивность флюоресценции тканей, если в качестве флуорофора используется сама глюкоза. При облучении тканей светом с длиной волны 308 нм молекулы глюкозы переходят в возбужденное состояние и испускают флюоресцентное излучение, которое может быть зафиксировано на 340, 380 или 400 нм. Таким образом, определение концентрации глюкозы может осуществляться с помощью непосредственного облучения тканей волнами длиной 308 нм с последующей регистрацией интенсивности излучения на 380 нм (данной длине волны соответствует максимальная интенсивность испускания глюкозой флюоресцентного излучения).

5. При спектроскопическом анализе секрета слезных желез применяются включенные в полимерный носитель синтетические производные бороновой кислоты, которые обратимо связываются с глюкозой. К этим молекулам присоединяют флюоресцентные группы, что обусловливает возможность их спектроскопического определения. При взаимодействии с глюкозой группа бороновой кислоты, имеющая sp2-гибридизованную тригональную конфигурацию, принимает более насыщенную электронами sp3-гибридизованную тетраэдрическую форму, что вызывает изменение эмиссионного спектра флюоресцентного фрагмента [26].

При непосредственном оптическом определении глюкозы применяется свет переменной частоты и регистрируются изменения характеристик абсорбции, отражения или преломления (рассеивания) для тканей, содержащих различные концентрации глюкозы [13, 21]. В частности, установлено, что световые волны БИК-диапазона проникают через роговой слой эпидермиса с минимальным поглощением в тканях. Более того, светопоглощающие свойства воды таковы, что в БИК-области имеется интервал (0,8—1,4 мкм), в пределах которого отсутствует абсорбция тканями, что обусловливает глубокое проникновение такого света в эпидермис и подкожную жировую клетчатку независимо от пигментации кожи. Благодаря этому свет БИК-диапазона рассматривается как потенциальное средство регистрации изменений оптических свойств, происходящих под влиянием глюкозы в подкожной жировой клетчатке. К примеру, колебания концентрации глюкозы влекут за собой изменения электрической прочности, поляризуемости и диэлектрической проницаемости подкожной жировой клетчатки, что позволяет регистрировать сдвиги абсорбции, отражения и преломления БИК-излучения соответственно. Ниже приводится ряд методов оптического анализа, основанных на регистрации подобных сдвигов и не требующих введения флуорофоров.

1. Оптическая когерентная томография позволяет измерить концентрацию глюкозы путем определения интенсивности отраженного/рассеянного и пропускаемого света сразу после взаимодействия подкожной жировой клетчатки с глюкозой в определенной концентрации [27].

2. Поляриметрический анализ основывается на способности глюкозы к вращению плоскополяризованных световых волн и возможности последующей количественной оценки ее концентрации, опираясь на величину оптического вращения [28].

3. Тепловая И.К. спектроскопия основана на локальном нагревании ткани при действии света, что приводит к изменениям микроциркуляции, в свою очередь влияющей на показатель оптического преломления ткани. Степень изменения оптического преломления в данном случае непосредственно зависит от концентрации в ткани глюкозы [29].

4. Применение фотоакустической спектроскопии основывается на адсорбции света, проявляющейся локальным нагревом тканей с последующим распространением ультразвуковых волн в результате объемного расширения. Детекция глюкозы с помощью фотоакустической спектроскопии подразумевает облучение тканей светом БИК-спектра с дальнейшей регистрацией скорости распространения ультразвуковых волн. Последняя зависит от удельной теплоемкости облучаемой ткани, которая в свою очередь определяется концентрацией глюкозы [30, 31].

5. В основе Рамановской спектроскопии лежит явление неупругого рассеяния фотонов. При взаимодействии глюкозы с монохроматическим светом возникает обусловленный эффектом Рамана сдвиг энергетического состояния фотонов, пропорциональный колебательной или вращательной энергии молекул глюкозы [30, 32]. Рамановский спектр характеризует специфическую для глюкозы внутримолекулярную (колебательную или вращательную) подвижность связей, поэтому он может использоваться в качестве селективного индикатора ее концентрации. Так, с помощью Рамановской спектроскопии можно дифференцировать галактозу и глюкозу — два эпимера с одинаковым химическим составом, но с разным положением одного атома [21].

6. В сенсорах глюкозы на базе фотонных кристаллов использован эффект смещения длины волны света, подвергшегося дифракции на кристаллическом коллоидном массиве с гидрогелевой основой. Сенсор состоит из полиакриламид-полиэтиленгликолевой сетки с включенными в нее кристаллическим коллоидным массивом и распознающим элементом (например, производным бороновой кислоты), который специфически связывается с глюкозой. В результате взаимодействия глюкозы с распознающим элементом формируются поперечные связи (например, бис-бедентатные), что сокращает объем гидрогеля. Его сжатие инициирует пропорциональное количеству связанной глюкозы смещение дифракции от кристаллического коллоидного массива в коротковолновую часть спектра. Изменения цвета могут быть восприняты визуально (без использования специального оборудования) в пределах видимой части спектра (от красного до фиолетового), что отвечает физиологически значимому диапазону концентраций глюкозы [33]. Поскольку данный механизм реализуется посредством химически индуцированного набухания, проявляющегося механической деформацией и изменением оптических свойств фотонного кристалла, такая технология может быть отнесена к хемо-механо-оптическим преобразованиям.

Другие подходы

Помимо электрохимических и оптических подходов, известна также детекция глюкозы, основанная на электрических или электромагнитных преобразованиях. Повышение концентрации глюкозы вызывает снижение концентрации натрия и увеличение концентрации калия в плазме, что изменяет ее диэлектрические свойства и электропроводность. Это позволяет определять глюкозу методом импедансной спектроскопии: путем пропускания переменного тока через ткани для регистрации изменений электропроводности плазмы крови, обусловленных изменениями концентрации глюкозы [34].

С помощью электромагнитной спектроскопии можно определить концентрацию глюкозы, измеряя силу электромагнитного взаимодействия двух индукторов, которая зависит от диэлектрической проницаемости среды, а последняя в свою очередь — от локальной концентрации глюкозы [35].

Факторы, определяющие дальнейшее развитие технологий нмг

В данном разделе каждая из технологий НМГ рассматривается с позиции проблем и недостатков, препятствующих дальнейшему развитию и более широкому использованию НМГ в клинической практике. Также обсуждаются возможные подходы для преодоления данных сложностей. Изложение материала соответствует содержанию табл. 1 и 2.

Что такое нмг при диабете. Смотреть фото Что такое нмг при диабете. Смотреть картинку Что такое нмг при диабете. Картинка про Что такое нмг при диабете. Фото Что такое нмг при диабетеТаблица 1. Сравнение различных технологий НМГ по их инвазивности

Что такое нмг при диабете. Смотреть фото Что такое нмг при диабете. Смотреть картинку Что такое нмг при диабете. Картинка про Что такое нмг при диабете. Фото Что такое нмг при диабетеТаблица 2. Сравнение различных технологий НМГ по типу передачи сигнала

Что такое нмг при диабете. Смотреть фото Что такое нмг при диабете. Смотреть картинку Что такое нмг при диабете. Картинка про Что такое нмг при диабете. Фото Что такое нмг при диабетеТаблица 3. Допустимые отклонения точности устройств НМГ (ISO 15197:2013) Примечание. *— количество образцов, погрешность измерения в которых не должна превышать установленный лимит.

Точность показаний

Как и для любого аналитического медицинского оборудования, из всех требований, предъявляемых к устройству НМГ, наиболее важным является точность показаний. И это обусловлено не только перспективами перехода от отдельно стоящего прибора, непрерывно проводящего измерения, к устроенной по принципу замкнутого контура искусственной поджелудочной железе, но и необходимостью подтверждения достоверности показаний для врачей и пациентов.

В соответствии с критериями, разработанными Международной организацией по стандартизации (ISO 15197:2013), сенсор считается точным, если при определении концентрации глюкозы в крови во время гипогликемического эпизода, когда фактическая концентрация глюкозы 4,2 ммоль/л максимально допустимая погрешность составляет 15% [36].

Однако данные стандарты распространяются исключительно на глюкометры, метрологические стандарты точности для приборов НМГ не утверждены [37]. В то же время разработан нормативный документ РОСТ05-А (подготовленный Институтом клинических и лабораторных стандартов совместно с Диабетическим технологическим обществом), в котором собраны некоторые контрольные показатели точности измерений, а также нормативы, утвержденные для НМГ глюкозы в межтканевой жидкости [38].

Большинство методов оценки точности НМГ состоит в сопоставлении показателей прибора НМГ с соответствующими референсными значениями при помощи методов линейного регрессионного анализа, анализа погрешностей с использованием зон различной клинической достоверности, остаточной суммы квадратов отклонений и среднего абсолютного отклонения [13, 39]. В качестве ориентира для оценки точности сенсора предпочитают применять анализ погрешностей с использованием зон различной клинической достоверности по Кларку, который выражает относительные различия измерений НМГ и клинического анализатора (последние принимаются за «фактическую» гликемию) [40]. Типичная решетка Кларка представляет собой график с нанесением «фактических» значений гликемии по оси х, а показателей тестируемого сенсора – по оси y (рис. 4, а). В случае идеальной корреляции между двумя группами измерений все наносимые на график точки будут лежать на прямой линии, выходящей из начала координат под углом 45°. В случае неидеальной корреляции точки будут разбросаны от линии 45° тем дальше, чем больше ошибка, что, несомненно, следует учитывать при интерпретации результатов. Все поле возможных значений разделено на зоны, расположенные по обе стороны линии 45°, которые отражают не столько математическую разность между полученным и референсным значением, сколько клиническую значимость ошибки [40]:

Что такое нмг при диабете. Смотреть фото Что такое нмг при диабете. Смотреть картинку Что такое нмг при диабете. Картинка про Что такое нмг при диабете. Фото Что такое нмг при диабетеРис. 4. Вид графиков определения клинической значимости погрешностей измерения концентрации глюкозы с нанесенными сеткой Кларка (а) и решеткой Паркса (б).

— Зона А: принятые на основе этих показателей клинические решения приведут и идентичным результатам с решениями, принятыми на основе значений, полученных референсным методом.

— Зона В: показатели не приведут к ошибке в назначении лечения или ошибка будет незначительной и не повлияет на состояние пациента.

— Зона C: использование полученного показателя приведет к серьезной ошибке, которая, скорее всего, ухудшит состояние пациента.

— Зона D: показатель приведет к очень серьезной ошибке, которая сильно ухудшит состояние пациента.

— Зона E: использование такого показателя приведет к фатальной ошибке, которая может оказаться опасной для жизни пациента.

При количественной оценке частоты попадания экспериментальных точек в зоны, А и В обычно учитываются два параметра: линейный коэффициент корреляции между «фактическим» значением гликемии и показателями тестируемого сенсора; доля принадлежащих зонам, А и В экспериментальных точек, выраженная в процентном отношении.

Основным недостатком решетки Кларка является непоследовательность перехода от одной зоны к другой. Это означает, что минимальное изменение зафиксированной сенсором концентрации глюкозы может сдвинуть результат из зоны корректных значений, А в зону критических ошибок D и наоборот. С учетом этого была разработана решетка Паркса (см. рис. 4, б), в которой соблюдена последовательность расположения зон, что предотвращает возможность ошибочного отнесения результата к несоответствующей ему зоне [41]. Тем не менее решетка Паркса строится индивидуально для каждого пациента и не обладает универсальностью, необходимой для оценки точности метода НМГ независимо от его технологии. Стоит заметить, что сведения о преимуществах и недостатках каждого из методов постоянно пересматриваются и актуализируются, и тем не менее процентные доли экспериментальных точек, расположенных в зоне А, полученные для одного и того же устройства НМГ с помощью решеток Кларка и Паркса, не совпадают. Например, точность конкретного устройства НМГ оценивалась в 98,6% на основании анализа с помощью решетки Паркса, тогда как при применении решетки Кларка был получен результат 95% [13].

Как сетка Кларка, так и решетка Паркса были изначально разработаны для оценки клинической безопасности получаемых при самоконтроле тем или иным прибором единичных значений гликемии с учетом погрешности измерений. В чистом виде для оценки клинической значимости погрешности измерений при НМГ данные методы не подходят, так как не учитывают самостоятельное значение континуума получаемых показателей. Для решения этой задачи была разработана модификация сетки Кларка [39]. Модифицированная версия учитывает временны́е характеристики НМГ, а также период задержки, имеющийся между концентрацией глюкозы в крови (референсные значения) и ИСЖ [39]. Модифицированная сетка Кларка может изменяться в зависимости от способа определения концентрации глюкозы и учитывает, что время выравнивания концентрации глюкозы в крови и ИСЖ всегда равно 7 мин (на самом деле, это время может существенно изменяться) [13].

Факторы, обусловливающие погрешности измерения

Каждый из компонентов устройства для НМГ является потенциальным источником ошибки измерения. Наиболее значимые погрешности связаны преимущественно с процессом калибровки и с точностью (в том числе с селективностью) самих сенсоров глюкозы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *