Что такое ночь с точки зрения физики
Что такое время и можно ли изменить его скорость?
Время — оно как воздух. Мы живем в нем и даже не задумываемся над тем, что это такое и как им пользоваться. Тем не менее, это очень сложная вещь, которая лежит в основе всего. Не зря же есть словосочетание ”пространство и время”. С пространством все понятно — вот оно. До работы 10 километров на машине, а до магазина 300 метров пешком. Вот только время в этом пути будет очень относительным. Но что это вообще такое и справедливо ли говорить о том, что время бесконечно и оно было всегда? Можно ли потрогать время? Может быть его можно остановить или повернуть вспять? Все эти вопросы люди часто задают друг другу и сами себе. Давайте попробуем ответить хоть на какие-то из них.
Время есть у всех. Но только что такое время?
Что такое время?
Обычно под временем мы понимаем то, что отсчитывается стрелками часов и чего нам всегда не хватает. При этом, считается, что время делится на прошлое, настоящее и будущее. С первым и последним понятно, но существует ли настоящее?
Любая микроскопическая доля времени, про которую мы постараемся сказать, как про настоящее, уже будет прошлым. Получается, что настоящего, как такового, не существует. Оно является только тем, что мы привыкли так называть, то есть очень широкое понятие в духе ”наши дни”. Оно может включать периоды от нескольких месяцев до нескольких лет и даже тысяч лет, если мы говорим, к примеру, о существовании Вселенной или формировании нашей планеты.
Одно из определений времени гласит, что это то, заставляет все события происходить неодновременно.
При этом многие ученые все же воспринимают время, как прогрессию, в которой будущее становится настоящим, а настоящее — прошлым, и этот процесс непрерывен. Даже если взорвется наше Солнце, время все равно не остановится и продолжит существовать. Просто уже не для нас.
Почему во время карантина время идет быстрее?
Что дает понимание времени
А еще время является основной для понимания того, что такое динамика. Только имея представления о времени, можно говорить о событиях, которые развиваются с определенной скоростью. Ведь совершенно нормальным считается спросить, когда что-то произошло и сколько продлилось то или иное явление. Получается, что время похоже на пространство — это координаты, но не точки на карте того, когда это было. Отличие только одно. По карте можно ходить куда угодно, а по времени — только в одну сторону. Именно это свойство времени является главной загадкой, над которой бьются ученые и строят свои гипотезы фантасты.
Фантасты часто поднимают тему времени, так как полет фантазии в этом направлении невозможно остановить.
Люди воспринимают время более менее одинаково, так как привычные нам часы тикают с одной скорость. Однако, это справедливо только для классической физики. Квантовая же физика утверждает обратное и говорит о том, что система становится активной только в тот момент, когда за ней наблюдают. То есть, в некотором роде именно квантовая физика не исключает возможности движения времени вспять.
Немного юмора от физики, который кое-что объясняет.
Теория относительности Альберта Эйнштейна
В свое время Альберт Эйнштейн явил миру теорию относительности, о которой вы наверняка слышали. Она полностью меняет типичное представление о времени и взгляд на него. Согласно этой теории, прогрессия времени не универсальна. Если говорить совсем просто, то по этой теории часы идут с разной скоростью в зависимости от того, на чьей руке они надеты.
Если обладатель часов окажется в непривычной для него ситуации, например, будет перемещаться со скоростью света или окажется рядом с сильным источником гравитационных волн — например, рядом с черной дырой — время для него пойдет иначе. В некоторых ситуациях оно может даже остановиться или и вовсе повернутся вспять.
Теория относительности предполагает, что любые события могут влиять только на те события, которые происходят после них. Но это не противоречит движению времени, как вектора физической величины, в обратном направлении. В этом случае уже события будущего будут находится в прошлом относительно ”того, кто носит часы”.
Проще говоря, в такой ситуации восприятие привычных физических процессов меняется и человек оказавшийся в таком месте может не только наблюдать время, но и двигаться по нему как в обычном пространстве — влево, вправо, вперед, назад и так далее. То есть, относительность уравнивает время и пространство, наделяя их одними и теми же свойствами.
Величайшие умы мира бьются над разгадкой тайны времени, но они ничего пока так и не добились.
Возможно ли путешествие во времени
Есть еще понятие T-симметрии, когда явления и величины, коими они представлены, не зависят от шкалы координат, и при изменении положительного значения на отрицательное кривая на графике становится зеркальной. В теории относительности, несмотря на такие отличие от привычного мира, это правило тоже сохраняется.
Интересно, что в споры о возможности путешествия во времени в обратном направлении вмешивается термодинамика, которая говорит, что все процессы в мире стремятся из упорядоченной системы к хаосу, то есть увеличению энтропии. Этот процесс нельзя повернуться вспять. То есть, взорвавшиеся звезды нельзя ”склеить” обратно, а сгнивший лист железа превратить в новый. Проще говоря, ”фарш невозможно провернуть назад и мяса из него не восстановишь”.
Если они смогли, может и мы когда-то сможем?
В итоге, грубо можно сказать, что время для нас это то время, которое есть на Земле. Если мы начнем путешествовать в пространстве дальше ближайших планет, нам придется понимать, что такое время и как оно меняется. Хотя, формально, на незначительные доли секунд отклонения есть и на Земле. Это даже учитывается при создании некоторых сверхточных систем и атомных часов.
Понимаем ли мы время
Вообще, человечество пока плохо понимает, что такое время на самом деле и все сказанное является только теориями и гипотезами. Мы пока так и не смогли достичь источников гравитационных волн, хотя смогли зафиксировать их.
Как только люди научатся путешествовать во времени, очень не хотелось бы это пропустить. Поверьте, прежде чем бежать покупать билеты, мы напишем об этом в нашем новостном канале в Telegram. Присоединяйтесь, чтобы ничего не пропустить.
Пока о времени мы знам только то, что это геометрический параметр, характеризующий длительность процессов. Он является частью пространственно-временного континуума и четвертой осью привычного нам трехмерного мира. Ах да… Еще то, что это чертовски интересная и непонятная штука. Как у нас говорят — ничего непонятно, но очень интересно.
Является ли время иллюзией?
Время, возможно, не является фундаментальной сущностью. По мнению некоторых физиков, это могло появиться в нашем восприятии как часть совершенно статичного мира.
Читая это предложение, вы, вероятно, думаете, что именно сейчас происходит настоящий момент. Вы чувствуете, что в настоящем моменте есть что-то особенное. Это реально. Вы можете вспомнить прошлое или предвидеть будущее, но вы живете настоящим. Конечно, в тот момент, когда вы читаете это первое предложение, оно теряет актуальность. В тот момент, когда вы читаете это, оно заменяется. Другими словами, мы чувствуем, как проходит время. Наша глубокая интуиция подсказывает, что будущее открыто, пока не станет настоящим, а прошлое зафиксировано. Со временем эта структура фиксированного прошлого, непосредственного настоящего и открытого будущего смещается в одном направлении, всегда одинаково. Эта структура записана на нашем языке, в наших мыслях и в нашем поведении.
Однако, какой бы естественной ни была эта концепция, наука ее не отражает. Уравнения физики не говорят нам о том, какие события происходят прямо сейчас; более того, их можно сравнить с картой, на которой отсутствует символ «Ты здесь». Более того, теории относительности Альберта Эйнштейна говорят не только о том, что не существует единственного конкретного настоящего, но и о том, что все моменты одинаково реальны.
Несоответствие между научным пониманием времени и нашим интуитивным представлением о нем давно волнует мыслителей. Оно только увеличилось, поскольку физики лишили время большинства атрибутов, которыми мы обычно его наделяем. Сегодня разрыв между временем физики и временем человеческого опыта достиг своего логического завершения: многие теоретики пришли к убеждению, что, по сути, времени вообще не существует.
Время как эмерджентная концепция
Эта концепция эмерджентного времени потенциально революционна. Эйнштейн утверждал, что ключевым шагом в разработке теории относительности было переосмысление времени. Пока теоретики преследуют свою амбицию объединить общую относительность с квантовой физикой, многие считают, что без основательного переосмысления времени невозможно добиться прогресса.
Наше интуитивное представление о времени потерпело ряд неудач по мере развития физики. Давайте начнем со времени классической физики, так называемого ньютоновского времени. Законы движения Ньютона подразумевают, что время обладает рядом характеристик.
Классическое время также должно иметь понятие длительности для количественного определения того, что разделяет события во времени. Чтобы сказать, что гепард может бежать со скоростью 110 километров в час, нам нужно определить, что такое час. И точно так же, как порядок событий, длительность не зависит от наблюдателя в ньютоновской физике.
По сути, Ньютон предположил, что в мире есть главные часы. Ньютоновская физика прислушивается к тиканью именно этих часов и никаких других. Ньютон также считал, что время течет и что это течение определяет стрелку, указывающую в будущее; но эти дополнительные свойства не являются строго обязательными для ньютоновских законов.
Время Ньютона может показаться нам старомодным, но, поразмыслив, мы можем увидеть, насколько удивительна эта концепция. Его многочисленные характеристики (порядок, непрерывность, длительность, абсолютная одновременность, поток и стрела потока) логически независимы; но главные часы, которые Ньютон назвал «временем», объединяют их все вместе. И этот коктейль характеристик оказался настолько удачным, что сохранился в неизменном виде почти на два столетия.
Эйнштейн усугубил ситуацию в 1915 году своей теорией общей относительности, которая распространяет специальную относительность на ситуации, где присутствует гравитация. Гравитация искажает время, так что прохождение секунды здесь может означать не то же самое, что прохождение секунды в другом месте. За исключением редких случаев, синхронизировать часы и поддерживать их в синхронном состоянии невозможно. Больше невозможно считать, что мир развивается секунда за секундой, управляемый одним временным параметром. Становится невозможным сказать, что одно событие произошло до или после другого.
Общая теория относительности вводит множество понятий, в которых фигурирует слово «время»: временная координата, собственное время, глобальное время. В совокупности они выполняют многие задачи единого времени Ньютона, но ни одно из них не стоит особняком. Физика либо не прислушивается к этим часам, либо, если и прислушивается, то эти часы применимы только к небольшим частям Вселенной или к конкретным наблюдателям. Сегодня физики обеспокоены тем, что единая теория должна исключить время, но разумно сказать, что в 1915 году время уже прошло, и что мы еще не полностью интегрировали его.
Возникает соблазн подумать, что разница между пространством и временем почти исчезла, и что реальная арена событий четырехмерна. Относительность, похоже, превращает время в простое дополнительное измерение (или направление) на этой арене. Пространство-время подобно буханке хлеба, которую можно нарезать разными способами, произвольно называя «пространство» или «время».
Разные наблюдатели не согласны с последовательностью событий, разделенных интервалами пространственного вида, но все они согласны с порядком событий, разделенных интервалами временного вида. И если для одного наблюдателя одно событие может вызвать другое (по причинно-следственной связи), то и для всех остальных наблюдателей тоже.
Первый метод знаком физикам или любителям кино. Изображения в фильме представляют собой срезы пространства-времени: они показывают пространство в последовательные моменты времени. Подобно киноманам, которые угадывают сюжет и предсказывают, что будет дальше в фильме, физики могут взять один полный кусочек пространства и восстановить, что происходит в других кусочках пространства, просто применив законы физики.
Второй способ нарезки не имеет простой аналогии. Это соответствует нарезке пространства-времени не от прошлого к будущему, а от Востока к Западу. Примером такого среза может быть северная стена дома и все, что произойдет с этой стеной в будущем. На основе этого кусочка законы физики позволили бы нам восстановить остальную часть дома (и даже остальную часть Вселенной).
Это звучит странно? Так и должно быть. Не очевидно, что законы физики позволят вам это сделать. Но, как недавно показали математик Уолтер Крейг из Университета Макмастера (Канада) и философ Стивен Вайнштейн из Университета Ватерлоо (Канада), это возможно, по крайней мере, в некоторых простых ситуациях.
Хотя в принципе возможны оба способа разделения пространства-времени, они глубоко различаются. При обычном срезе из прошлого в будущее данные, которые необходимо собрать для среза, теоретически получить довольно просто. Например, если измеряются скорости всех частиц, то скорость частицы в одном месте не зависит от скорости другой частицы в другом месте. Но во втором методе нарезки свойства частиц не являются независимыми, они переплетаются между собой совершенно особым образом. Для получения необходимой информации пришлось бы комбинировать чрезвычайно сложные измерения этих частиц. И даже тогда эти измерения позволят реконструировать все пространство-время только в особых случаях, таких как те, которые были открыты У. Крейгом и С. Вайнштейном.
Время, направление, которое упрощает вещи
Одной из самых амбициозных целей современной физики является объединение общей теории относительности и квантовой физики в единую теорию, учитывающую как гравитационные, так и квантовые аспекты материи: квантовую теорию гравитации. Это стремление наталкивается на несколько подводных камней; в частности, квантовая механика навязывает определенные свойства времени, которые противоречат тому, что было сказано выше.
Квантовая механика утверждает, что объекты обладают гораздо более богатым репертуаром поведения, чем мы можем охватить с помощью классических величин, таких как положение и скорость. Полное описание объекта дается математической сущностью, называемой квантовым состоянием. Это состояние непрерывно изменяется во времени, и физики могут рассчитать вероятность того, что конкретный экспериментальный результат будет получен в определенное время. Если мы пошлем электрон через устройство, которое отклоняет его либо вверх, либо вниз, квантовая механика не сможет с уверенностью сказать нам, какого результата следует ожидать.
Вместо этого квантовое состояние дает только вероятность различных возможных исходов; например, 25-процентный шанс, что электрон поднимется вверх, и 75-процентный шанс, что он отклонится вниз. Таким образом, две системы, описываемые одинаковыми квантовыми состояниями, могут иметь разные результаты.
Во-вторых, временной порядок квантовых измерений имеет значение. Предположим, мы пропускаем электрон через устройство, которое отклоняет его сначала вертикально, затем горизонтально, и измеряем его угловой момент, когда он выходит из устройства. Эксперимент повторяют, на этот раз отклоняя электрон горизонтально, затем вертикально, и снова измеряют угловой момент. Полученные значения будут сильно отличаться.
Квантовый подводный камень
Наконец, квантовое состояние предоставляет вероятности для всего пространства в данный момент времени. Если состояние охватывает пару частиц, то измерение одной из частиц мгновенно влияет на другую, независимо от ее местоположения; это знаменитое «призрачное действие на расстоянии», которое так беспокоило Эйнштейна в квантовой механике. Эта мгновенная корреляция беспокоила его по той веской причине, что если частицы реагируют одновременно, то это означает, что у Вселенной есть главные часы, что относительность категорически запрещает.
Хотя некоторые из этих вопросов остаются спорными, время в квантовой механике, по сути, является регрессом к ньютоновскому времени. Физики обеспокоены отсутствием времени в теории относительности, но центральная роль времени в квантовой механике, возможно, является более серьезной проблемой. Именно по этой глубокой причине объединение общей теории относительности и квантовой физики является столь трудной задачей.
Многие исследовательские программы направлены на объединение общей относительности и квантовой физики. Схематично их можно разделить на две группы. Физики, считающие, что квантовая механика предлагает наиболее прочный фундамент, такие как теоретики суперструн, имеют в качестве отправной точки чистое время. Те, кто считает, что общая теория относительности является наилучшей отправной точкой, начинают с теории, в которой время уже повержено, и поэтому более открыты для идеи атемпоральной реальности.
Конечно, различие между этими двумя подходами размыто. Теоретики суперструн недавно представили теории без времени. Но чтобы прояснить фундаментальные проблемы со временем, мы остановимся на втором подходе, основным примером которого является теория петлевой квантовой гравитации, которая сама выросла из первой, так называемой канонической теории квантовой гравитации.
Каноническая теория возникла в 1950-х и 1960-х годах, когда физики выразили уравнения гравитации Эйнштейна в той же форме, что и уравнения электромагнетизма. Идея заключалась в том, что методы, которые были использованы для построения квантовой теории электромагнетизма, будут применимы и к гравитации. Так, в конце 1960-х годов физики Джон Уилер и Брайс ДеВитт пришли к странному результату. Это уравнение (известное как уравнение Уилера-ДеВитта) было полностью лишено переменной времени. Символ t, обозначающий время, просто исчез.
Уравнения, в которых время исчезло
Физики были озадачены в течение десятилетий. Если воспринимать результат буквально, то времени на самом деле не существует. Карло Ровелли из Университета Медитерране Экс-Марсель II, один из создателей петлевой квантовой гравитации, и английский физик Джулиан Барбур являются двумя наиболее видными сторонниками этой идеи. Они пытались переписать квантовую механику таким образом, чтобы в ней не было времени, как того требует относительность.
Они считают, что этот маневр возможен потому, что общая теория относительности, хотя и не имеет глобального времени, все же способна описать изменения. По сути, эта теория делает это, связывая физические системы непосредственно друг с другом, а не через абстрактное понятие глобального времени.
В мысленных экспериментах Эйнштейна наблюдатели устанавливают время событий, сравнивая часы с помощью световых сигналов. Можно описать изменение положения спутника, вращающегося вокруг Земли, в терминах ударов ваших кухонных часов, или наоборот. Мы описываем корреляции между двумя физическими объектами без привлечения глобального времени в качестве посредника. Вместо того чтобы описывать цвет своих волос как меняющийся со временем, мы можем соотнести его с орбитой спутника. Вместо того чтобы говорить, что бейсбольный мяч ускоряется со скоростью десять метров в квадратную секунду, мы можем соотнести это с изменениями в леднике. И так далее. Время становится ненужным. Изменения можно описать и без него.
Эта обширная сеть корреляций настолько хорошо организована, что можно определить сущность под названием «время» и связать с ней все, что угодно, тем самым сняв с себя бремя отслеживания всех прямых связей между явлениями. Таким образом, физики могут обобщить работу Вселенной в компактной форме, в терминах физических законов, которые действуют во времени.
Избавление от времени имеет определенную привлекательность, но оно влечет за собой определенные трудности. Кроме всего прочего, это требует переосмысления квантовой механики. Возьмем известный пример с котом Шредингера. Этот кот, судьба которого зависит от состояния квантовой частицы, находится между жизнью и смертью. В классическом представлении кот становится тем или иным после измерения или эквивалентного процесса. Но С. Ровелли утверждает, что судьба кошки так и не определена. Бедный зверь может быть мертв для себя, жив для человека в комнате, мертв для другого человека в соседней комнате и так далее.
Актуальным вопросом для сторонников атемпоральной квантовой гравитации является объяснение того, почему мир обладает очевидной временностью. Общая относительность тоже не включает в себя время в ньютоновском смысле, но, по крайней мере, у нее есть различные частичные заменители, которые вместе ведут себя как ньютоновское время, когда гравитация слаба, а относительные скорости малы. Уравнение Уилера-ДеВитта даже не допускает таких замен. Дж. Барбур и C. Ровелли высказали предположения о том, как время или, по крайней мере, его иллюзия может возникнуть из ничего. Но каноническая квантовая гравитация уже предлагает более развитую идею.
Известное как полуклассическое время, оно восходит к статье английского физика Невилла Мотта 1931 года, описывающей столкновение ядра гелия с более крупным атомом. Для моделирования полной системы Мотт использовал уравнение, в котором время не фигурирует, и которое обычно применяется только для статических систем. Затем он разложил систему на две подсистемы и использовал ядро гелия в качестве «часов» для атома. Примечательно, что атом подчиняется по отношению к ядру обычному квантовомеханическому уравнению, но в котором пространственная функция заменяет параметр времени.
Таким образом, даже если система в целом атемпоральна, отдельные элементы не являются таковыми. Время для подсистемы скрыто в атемпоральном уравнении общей системы.
Нечто подобное происходит и с квантовой гравитацией, как утверждает Клаус Кифер из Кельнского университета, следуя по стопам Томаса Бэнкса из Калифорнийского университета в Санта-Крузе и других ученых. Возможно, у Вселенной нет времени, но если разложить ее на части, то некоторые из ее частей могут служить часами для других. Таким образом, время возникает из атемпоральности. Мы воспринимаем время, потому что по своей природе являемся одной из частей Вселенной.
Какой бы интересной и странной ни была эта идея, она оставляет нас в некотором одиночестве. Вселенную не всегда можно разложить на элементы, которые служат часами, и в этом случае теория не делает вероятностных предсказаний. Для решения этих ситуаций потребуется полная теория квантовой гравитации, и придется переосмыслить время еще более основательно.
Физики исходили из структурированного времени опыта, времени фиксированного прошлого, настоящего и открытого будущего. Они постепенно разобрали его, и от него мало что осталось. Теперь исследователи должны перевернуть это рассуждение и реконструировать время опыта, возможно, из сети корреляций между элементами фундаментально статичного мира.
Упрямая иллюзия или физическая реальность? Что наука говорит о Времени: интервью с кандидатом физико-математических наук А.А. Шейкиным
Я изучаю время. Ту самую штуку, из-за которой не всё происходит разом.
Из к/ф «Господин Никто», 2009 г.
Что такое время ─ иллюзия или физическая реальность? Существует ли время, если на него никто не смотрит? Абсолютно ли время и пространство и может ли время пойти вспять? Ответы на эти вопросы люди ищут столетиями. Мы тоже решили не оставаться в стороне и обсудили природу времени с кандидатом физико-математических наук, старшим преподавателем кафедры физики высоких энергий и элементарных частиц Санкт-Петербургского государственного университета Антоном Андреевичем Шейкиным.
─ Такое понятие, как время, фигурирует в любой науке. А как объясняет время физика?
─ Это, пожалуй, один из самых сложных вопросов, который в принципе можно задавать в физике. Мы хорошо умеем измерять время, но до сих пор довольно плохо понимаем, что именно мы при этом измеряем.
В Международной системе единиц (СИ) все стандартные единицы сегодня уже привязаны к значениям фундаментальных констант, то есть их значения определены точно и не нуждаются в эксперименте. И только единица измерения времени, секунда, все еще определяется из опыта.
Ответ на вопрос, что такое время, будет сильно зависеть от эпохи. В XX веке, например, этот вопрос много раз вставал с ног на голову.
Если вспомнить, откуда взялось представление о времени, то можно сказать, что первоначально человек вообще воспринимает время чисто психологически. Об этом, кстати, сообщал и Эйнштейн, когда пояснял свою теорию относительности на бытовом примере: он говорил, что час, проведенный в прекрасной компании, покажется короче, чем пять минут, проведенные на раскаленной плите. Но психологическое время, конечно, для физики никуда не годится, потому что оно неоднородно и может идти быстрее и медленнее. Поэтому нужны какие-то более стабильные источники ощущения течения каких-то процессов.
Люди довольно быстро научились измерять время, согласуя его с астрономическими циклами: суточный цикл, лунный цикл, годичный цикл. И долгое время именно астрономия предоставляла человечеству самый надежный источник понимания того, куда мы движемся. Люди видели вокруг себя повторяющиеся, периодические явления и учились сверять собственные ощущения текущих процессов с природными циклами.
Пожалуй, самый популярный ответ на вопрос, что такое время, звучит так: время ─ это то, что мы измеряем часами. А что такое часы? Часы ─ это некая физическая система, в которой происходят периодические процессы: то есть для того, чтобы определить время, нам нужен какой-то цикличный процесс. В древности эти цикличные процессы воспринимались как нечто настолько реальное, что древние греки даже считали, что время замкнуто в кольцо, идет по кругу.
Вместе с коллегами из СПбГУ Антон Шейкин занимается одной из модифицированных теорий гравитации ─ так называемый подход Редже-Тейтельбойма, или теория вложения, которая, в том числе, строилась с целью решения проблемы времени в теории гравитации. Фото: Николай Мохначев, «Научная Россия».
─ В современной науке считается, что такого понятия, как абсолютное время, не существует?
─ Совершенно верно. В своих мемуарах Эйнштейн писал, что к началу XX века в Европе все знали, что такое абсолютное время, кроме него.
300 лет назад Ньютон сказал, что время ─ это ось, которая в каждой точке нашего пространства отсчитывает какой-то параметр; время в его концепции ─ это некая величина, которая может быть определена во всей Вселенной сразу, и поэтому можно говорить о том, что существует абсолютное время, которое мы можем определять без привязки к каким-то произвольным договоренностям.
Ньютоновское время ─ это некое Вселенское время, которое абсолютно объективно и не зависит от человеческих восприятий, эдакое идеальное время. Но, как мы знаем, ничего идеального в природе не существует, и ньютоновское время ─ это что-то вроде сферического коня в вакууме. Так что Эйнштейн в 1905 году сделал то, что давно было пора сделать с ньютоновским временем: он показал, что мы не можем его измерять.
Если любого физика спросить, что такое та или иная величина (например, время), то речь сразу зайдет о том, а как эту величину мы измеряем? Альберт Эйнштейн показал, что если мы можем обмениваться информацией только с конечной скоростью, например, скоростью света, то двум людям невозможно синхронизировать свои часы без всяких дополнительных договоренностей.
─ То есть непонятно, где причина, а где следствие?
─ Да. Эйнштейн показал, что при определенных условиях причины и следствия для разных людей могут даже меняться местами.
Когда говорят о теории относительности Эйнштейна, далеко не всегда уточняют, теория относительности чего?
Относительность положения провозгласил еще Коперник. Он сказал, мол, а зачем считать центром мира Землю, ведь из-за этого неудобно проводить расчеты; вместо этого можно в центр поставить Солнце или другую область недалеко от него. Относительность движения провозгласил Галилей. Он объяснил, что можно двигаться с постоянной скоростью и даже не замечать этого. Эйнштейн же провозгласил относительность времени, в результате чего ньютоновскому понятию абсолютной одновременности пришел конец.
Эйнштейн предложил мысленный эксперимент, установивший относительность одновременности. Он показал, что два события, одновременные для одного человека, могут быть разделены по времени, если один из этих людей, допустим, сядет в электричку или, наоборот, остановится, если до этого ехал. Эйнштейн доказал, что течение времени в физической системе зависит от того, с какой скоростью движется относительно нее наблюдатель.
─ Кажется, Эйнштейну принадлежит фраза, что время нужно для того, чтобы все события не произошли одновременно?
─ Да, можно и так понимать. Если говорить об инструментальном понимании времени, то зачем физикам вообще нужно понятие времени? Затем, что это величина, которая показывает, как эволюционирует физическая система, то есть это параметр эволюции. А если все события произошли в один и тот же момент времени, то, получается, никакой эволюции нет.
─ А сами физические законы со временем не эволюционируют? Мировые константы после Горячего Большого взрыва и по сей день не изменились?
─ Это очень интересный вопрос, потому что мы до сих пор до конца не уверены в том, что мировые константы, такие как скорость света, постоянная Планка или гравитационная постоянная, неизменны во времени. Это нужно устанавливать с помощью тончайших экспериментов.
В Петербургском институте ядерной физики им. Б.П. Константинова делали расчеты для выяснения возможной вариации фундаментальных констант в прошлом на основе интересного наблюдения природного ядерного реактора в Окло. Наши ученые пытались выяснить, какова была скорость ядерных реакций, которые проходили там 2 миллиарда лет назад, и рассчитать на основе этих данных возможные изменения фундаментальных констант. Насколько я понимаю, удалось получить только ограничение сверху: если значение констант изменилось, то не более, чем на определенную величину. То есть нам (во всяком случае, мне) хочется верить, что, к примеру, скорость света и постоянная Планка со временем не меняются, но это, в общем, вопрос, который должен решать эксперимент.
─ Мы говорим, что нет абсолютного времени, а абсолютное пространство существует?
─ Это тоже довольно интересный вопрос, и поисками ответа на него занимался Эйнштейн под впечатлением от работ Эрнста Маха.
Эйнштейн почерпнул от Маха свою идею относительности пространства. Мах считал, что пространство ─ это не что иное, как вспомогательная величина, которая помогает нам описывать отношения между объектами. И, если мы зададимся вопросом, каковы свойства пространства, то обнаружим, что можем ответить на него лишь посредством наблюдения за движением каких-либо тел в этом пространстве. На основе этого Мах сделал вывод, что пространство ─ это нечто абсолютно вспомогательное, и подлинная физика должна основываться на описании систем отношений.
Эрнст Мах выдвинул довольно расплывчатый философский принцип (Эйнштейн так и назвал его ─ принцип Маха), согласно которому инерция тел определяется наличием всех остальных тел во Вселенной ─ то есть не пространство определяет свойство инерции тел, а наличие всех других тел в этом пространстве. Эйнштейн, создавая общую теорию относительности, думал, что воплощает в жизнь идею Маха. Но потом, когда он построил математическую формулировку общей теории относительности, оказалось, что с принципом Маха она не согласуется. Тем не менее идея о том, что пространство тоже не является абсолютным, была для Эйнштейна путеводной звездой.
Эрнст Мах (1838-1916 гг.) ─ австрийский физик, философ-позитивист, один из основателей эмпириокритицизма («критическое исследование опыта»), главным предметом которого являются научное мышление и механизмы образования знания.
─ Известно, что время и гравитация связаны. Гравитация вызывает замедление времени или наоборот ─ свойства времени порождают гравитацию?
─ Я бы сказал, что скорее первое, и здесь мы опять же возвращаемся к тому, что с понятием времени произошло в XX веке. Ньютон считал, что время ─ это просто параметр эволюции физической системы, который никак не связан со свойствами пространства и может определяться независимо от них. Общая теория относительности Эйнштейна и даже специальная теория относительности в формулировке Минковского опровергла это утверждение тем, что придала времени еще один смысл, помимо физического, ─ это геометрический смысл.
Минковский писал: «Отныне пространство само по себе и время само по себе низводятся до роли теней и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность». Имелось в виду, что мы живем в некотором четырехмерном геометрическом пространстве-времени, то есть в некой единой структуре, в которой у времени есть та же самая геометрическая интерпретация, что и у наших координатных осей X, Y, Z. Но довольно скоро здесь возникли некие трудности: оказалось, что время как геометрическая характеристика того мира, в котором мы живем, и время физическое, вообще говоря, не вполне тождественны. Можно привести такой пример. Есть целый класс физических теорий, например, геометрическая оптика, механика частиц в специальной теории относительности или гравитация, в которых нет предпочтительного выбора времени. Если вы, например, занимаетесь вопросом распространения лучей света в рамках геометрической оптики, то можете определить время так, как захотите; важно лишь, чтобы луч света в одной точке был раньше, а в другой позже. Если вы соблюдаете это требование, то можете определять время как угодно. И оказывается, что в таких теориях физическое время как бы пропадает, и не очень понятно, а как вообще строить физическую теорию. Но здесь нам на помощь приходит геометрическое время. Допустим, мы не знаем, как удобнее рассматривать эволюцию этой физической системы, но у нас есть понимание, что вся эта физическая система находится в некотором геометризованном мире. Тогда мы можем просто одно из направлений этого общегеометрического пространства рассматривать как наш параметр эволюции.
Замедление времени близ планеты Земля. Источник иллюстрации: Физика от Побединского.
Замедление времени, Земля, на большем масштабе. Иллюстрация: Физика от Побединского
─ Кажется, у Эйнштейна была такая мысль, что всю физику можно свести к геометрии?
─ Да, но не всегда получается. И здесь кроется как раз одна из главных трудностей, которая препятствует успешному квантованию гравитации. Эйнштейн действительно построил теорию, которая полностью геометризовала гравитацию. Он сказал, что гравитационное взаимодействие тел ─ это не что иное, как движение в искривленном пространстве-времени, а не влияние некой силы. По сути, это и есть влияние геометрии пространства. Но вот когда дело доходит до построения квантовой теории, ученые начинают нуждаться в физическом времени. Нам необходим некий параметр эволюции, который бы определял, грубо говоря, что было раньше, а что потом.
─ И этот параметр вводится искусственно?
─ В общей теории относительности не существует, как мы уже говорили, выделенного физического времени, его надо как-то отдельно изобретать.
Да, этот параметр нужно искусственно ввести, потому что в общей теории относительности со временем происходят еще более страшные вещи, чем в специальной. Так, в специальной теории относительности время определяется с учетом выбора системы отсчета, но действуют вполне простые линейные преобразования. Если вы знаете, как выглядит время в одной системе отсчета, вы сразу же пишите формулы в другой системе отсчета, которая движется с постоянной скоростью относительно нее, и формулы очень простые. А вот в общей теории относительности выбор времени гораздо более широк. Эйнштейн сказал, что время в общей теории относительности вообще можно выбирать, как угодно. То есть произвольным образом вы выберете время и можете построить физическую теорию. И это, с одной стороны, вроде как хорошо, а с другой стороны ─ ужасно. Потому что с существованием времени как какого-то физического параметра, который реально куда-то течет, связано существование сохраняющихся величин, например, энергии; ведь энергия ─ это величина, сохраняющаяся в физической системе, если эта система не чувствует сдвигов по времени.
Если я сегодня провел эксперимент, завтра проделал то же самое, и результаты эксперимента совпадают, это может означать, что в той физической системе, в которой я работал, существует сохраняющаяся энергия, и эта энергия ─ главный инструмент для построения квантовой теории чего бы то ни было. То есть если я знаю, как записать энергию любой физической системы, я ее могу попытаться проквантовать. Так вот, произвольность выбора времени в теории гравитации приводит к тому, что энергию там очень сложно определить.
Парадоксально, но полная энергия любой физической системы, в которой действуют гравитационные силы, равна нулю, с некоторыми оговорками. И главная проблема, которая препятствует построению квантовой теории гравитации, заключается в том, что в общей теории относительности невозможно без дополнительных предположений определить, чему равна энергия гравитирующей системы. Таким образом, произвол выбора времени приводит к тому, что ни одно из времен нельзя наделить физическими свойствами.
Многие считают, что одна из самых известных картин Сальвадора Дали ─ «Постоянство памяти» ─ была написана под влиянием работ Эйнштейна. Сам же художник утверждал, что вдохновлялся мягким французским сыром камамбер. Фото: https://ru.wikipedia.org/
─ Можно ли сказать, что время ─ это конструкт наблюдателя? Если убрать из Вселенной всех живых существ, будет ли существовать время?
─ Это уже вопрос к буддистам. Если дерево упало в лесу, и его шума никто не слышал, то падало оно или нет?
─ А что физика на этот вопрос отвечает?
─ Если мы рассматриваем геометрическое время, как одно из направлений нашего общего пространства, пространства Минковского, например (если гравитацией пренебрегаем), или пространства Римана, то время, конечно, существует, даже если удалить всю материю из Вселенной.
Есть очень широкий класс вакуумных решений уравнений Эйнштейна, где, если я удаляю из Вселенной абсолютно всю материю и спрашиваю: «а как же будет выглядеть эта Вселенная, будет ли в ней время?», Эйнштейн говорит, что, конечно же, будет, потому что это просто четырехмерное пространство-время, которое можно вывести на бумаге.
─ Получается, даже если выключить гравитацию и убрать всю материю, все равно время останется?
─ Если убрать из Вселенной абсолютно всю материю, то в принципе можно построить модель такой Вселенной, в которой пространство будет все еще искривлено. Такое пространство можно описать, как пространство, по которому бегают гравитационные волны, начинающиеся с одного края Вселенной и заканчивающиеся на другом.
─ А что искривляет это пространство, если нет материи?
─ Это очень неоднозначный вопрос. Факт заключается в том, что решение уравнения Эйнштейна для таких ситуаций существует. Имеет ли оно какой-то физический смысл? Зависит от того, у кого спрашивать. Если убрать из Вселенной всю материю и потребовать, чтобы на бесконечности от наблюдателя гравитационного поля не было, то пространство, в общем, будет плоским. Но если не требовать граничных условий на бесконечности, если не требовать, чтобы на произвольно больших расстояниях у вас пространство было статичным и никакие процессы в нем не происходили, то вы можете придумать какие-то вселенные, в которых материи нет совсем, а гравитация все-таки присутствует. Однако с точки зрения физики это, конечно, трудно интерпретировать, потому что принято считать, что любая гравитационная волна порождается каким-то источником. Хотя с точки зрения абстрактного математика это решение ничем не хуже, чем другие. А со стороны физики, конечно, гравитация порождается материей. Если вы убираете материю и накладываете разумные условия на свойства вашего пространства, то гравитация тоже исчезает.
─ Каков главный вклад гравитации в свойства времени?
─ Она, собственно, и определяет эти свойства. В плоском пространстве время ─ просто одно из направлений, его свойства заданы глобально. Но если вы гравитацию подключаете, то свойства времени в каждой точке начинают сразу меняться. В общей теории относительности свойства времени меняются локально. В каждой точке вашего пространства находится сколько-нибудь материи. Эта материя в свою очередь вызывает гравитацию, а гравитация определяет, как будет течь время в этой точке. Джон Уилер, знаменитый физик-теоретик, который популяризовал понятие черной дыры, очень поэтично это выражал в двух фразах: «Пространство говорит материи, куда ей двигаться, а материя говорит пространству, как ему искривляться».
─ Время может двигаться вспять?
─ Здесь я могу сослаться на Сергея Владиленовича Красникова ─ пожалуй, главного в нашей стране специалиста по путешествиям во времени, он работает в Пулковской обсерватории. Сергей Владиленович, когда я слушал его доклады, утверждал, что машины времени не запрещаются классической общей теорией относительности. В рамках классической теории Эйнштейна может существовать пространство-время с нарушенной причинностью, то есть такое, в котором в принципе возможно движение назад по времени. Один из очень интересных результатов Красникова заключается в том, что машину времени, как оказывается, нельзя построить, то есть нельзя построить такое пространство-время, в котором гарантированно нарушалась бы причинность. Но мы можем на него наткнуться! Нельзя гарантировать, что при соблюдении каких-то действий, при выполнении каких-то действий, вы неизбежно попадете, как говорится, назад в прошлое…
─ То есть искусственно не создать, но в природе можно встретить?
─ Именно так. И это один из главных результатов, который, собственно, Красников получил. Но это, разумеется, чисто классическое рассмотрение. В целом, общее мнение таково, что для того, чтобы понять, возможны ли в действительности путешествия во времени и как они могут происходить, нам все-таки нужна квантовая теория гравитации. Квантовые поправки могут очень сильно повлиять на возможность путешествия во времени. Но я оговорюсь, это все пока что вопросы, имеющие исключительно академический интерес, потому что мы еще очень и очень далеки от любых экспериментов в этой области. Ну а конечный судья в физике ─ это, разумеется, эксперимент.
ЛИТЕРАТУРА ПО ТЕМЕ:
1. Дж. Уитроу, «Естественная философия времени».
2. Г. ’т Хоофт, С. Вандорен, «Время. Явления природы на шкале времени».
3. Ш. Кэрролл, «Вечность. В поисках окончательной теории времени».
4. А.Д. Чернин, «Физика времени».
5. С.В. Красников, «Машины времени и сверхсветовые перемещения в ОТО».













